% vim: tw=50 % 28/11/2022 11AM \subsection{Spectral theory for self adjoint maps} \begin{itemize} \item \textbf{Spectral theory} $\equiv$ study of the spectrum of operators \begin{itemize} \item[$\to$] mathematics \item[$\to$] physics (QUANTUM MECHANICS) \item[$\Rightarrow$] INFINITE DIMENSIONAL. Finite dimension $\to$ infinite dimension. Linear maps $\to$ Hilbert space / compact operator. \end{itemize} \item Adjoint operator: $V$, $W$ finite dimensional inner product spaces, $\alpha \in \mathcal{L}(V, W)$, then the adjoint $\alpha^* \in \mathcal{L}(W, V)$ such that $\forall (v, w) \in V \times W$, \[ \langle \alpha(v), w \rangle_W = \langle v, \alpha^*(w) \rangle_V \] We defined: \begin{itemize} \item[-] Self adjoint maps, $V = W$, $\alpha = \alpha^*$, \[ \iff \forall (v, w) \in V \times V, \quad \langle \alpha v, w \rangle = \langle v, \alpha w \rangle \] \item[-] isometries $V = W$, $\alpha^* = \alpha^{-1}$ \[ \iff \forall (v, w) \in V \times V, \quad \langle \alpha v, \alpha w \rangle = \langle v, w \rangle \] \item $\RR$: orthogonal group \item $\CC$: unitary group. \end{itemize} \end{itemize} \subsubsection*{Spectral theory for self adjoint operators} \begin{lemma*} Let $V$ be a finite dimensional inner product space. Let $\alpha \in \mathcal{L}(V)$ be self adjoint: ($\alpha = \alpha^*$). Then: \begin{enumerate}[(i)] \item $\alpha$ has real eigenvalues \item eigenvectors of $\alpha$ with respect to \emph{different} eigenvalues are orthogonal. \end{enumerate} \end{lemma*} \begin{proof} \begin{enumerate}[(i)] \item $v \in V \setminus \{0\}$, $\lambda \in \CC$ such that $\alpha v = \lambda v$. Then \begin{align*} \lambda \|v\|^2 &= \langle \lambda v, v \rangle \\ &= \langle \alpha v, v \rangle \\ &= \langle v, \alpha^* v \rangle \\ &= \langle v, \alpha v \rangle \\ &= \langle v, \lambda v \rangle \\ &= \ol{\lambda} \|v\|^2 \end{align*} So $(\lambda - \ol{\lambda})\|v\|^2 = 0$. But $\|v\|^2 \neq 0$ since $v \neq 0$ so $\lambda = \ol{\lambda}$ so $\lambda \in \RR$. \item $\alpha v = \lambda v$, $\lambda \in \RR$, $v \neq 0$. $\alpha w = \mu w$, $\mu \in \RR$, $w \neq 0$. Also $\lambda \neq \mu$. Then \begin{align*} \lambda \langle v, w \rangle &= \langle \lambda v, w \rangle \\ &= \langle \alpha v, w \rangle \\ &= \langle v, \alpha^* w \rangle \\ &= \langle v, \alpha w \rangle \\ &= \langle v, \mu w \rangle \\ &= \ol{\mu} \langle v, w \rangle \\ &= \mu \langle v, w \rangle \end{align*} So $(\lambda - \mu) \langle v, w \rangle = 0$. But $\lambda \neq \mu$ so $\langle v, w \rangle = 0$. \end{enumerate} \end{proof} \begin{flashcard}[self-adjoint-orthonormal-basis] \begin{theorem*} Let $V$ be a finite dimensional inner product space. Let $\alpha \in \mathcal{L}(V)$ be self adjoint ($\alpha = \alpha^*$). Then $V$ has an \emph{orthonormal} basis made of eigenvectors of $\alpha$. \end{theorem*} \noindent $\to$ We also say: $\alpha$ can be diagonalised in an orthonormal basis for $V$. \begin{proof} \cloze{ $F = \RR$ or $\CC$. We argue by induction on the dimension of $V$, $\dim_F V = n$. \begin{itemize} \item $n = 1$ $\to$ trivial. \item $n - 1 \to n$. $\mathcal{B}$ any orthonormal basis of $V$ say $A = [\alpha]_{\mathcal{B}}$. By the fundamental Theorem of Algebra, we know that $\chi_A(t)$ ($\equiv$ characteristic polynomial of $A$) has a \emph{complex} root. This root is an eigenvalue of $\alpha$ and $\alpha = \alpha^*$ $\implies$ this root is \emph{real}. Let us call $\lambda \in \RR$ this eigenvalue, pick an eigenvector $v_1 \in V \setminus \{0\}$ such that $\|v_1\| = 1$, $\alpha v_1 = \lambda v_1$. Let $U = \langle v_1 \rangle^\perp \le V$. Then KEY OBSERVATION: $U$ stable by $\alpha$, i.e. $\alpha(U) \le U$. Indeed, let $u \in U$, then: \begin{align*} \langle \alpha u, v_1 \rangle &= \langle u, \alpha v_1^* \rangle \\ &= \langle u, \alpha v_1 \rangle \\ &= \langle u, \lambda v_1 \rangle \\ &= \lambda \langle u, v_1 \rangle \\ &= 0 \end{align*} So $\alpha(u) \in U$. This implies: we may consider $\alpha|_U \in \mathcal{L}(U)$ and self adjoint, and then $n = \dim V = \dim U + 1$, so $\dim U = n - 1$ so by induction hypothesis there exists $(v_2, \dots, v_n)$ orthonormal basis of eigenvectors for $\alpha |_U$. Then $V = \langle v_1 \rangle \orthoplus U$ so $(v_1, \dots, v_n)$ orthonormal basis of $V$ made of eigenvectors of $\alpha$. \end{itemize} } \end{proof} \end{flashcard} \begin{remark*} If you want to think in terms of matrices for the proof of (ii), then the choice of $U$ means that $[A]$ is written as \begin{center} \includegraphics[width=0.6\linewidth] {images/8c753dd66f5411ed.png} \end{center} \end{remark*} \begin{corollary*} $V$ finite dimensional inner product space. If $\alpha \in \mathcal{L}(V)$ is self adjoint, then $V$ is the \emph{orthogonal direct sum} of all the eigenspaces of $\alpha$. \end{corollary*} \subsubsection*{Spectral theory for unitary maps} \begin{lemma*} $V$ be a \emph{complex} inner product space (Hermitian sesquilinear structure). Let $\alpha \in \mathcal{L}(V)$ be unitary ($\alpha^* = \alpha^{-1}$). Then \begin{enumerate}[(i)] \item all the eigenvalues of $\alpha$ lie on the unit circle \item eigenvectors corresponding to \emph{distinct} eigenvalues are \emph{orthogonal}. \end{enumerate} \end{lemma*} \begin{proof} \begin{enumerate}[(i)] \item $\alpha v = \lambda v$, $v \neq 0$, $\lambda \in \CC$. \begin{itemize} \item $\lambda \neq 0$: $\alpha$ unitary implies $\alpha$ invertible. \item \begin{align*} \lambda \|v\|^2 &= \lambda \langle v, v \rangle \\ \langle \lambda v, v \rangle \\ &= \langle \alpha v, v \rangle \\ &= \langle v, \alpha^* v \rangle \\ &= \langle v, \alpha^{-1} v \rangle \\ &= \left\langle v, \frac{1}{\lambda} v \right\rangle \\ &= \frac{1}{\ol{\lambda}} \|v\|^2 \end{align*} So $\lambda \|v\|^2 = \frac{1}{\ol{\lambda}} \|v\|^2$ so since $v \neq 0$, $\lambda \ol{\lambda} = 1$, i.e. $|\lambda| = 1$. \item $\alpha v = \lambda v$, $\alpha w = \mu w$, $\lambda, \mu \neq 0$, $\mu \neq \lambda$. Then \begin{align*} \lambda \langle v, w \rangle &= \langle \lambda v, w \rangle \\ &= \langle \alpha v, w \rangle \\ &= \langle v, \alpha^* w \rangle \\ &= \langle v, \alpha^{-1} w \rangle \\ &= \left\langle v, \frac{1}{\mu} w \right\rangle \\ &= \frac{1}{\ol{\mu}} \langle v, w \rangle \\ &= \mu \langle v, w \rangle \end{align*} (by (i)). So $(\lambda - \mu) \langle v, w \rangle = 0$. But $\lambda \neq \mu$ so $\langle v, w \rangle = 0$. \end{itemize} \end{enumerate} \end{proof} \begin{flashcard}[spectral-theory-for-unitary-maps] \begin{theorem*}[Spectral theory for unitary maps] Let $V$ be a finite dimensional \emph{complex} inner product space. Let $\alpha \in \mathcal{L}(V)$ be unitary ($\alpha^* = \alpha^{-1}$). Then $V$ has an orthonormal basis made of eigenvectors of $\alpha$. \end{theorem*} \noindent $\to$ Equivalently, $\alpha$ unitary on $V$ Hermitian can be diagonalised in an orthonormal basis. \begin{proof} \cloze{ Pick $\mathcal{B}$ any orthonormal basis of $V$. $A = [\alpha]_{\mathcal{B}}$. Then $\chi_A(t)$ ($\equiv$ characteristic polynomial of $A$) has a \emph{complex} root. So $\alpha$ has a \emph{complex} eigenvalue. Fix $v_1 \in V \setminus \{0\}$ with $\|v_1\| \neq 0$, $\alpha v_1 = \lambda v_1$. Let $U = \langle v_1 \rangle^\perp$. Then: KEY OBSERVATION: $\alpha(U) \le U$. Indeed: $u \in U$, then \begin{align*} \langle \alpha u, v_1 \rangle &= \langle u, \alpha^* v_1 \rangle \\ &= \langle u, \alpha^{-1} v_1 \rangle \\ &= \left\langle u, \frac{1}{\lambda} v_1 \right\rangle \\ &= \frac{1}{\ol{\lambda}} \langle u, v_1 \rangle \\ &= 0 \end{align*} $\implies \alpha u \in U$, so $\alpha(U) \le U$. We argue by induction on $\dim_\CC V = n$. We consider $\alpha |_U \in \mathcal{L}(U)$ which is unitary, and by the induction hypothesis, $\alpha|_U$ is diagonalisable in an orthonormal basis $(v_2, \dots, v_n)$ of $U$ $\implies (v_1, \dots, v_n)$ is an orthonormal basis of $V$, made of eigenvectors of $\alpha$. } \end{proof} \end{flashcard} \begin{warning*} We used the complex structure to make sure that there is an eigenvalue (which is a priori complex valued). \\ In general, a real valued orthonormal matrix ($AA^\top = \id$) \emph{cannot} be diagonalised over $\RR$. \end{warning*} \begin{example*}[Rotation map in $\RR^2$] \[ A = \begin{pmatrix} \cos\alpha & - \sin \alpha \\ \sin \alpha & \cos\alpha \end{pmatrix} \] \[ \chi_A(\lambda) = (\cos \alpha - \lambda)^2 + \sin^2 \alpha \] Then the eigenvalues are $\lambda = e^{\pm i\alpha}$ ($\not\in$ generally). (Hence diagonalisable in $\CC$ but not $\RR$). \end{example*}