% vim: tw=50 % 25/11/2022 11AM \subsection{Orthogonal complement and adjoint map} \begin{definition*} Suppose $V = U \oplus W$ ($U$ is \emph{a} complement of $W$ in $V$). We define $\pi : V \to W$, $v = u + w \mapsto w$. Then \begin{itemize} \item $\pi$ is linear \item $\pi^2 = \pi$ \end{itemize} We say that $\pi$ is the \emph{projector operator} onto $W$. \end{definition*} \begin{remark*} $\id \pi \equiv \text{projection onto $U$}$ $\to$ $V$ inner product space, $W$ finite dimensional, then we can chose $U = W^\perp$ and $\pi$ is explicit. \end{remark*} \begin{lemma*} \begin{itemize} \item Let $V$ be an inner product space \item Let $W \le V$, $W$ finite dimensional. \end{itemize} Let $(e_1, \dots, e_k)$ be an orthonormal basis of $W$ (given by Gram-Schmidt). Then \begin{enumerate}[(i)] \item $\pi(v) = \sum_{i = 1}^k \langle v, e_i \rangle e_i$ $\forall v \in V$ and $V = W \orthoplus W^\perp$. \item $\forall v \in V$, $\forall w \in W$, \[ \|v - \pi(v)\| \le \|v - w\| \] with equality if and only if $w = \pi(v)$ (that is $\pi(v)$ is the point in $W$ closest to $v$). \end{enumerate} \end{lemma*} \begin{remark*} Infinite dimensional generalisation: \begin{itemize} \item $V$ inner product space $\to$ $V$ Hilbert space \item $W$ finite dimensional $\to$ $W$ closed (completeness) \end{itemize} $\to$ part II class ``Linear Analysis''. \end{remark*} \begin{proof} \begin{enumerate}[(i)] \item $W = \Span \langle e_1, \dots, e_k \rangle$, $(e_i)_{1 \le i \le k}$ orthogonal. Let us define \[ \pi(v) = \sum_{i = 1}^k \langle v, e_i \rangle e_i \] Observation: \[ v = \ub{\pi(v)}_{\in W} + \ub{v - \pi(v)}_{\text{claim: $\in W^\perp$}} \] Indeed \begin{align*} v - \pi(v) \in W^\perp &\iff \forall w \in W, \langle v - \pi(v) w \rangle = 0 \\ &\iff \forall 1 \le j \le k, \langle v - \pi(v), e_j \rangle = 0 \end{align*} We compute: \begin{align*} \langle v - \pi(v), e_j \rangle &= \left\langle v - \sum_{i = 1}^k \langle v, e_i \rangle e_i, e_j \right\rangle \\ &= \langle v, e_j \rangle - \langle v, e_j \rangle \\ &= 0 \end{align*} We have shown $v - \pi(v) \in W^\perp$ Hence \[ v = \ub{\pi(v)}_{\in W} + \ub{(v - \pi(v))}_{\in W^\perp} \] \[ \implies V = W + W^\perp \] And $v \in W \cap W^\perp$ \[ \implies \|v\|^2 = \langle \ub{v}_{\in W}, \ub{v}_{\in W^\perp} \rangle = 0 \] \[ \implies v = 0 \] So \[ V = W \orthoplus W^\perp \] \item Indeed, let $w \in W$, then \begin{align*} \|v - w\|^2 &= \|\ub{v - \pi(v)}_{\in W^\perp} + \ub{\pi(v) - w}_{\in W}\|^2 \\ &= \langle v - \pi(v) + \pi(v) - w, v - \pi(v) + \pi(v) - w \rangle \\ &= \|v - \pi(v)\|^2 + \|\pi(v) - w\|^2 \\ &\ge \|v - \pi(v)\|^2 \end{align*} With equality if and only if $w = \pi(w)$. PYTHAGORAS. \qedhere \end{enumerate} \end{proof} \subsubsection*{Adjoint map} \begin{flashcard}[adjoint-linear-map-defn] \begin{definition*} Let $V, W$ be finite dimensional inner product spaces, let $\alpha \in \mathcal{L}(V, W)$. Then there exists a \emph{unique} linear map \[ \alpha^* : W \to W \] such that $\forall (v, w) \in V \times W$, \[ \langle \alpha(v), w \rangle = \langle v, \alpha^*(w) \rangle \] Moreover, if $\mathcal{B}$ is an orthonormal basis of $V$ and $\mathcal{C}$ is an orthonormal basis of $W$ then \[ \cloze{[\alpha^*]_{\mathcal{C}, \mathcal{B}} = [\alpha]_{\mathcal{B}, \mathcal{C}}^\top} \] \end{definition*} \end{flashcard} \begin{proof} Computation: $\mathcal{B} = (v_1, \dots, v_n)$, $\mathcal{C} = (w_1, \dots, w_m)$, $A = [\alpha]_{\mathcal{B}, \mathcal{C}} = (a_{ij})$. Existence \[ [\alpha^*]_{\mathcal{C}, \mathcal{B}} = \ol{A}^\top = C = (c_{ij}) \] $c_{ij} = \ol{a_{ji}}$. We compute: \begin{align*} \left\langle \alpha \left( \sum_i \lambda_i v_i \right) , \sum_j \mu_j w_j \right\rangle &= \left\langle \sum_{i,k} \lambda_i a_{ki} w_k, \sum_j \mu_j w_j \right\rangle \\ &= \sum_{i, j} \lambda_i a_{ji} \ol{\mu_j} &&\text{(orthonormal)} \end{align*} Then \begin{align*} \left\langle \sum_i \lambda_i v_i, \alpha^* \left( \sum_j \mu_j w_j \right) \right\rangle &= \left\langle \sum_i \lambda_i v_i, \sum_{j, k} \mu_j c_{kj} v_k \right\rangle \\ &= \sum_{i, j} \lambda_i \ol{c_{ij}} \ol{\mu_j} \end{align*} So the expressions are equal because $\ol{c_{ij}} = a_{ji}$. So this proves existence. Uniqueness follows by computing $\alpha^*(w_j)$ $\to$ exercise. \end{proof} \begin{remark*} We are using the same notation $\alpha^*$ for the adjoint of $\alpha$ and the dual of $\alpha$. $V, W$ are real product spaces, $\alpha \in \mathcal{L}(V, W)$, \[ \psi_{R,V} : V \stackrel{\simeq}{\longrightarrow} V^* \] \[ \qquad ~~~~v \mapsto \langle \bullet, v \rangle \] \[ \psi_{R,W} : W \stackrel{\simeq}{\longrightarrow} W^* \] \[ \qquad ~~~~w \mapsto \langle \bullet, w \rangle \] Then the adjoint map of $\alpha$ is given by: \[ W \stackrel[\psi_{R, W}]{}{\longrightarrow} W^* \stackrel[\text{dual of $\alpha$}]{}{\longrightarrow} V^* \stackrel[\psi^{-1}_{R, V}]{}{\longrightarrow} V \] \end{remark*} \subsubsection*{Self adjoint maps and isometries} \begin{flashcard}[self-adjoint-isometry-defn] \begin{definition*} $V$ inner product space finite dimensional $\alpha \in \mathcal{L}(V)$, $\alpha^* \in \mathcal{L}(V)$ the adjoint map. Then: \begin{itemize} \item \cloze{$\langle \alpha v, w \rangle = \langle v, \alpha w \rangle ~ \forall (v, w) \in V \times V \iff \alpha = \alpha^*$. We call such a map self adjoint. ($\RR$ $\alpha$ symmetric, $\CC$ $\alpha$ Hermitian).} \item \cloze{$\langle \alpha v, \alpha w \rangle = \langle v, w \rangle ~ \forall (v, w) \in V \times V \iff \alpha^* = \alpha^{-1}$ we call an isometry. ($\RR$ $\alpha$ orthogonal, $\CC$ $\alpha$ unitary).} \end{itemize} \end{definition*} \end{flashcard} \begin{proof} Check the equivalence that preserving the scalar product \[ (\langle \alpha v, \alpha w \rangle = \langle v, w \rangle \qquad \forall (v, w) \in V \times V ) \] is equivalent to ($\alpha$ invertible and $\alpha^* = \alpha^{-1}$) \begin{enumerate} \item[$\Rightarrow$] $\langle \alpha v, \alpha w \rangle = \langle v, w \rangle ~\forall (v, w) \in V \times V$. Use $v = w$: \[ \|\alpha v\|^2 = \langle \alpha v, \alpha v \rangle = \langle v, v \rangle = \|v\|^2 \] ($\alpha$ preserves the norm: isometry) So $\Ker \alpha = \{0\}$, so $\alpha$ bijective, $\alpha^{-1}$ well defined. (since finite dimensional). $\alpha \in \mathcal{L}(V)$, Then $\forall (v, w) \in V \times V$, \[ TODO \] \[ \implies \forall v \in V, \langle v, \alpha^* w \rangle = \langle v, \alpha^{-1} w \rangle \] \[ \implies \forall v \langle v, \alpha^* w - \alpha^{-1} w \rangle = 0 \] I take $v = \alpha^* w - \alpha^{-1} \omega$ \[ \implies \alpha^* w = \alpha^{-1} w ~\forall w \in V \] \[ \implies \alpha^* = \alpha^{-1} \] \item $\alpha \in \mathcal{L}(V)$, $\alpha^* = \alpha^{-1}$, then \[ \langle \alpha v, \alpha w \rangle = \langle v, \alpha^* \alpha w \rangle = \langle v, w \rangle \qedhere \] \end{enumerate} \end{proof} TODO $\alpha$ isometry ($\alpha = \alpha^{-1}$) \[ \iff \forall (v, w) \in V \times V \langle \alpha v, \alpha w \rangle = \langle v, w \rangle \] \[ \iff \forall v \in V, \|\alpha(v)\| = \|v\| \] (preservation of scalar product $\iff$ preservation of the norm) \begin{lemma*} $V$ finite dimensional real (complex) inner product space. Then $\alpha \in \mathcal{L}(V)$ is: \begin{enumerate}[(i)] \item Self adjoint if and only if in \emph{any} orthonormal basis of $V$, $[\alpha]_{\mathcal{B}}$ is symmetric (Hermitian). \item An isometry if and only if in \emph{any} orthonormal basis of $V$, $[\alpha]_{\mathcal{B}}$ is orthogonal (unitary). \end{enumerate} \end{lemma*} \begin{proof} $\mathcal{B}$ orthonormal basis, \[ [\alpha^*]_{\mathcal{B}} = \ol{[\alpha]_{\mathcal{B}}^\top} \] \begin{itemize} \item Self adjoint $\ol{[\alpha^*]_{\mathcal{B}}^\top} = [\alpha]_{\mathcal{B}}$ \item Isometry $\ol{[\alpha]_{\mathcal{B}}^\top} = [\alpha]_{\mathcal{B}}^{-1}$. \end{itemize} \end{proof} \begin{definition*} $V$ finite dimensional inner product space. \begin{itemize} \item $F = \RR$, \[ \theta(V) = \{\alpha \in \mathcal{L}(V), \alpha \text{ isometry}\} \equiv \text{orthogonal group of $V$} \] \item $F = \CC$, \[ U(V) = \{\alpha \in L(V), \alpha \text{isometry}\} \equiv \text{unitary group of $V$} \] \end{itemize} \end{definition*} \begin{remark*} $V$ finite dimensional, $\{e_1, \dots, e_n\}$ orthonormal basis. \begin{itemize} \item $F = \RR$, $\theta(V) \leftrightarrow \{\text{orthonormal basis of $V$}\}$, $\alpha \mapsto (\alpha(e_1, \dots, \alpha(e_n))$. \item $F = \CC$, $U(V) \leftrightarrow \{\text{orthonormal basis of $V$}\}$, $\alpha \mapsto (\alpha(e_1, \dots, \alpha(e_n))$. \end{itemize} \end{remark*}