% vim: tw=50 % 21/11/2022 11AM $\dim_\CC W < \infty$, $\dim_\CC V < \infty$, $\varphi$ sesquilinear, $V \times W \to \CC$ \begin{itemize} \item linear first variable: $\varphi(\lambda u, v) = \lambda \varphi(u, v)$ \item multilinear second variable $\varphi(u, \lambda v) = \ol{\lambda} \varphi(u, v)$ \end{itemize} \begin{definition*} $\mathcal{B} = (v_1, \dots, v_m)$ basis of $V$, $\mathcal{C} = (w_1, \dots, w_n)$ basis of $W$. \[ [\varphi]_{\mathcal{B}, \mathcal{C}} = (\varphi(v_i, w_j)) \] $m \times n$ matrix. \end{definition*} \begin{lemma*} $\varphi(v, w) = [v]_{\mathcal{B}}^\top [\varphi]_{\mathcal{B}, \mathcal{C}} \ol{[w]_{\mathcal{B}}}$ \end{lemma*} \begin{proof} Exercise. \end{proof} \begin{lemma*} $\mathcal{B}$, $\mathcal{B}'$ basis for $V$, $P = [\id]_{\mathcal{B}', \mathcal{B}}$, $\mathcal{C}, \mathcal{C}'$ basis for $W$, $Q = [\id]_{\mathcal{C}', \mathcal{C}}$. Then \[ [\varphi]_{\mathcal{B}', \mathcal{C}'} = P^\top [\varphi]_{\mathcal{B}, \mathcal{C}} \ol{Q} \] \end{lemma*} \begin{proof} Exercise. \end{proof} \subsection{Hermitian Forms / $\CC$, Skew Symmetric forms / $\RR$} \subsubsection*{Hermitian form} $\dim_\CC V < \infty$, $\varphi : V \times V \to \CC$ sesquilinear ($W = V$). \begin{definition*}[Hermitian form] A sesquilinear form $\varphi : V \times V \to \CC$ is called \emph{Hermitian} if\ \[ \forall (u, v) \in V \times V, \quad \varphi(u, v) = \ol{\varphi(v, u)} \] \end{definition*} \begin{remark*} $\varphi$ Hermitian \[ \implies \varphi(u, u) = \ol{\varphi(u, u)} \] \[ \implies \forall u \in V, \varphi(u, u) \in \RR \] Allows us to speak of positive / negative (semi) definite Hermitian form. \end{remark*} \begin{lemma*} A sesquilinear form $\varphi : V \times V \to \CC$ is Hermitian if and only if $\forall \mathcal{B}$ basis of $V$, \[ [\varphi]_{\mathcal{B}} = \ol{[\varphi]_{\mathcal{B}}^\top} \] \end{lemma*} \begin{proof} $A = [\varphi]_{\mathcal{B}} = (a_{ij})_{1 \le i, j \le n}$, $a_{ij} = \varphi(e_i, e_j)$. Then $a_{ij} = \varphi(e_i, e_j)$, $a_{ji} = \varphi(e_j, e_i) = \ol{\varphi(e_i, e_j)} = \ol{a_{ij}}$. \[ \implies [\varphi]_{\mathcal{B}}^\top = \ol{[\varphi]}_{\mathcal{B}} \] Conversely $[\varphi]_{\mathcal{B}} = A$, $A = \ol{A^\top}$ \[ u = \sum_{i = 1}^n \lambda_i e_i \] \[ v = \sum_{i = 1}^n \mu_i e_i \] $\mathcal{B} = (e_1, \dots, e_n)$ \begin{align*} \varphi(u, v) &= \varphi \left( \sum_{i = 1}^n \lambda_i e_i, \sum_{i = 1}^n \mu_i e_i \right) \\ &= \sum_{i, j = 1}^n \lambda_i \ol{\mu_j} \varphi(e_i, e_j) \\ &= \sum_{i, j = 1}^n \lambda_i \ol{\mu_j} a_{ij} \end{align*} Then \begin{align*} \ol{\varphi(v, u)} &= \ol{\varphi \left( \sum_{i = 1}^n \mu_i e_i, \sum_{i = 1}^n \lambda_i e_i \right)} \\ &= \ol{\sum_{i = 1}^n \mu_i \ol{\lambda_j} \varphi(e_i, e_j)} \\ &= \sum_{i, j = 1}^n \ol{\mu_i} \lambda_j \ol{a_{ij}} \\ &= \sum_{i, j = 1}^n \lambda_i \ol{\mu_j} \ol{a_{ji}} \\ &= \sum_{i, j = 1}^n \lambda_i \ol{\mu_j} a_{ij} \\ &= \varphi(u, v) \qedhere \end{align*} \end{proof} \subsubsection*{Polarization identity} A Hermitian form $\varphi$ on a complex vector space $V$ is \emph{entirely determined} by: $Q : V \to \RR$, $u \mapsto \varphi(u, u)$ via the formula: \begin{flashcard}[PolarizFormulaHermitian] \begin{align*} \varphi(u, v) &= \cloze{\frac{1}{4} [Q(u + v) - Q(u - v) + iQ(u + iv) -i Q(u - iv)] } \\ &= \text{polarization identity for Hermitian forms} \end{align*} \end{flashcard} \begin{proof} Exercise (just check). \end{proof} \begin{theorem*}[Sylvester's law of inertia for Hermitian forms] $\dim_\CC V < \infty$, $\varphi : V \times V \to \CC$ a Hermitian form on $V$. Then $\exists \mathcal{B} = (v_1, \dots, v_n)$ basis of $V$: \begin{center} \includegraphics[width=0.6\linewidth] {images/b541e748698f11ed.png} \end{center} where $P$ and $q$ depend only on $\varphi$. \end{theorem*} \begin{proof} (Sketch: nearly identical to the real case of symmetric forms). \begin{itemize} \item Existence: $\varphi \equiv 0$, done. Assume $\varphi \neq 0$, then the polarization identity ensures that there exists $e_1 \neq 0$ such that \[ \varphi(e_1, e_1) \neq 0 \] Rescale: \[ v_1 = \frac{e_1}{\sqrt{|\varphi(e_1, e_1)|}} \] $\implies \varphi(v_1, v_1) = \pm 1$. Then we consider the orthogonal: \[ W = \{w \in V \mid \varphi(v_1, w) = 0\} \] and we check (verbatim like in the real case) \[ V = \langle v_1 \rangle \oplus W \] ($\dim W = n - 1$). Now argue by induction on the dimension on $V$ by considering $\varphi \mid_W$ which is Hermitian on $W \times W$. \item Uniqueness of $p$: As in the real case, \[ p \equiv \text{maximal dimension of a subspace on which $\varphi$ is definite positive ($\varphi(u, u) \in \RR$)} \] Similarly for $q$. \end{itemize} \end{proof} \subsubsection*{Skew Symmetric Real Valued Forms} $F = \RR$, $V$ vector space over $\RR$. \begin{definition*}[skew symmetric] A bilinear form $\varphi : V \times V \to \RR$ is \emph{skew symmetric} if: \[ \varphi(u, v) = -\varphi(v, u) \quad \forall (u, v) \in V \times V \] \end{definition*} \noindent This is also often called antisymmetric. \begin{remark*} \begin{enumerate}[(i)] \item $\varphi(u, u) = -\varphi(u, u)$ so $\varphi(u, u) = 0$. $\forall u \in V$. \item $\forall \mathcal{B}$ basis of $V$, $[\varphi]_{\mathcal{B}} = -[\varphi]_{\mathcal{B}}^\top$. \item $A \in \mathcal{M}_n(\RR)$, \[ A = \half (A + A^\top) + \half (A - A^\top) \] i.e. decomposition into symmetric and antisymmetric / skew symmetric parts. \end{enumerate} \end{remark*} \begin{theorem*}[Sylvester for skew symmetric form] \begin{itemize} \item $V$ vector space over $\RR$, $\dim_\RR V < \infty$ \item $\varphi : V \times V \to \RR$ skew symmetric bilinear form. \end{itemize} Then there exists $\mathcal{B}$ basis of $V$,\ \[ \mathcal{B} = (v_1, w_1, v_2, w_2, \dots, v_m, w_m, v_{2m + 1}, v_{2m + 2}, \dots, v_n) \] such that \begin{center} \includegraphics[width=0.6\linewidth] {images/a105f8c6699111ed.png} \end{center} \end{theorem*} \begin{corollary*} Skew symmetric matrices have an even rank. \end{corollary*} \begin{proof} (Sketch). Induction on the dimension of $V$. \begin{itemize} \item $\varphi \equiv 0$ then done. \item $\varphi \neq 0 \implies \exists (v_1, v_w) \in V \times V$ such that $\varphi(v_1, w_1) \neq 0$. \item $v_1 \neq 0$, $w_1 \neq 0$, after scaling: \[ \varphi(v_1, w_1) = 1 \] \[ \implies \varphi(w_1, v_1) = -1 \] since skew symmetric. \item $(v_1, w_1)$ linearly independent. \[ \varphi(v_1, \lambda v_1) = \lambda \varphi(v_1, v_1) = 0 \] since skew symmetric. \item Define $U = \langle v_1, w_1 \rangle$. \[ W = \{v \in V \mid \varphi(v_1, v) = \varphi(w_1, v) = 0\} \] Exercise: show that $V = U \oplus W$. \item Now apply the induction hypothesis to $\varphi |_{W \times W}$ skew symmetric. \qedhere \end{itemize} \end{proof} \subsubsection*{Inner Product Spaces} \begin{itemize} \item definite positive bilinear forms: \begin{itemize} \item[$\to$] Scalar product \item[$\to$] Norm (distance) \end{itemize} \end{itemize} $\implies$ SPECTACULAR generalisation / application to infinite dimensional spaces: \subsubsection*{Hilbert Spaces} $\to$ part II (linear analysis, analysis of functions). \begin{flashcard}[InnerProduct] \begin{definition*}[Inner product] Let $V$ be a vector space over $\RR$ (respectively $\CC$). An \emph{inner product} is a \cloze{positive definite symmetric (respectively Hermitian) bilinear form $\varphi$ on $V$.} \end{definition*} \end{flashcard} \begin{notation*} $\varphi(u, v) = \langle u, v \rangle$. \end{notation*} \noindent If such a bilinear form exists, $V$ is called a real (respectively complex) inner product space. \begin{example*} \begin{enumerate}[(i)] \item $\RR^n$, $x = (x_1, \dots, x_n)^\top$, $y = (y_1, \dots, y_n)^\top$, \[ \langle x, y \rangle = \sum_{i = 1}^n x_i y_i \] $\to$ inner product. \item $\CC^n$, $\langle x, y \rangle = \sum_{i = 1}^n x_i \ol{y_i}$ $\to$ inner product. \item $V = \mathcal{C}([0, 1], \CC)$ \[ \langle f, g \rangle = \int_0^1 f(t) \ol{g(t)} \dd t \] ``$L^2$ scalar product'' \end{enumerate} \end{example*} \noindent One can check that (i), (ii), (iii) are inner products. \[ \langle u, u \rangle = 0 \implies u = 0 \] $\to$ \emph{definite} positive assumption.