% vim: tw=50 % 23/11/2022 11AM \subsection{Gram Schmidt and orthogonal complement} \begin{itemize} \item $V$ vector space over $\RR$ (or $\CC$). An inner product is a \emph{positive definite} symmetric (or Hermitian) bilinear form on $V$. \begin{notation*} $\varphi(u, v) = \langle u, v \rangle$. \end{notation*} \item Norm: $\|v\| = \sqrt{\langle v, v \rangle}$ (the norm). Then $\|v\| \ge 0$ and $\|v\| = 0 \iff v = 0$. \end{itemize} $\to$ associated notion of length. \begin{lemma*}[Cauchy-Schwartz] \[ |\langle v, v \rangle| \le \|u\| \|v\| \] More over, equality holds if and only if $u$ and $v$ are proportional. \end{lemma*} \begin{proof} $f = \RR$ or $\CC$. Let $t \in F$, then \begin{align*} 0 &\le \|tu - v\|^2 \\ &= \langle tu - v, tu - v \rangle \\ &= t\ol{t} \langle u, u \rangle - t \langle v, v \rangle - \ol{t} \langle v, u \rangle + \|v\|^2 \\ &= |t|^2 \|u\|^2 - 2 \Re(t\langle v, u \rangle) + \|v\|^2 \end{align*} Explicitly: the minimum is taken at $t = \frac{\ol{\langle u, v \rangle}}{\|u\|^2}$ \[ \implies 0 \le \frac{|\langle u, v \rangle|^2}{\|u\|^2} \|u\|^2 - 2\Re \left( \frac{|\langle u, v \rangle|^2}{\|u\|^2} \right) + \|v\|^2 \] \[ \implies 0 \le \|v\|^2 - \frac{|\langle u, v \rangle|^2}{\|u\|^2} \] \[ \implies |\langle u, v \rangle|^2 \le \|u\|^2 \|v\|^2 \] Exercise: equality $\implies$ $u$ and $v$ are proportional. \end{proof} \begin{corollary*}[Triangle inequality] \[ \|u + v\| \le \|u\| + \|v\| \tag{$*$} \] \end{corollary*} \noindent $\to$ key to show that $\|\bullet\|$ is a norm. \begin{proof} \begin{align*} \|u + v\|^2 &= \langle u + v, u + v \rangle \\ &= \|u\|^2 + 2\Re(\langle u, v \rangle) + \|v\|^2 \\ &\le \|u\|^2 + 2\|u\| \|v\| + \|v\|^2 \\ &= (\|u\| + \|v\|)^2 \qedhere \end{align*} \end{proof} \begin{definition*} A set $(e_1, \dots, e_k)$ of vectors of $V$ is \begin{enumerate}[(i)] \item Orthogonal: if $\langle e_i, e_j \rangle = 0$ if $i \neq j$. \item Orthonormal: if $\langle e_i, e_i \rangle = \delta_{ij}$ where \[ \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \] \end{enumerate} \end{definition*} \begin{lemma*} If $(e_1, \dots, e_k)$ is orthogonal, then \begin{enumerate}[(i)] \item The family is free \item $v = \sum_{j = 1}^k \lambda_j e_j$, then \[ \lambda_j = \frac{\langle v, e_j \rangle}{\|e_j\|^2} \] \end{enumerate} \end{lemma*} \begin{proof} \begin{enumerate}[(i)] \item $\sum_{j = 1}^k \lambda_j e_j = 0$ \[ \implies 0 = \left\langle \sum_{j = 1}^k \lambda_j e_j, e_i \right\rangle = \sum_{j = 1}^k \lambda_j \langle e_j, e_i \rangle = \lambda_i \] so the family is free. \item $v = \sum_{i = 1}^k \lambda_i e_i$. \[ \implies \langle v, e_j \rangle = \lambda_j \langle e_j, e_j \rangle = \lambda \|e_j\|^2 \] \[ \implies \lambda_j = \frac{1}{\|e_j\|^2} \langle v, e_j \rangle \qedhere \] \end{enumerate} \end{proof} \begin{lemma*}[Parseval's Identity] If $V$ is a finite dimensional inner product space and $(e_1, \dots, e_n)$ is an \emph{orthonormal} basis, then \[ \langle u, v \rangle = \sum_{i = 1}^n \langle u, e_i \rangle \ol{\langle v, e_i \rangle} \] In particular, in an \emph{orthonormal basis}, \[ \|v\|^2 = \langle v, v \rangle = \sum_{i = 1}^n |\langle v, e_i \rangle|^2 \] \[ v = \sum_{i = 1}^n \langle v, e_i \rangle e_i \] ($\|e_i\| = 1$) \end{lemma*} \begin{proof} $u = \sum_{i = 1}^n \langle e, e_i \rangle e_i$, $\|e_1\| = 1$, $v = \sum_{i = 1}^n \langle v, e_i \rangle e_i$ \[ \implies \langle u, v \rangle \left\langle \sum_{i = 1}^n \langle u, e_i \rangle e_i, \sum_{i = 1}^n \langle v, e_i \rangle e_i \right\rangle = \sum_{i = 1}^n \langle u, e_i \rangle \ol{\langle v, e_i \rangle} \qedhere \] \end{proof} \begin{theorem*}[Gram-Schmidt orthogonalisation process] $V$ inner product space let $I$ countable (finite) est and $(v_i)_{i \in I}$ linearly independent. Then there exists a sequence $(e_i)_{i \in I}$ of \emph{orthonormal} vectors such that \[ \Span \langle v_1, \dots, v_k \rangle = \Span \langle e_1, \dots, e_k \rangle \] $\forall k \ge 1$. \end{theorem*} $\to$ if $\dim V < \infty$, then we have existence of an \emph{orthonormal} basis. \begin{proof} We construct the $(e_i)_{i \in I}$ family by induction on $k$. \begin{itemize} \item $k = 1$, $v_1 \neq 0 \implies e_1 = \frac{v_1}{\|v_1\|}$. \item Say we found $(e_1, \dots, e_k)$ , we look for $e_{k + 1}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/0ee772386b2311ed.png} \end{center} We define: \[ e_{k + 1}' = v_{k + 1} - \sum_{i = 1}^k \langle v_{k + 1}, e_i \rangle e_i \] \item $e_{k + 1}' \neq 0$. Indeed, otherwise, \[ v_{k + 1} \in \langle e_1, \dots, e_k \rangle = \langle v_1, \dots, v_k \rangle \] which would contradict the fact that $(v_i)_{i \in I}$ is free. \item Pick $1 \le j \le k$: \begin{align*} \langle e_{k + 1}', e_j \rangle &= \left\langle v_{k + 1} - \sum_{i = 1}^k \langle v_{k + 1}, e_i \rangle e_i, e_j \right\rangle \\ &= \langle v_{k + 1}, e_j \rangle - \langle v_{k + 1}, e_j \rangle \\ &= 0 \end{align*} \item $\langle v_1, \dots, v_{k + 1} \rangle = \langle e_1, \dots, e_k, e_{k + 1}' \rangle$. \item We take $e_{k + 1} = \frac{e_{k + 1}'}{\|e_{k + !}'\|}$ \qedhere \end{itemize} \end{proof} \myskip $\implies$ Gram Schmidt designs an algorithm to compute $e_k$ for all $k$. \begin{corollary*} $V$ \emph{finite dimensional} inner product space. Then any orthonormal set of vectors can be extended to an orthonormal basis of $V$. \end{corollary*} \begin{proof} Pick $(e_1, \dots, e_k)$ orthonormal. Then they are linearly independent, so we can extend $(e_1, \dots, e_k, v_{k + 1}, \dots, v_n)$ basis of $V$. Apply Gram-Schmidt to this set noticing that there is no need to modify the first $k$ vectors. \[ \implies (e_1, \dots, e_k, e_{k + 1}, \dots, e_n) \] orthonormal basis of $V$. \end{proof} \begin{note*} $A \in \mathcal{M}_n(\RR)$, then $A$ has \emph{orthonormal} column vectors if and only if \[ A^\top A = \id \qquad (\RR) \] \[ A^\top \ol{A} = \id \qquad (\CC) \] \end{note*} \begin{definition*} \begin{enumerate}[(i)] \item $A \in \mathcal{M}_n(\RR)$ is \emph{orthogonal} if: \[ A^\top A = \id \qquad (\iff A^{-1} = A^\top) \] \item $A \in \mathcal{M}_n(\CC)$ is unitary if: \[ A^\top \ol{A} = \id \qquad (\iff A^{-1} = \ol{A^\top}) \] \end{enumerate} \end{definition*} \begin{proposition*} $A \in \mathcal{M}_n(\RR)$ (respectively $\mathcal{M}_n(\CC)$), then $A$ can be written $A = RT$ where: \begin{itemize} \item $T$ is upper triangular \item $R$ is orthogonal (respectively unitary) \end{itemize} \end{proposition*} \begin{proof} Exercise: apply Gram Schmidt to the $(c_1, \dots, c_n)$ column vectors of $A$. \end{proof} \subsubsection*{Orthogonal complement and projection} \begin{definition*} \begin{itemize} \item $V$ inner product space \item $V_1, V_2 \le V$. \end{itemize} We say that $V$ is the \emph{orthogonal} direct sum of $V_1$ and $V_2$ if: \begin{enumerate}[(i)] \item $V = V_1 \oplus V_2$ \item $\forall v_1, v_2) \in V_1 \times V_2$, $\langle v_1, v_2 \rangle = 0$ \end{enumerate} \begin{notation*} $V = V_1 \orthoplus V_2$ ($V = V_1 + V_2$) TODO\dots \end{notation*} \end{definition*} \begin{remark*} $v \in V_1 \cap V_2$, $\|v\|^2 = \langle v, v \rangle = 0 \implies v = 0$. \end{remark*} \begin{definition*}[orthogonal] $V$ inner product space, $W \le V$. \[ W^\perp = \{v \in V \mid \langle v, w \rangle = 0 ~ \forall w \in W\} = \text{orthogonal of $W$} \] \end{definition*} \begin{lemma*} $V$ inner product space, $\dim V < \infty$, $W \le V$. Then \[ V = W \orthoplus W^\perp \tag{$*$} \] \end{lemma*}