% vim: tw=50 % 10/10/2022 11AM \subsection{Spans, linear independence and the Steinitz exchange lemma} \begin{definition*}[Spand of a family of vectors] Let $V$ be an $F$ vector space. Let $S \subset V$ be a subset ($S =$ collection of vectors). We define: \begin{align*} \ub{\langle S \rangle}_{\text{``span of $S$''}} &= \{\text{finite linear combination of elements of $S$}\} \\ &= \left\{ \sum_{s \in J} \lambda_s v_s, v_s \in S, \lambda_s \in F, \text{$J$ is finite} \right\} \end{align*} \end{definition*} \noindent Convention: $\langle \emptyset \rangle = \{0\}$. \begin{remark*} $\langle S \rangle$ is the smallest vector subspace which contains $S$. \end{remark*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $V = \RR^3$ \[ S = \left\{ \left| \begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right. , \left| \begin{matrix} 0 \\ 1 \\ 2 \end{matrix} \right. , \left| \begin{matrix} 2 \\ -2 \\ -4 \end{matrix} \right. \right\} \] \[ \implies \langle S \rangle = \left\{ \left| \begin{matrix} a \\ b \\ 2b \end{matrix} \right. , (a, b) \in \RR^2 \right\} \] \item \[ V = \RR^n = \left\{ \left| \begin{matrix} x_1 \\ \vdots \\ x_n \end{matrix} \right. , x_i \in \RR, 1 \le i \le n\right\} \] Define: \[ e_i = \left| \begin{matrix} 0 \\ \vdots \\ 1 \quad \text{(in position $i$)} \\ \vdots \\ 0 \end{matrix} \right. \] \[ \implies V = \langle e_1, \dots, e_n \rangle \] \item $X$ is a set, $V = \RR^X = \{f : X \to \RR\}$. \[ S_x : X \to \RR \] \[ y \mapsto \begin{cases} 1 & \text{if $x = y$} \\ 0 & \text{otherwise} \end{cases} \] \begin{align*} \langle (S_x)_{x \in X} \rangle &= \Span ((S_x)_{x \in X}) \\ &= \{f \in \RR^X : f \text{ has finite support}\} \end{align*} (Support of $f$ is $\{x \in X : f(x) \neq 0\}$) \end{enumerate} \begin{definition*} Let $V$ be an $F$ vector space. Let $S$ be a subset of $V$. We say that $S$ \emph{spans} $V$ if: \[ \langle S \rangle = V .\] \end{definition*} \begin{example*} $V = \RR^2$ \begin{center} \begin{tsqx} ! size(2.5cm); (0,0)->(1,1) (0,0)->(1.5,0.5) label $v_1$ @ 1.2*(1,1) label $v_2$ @ 1.2*(1.5,0.5) \end{tsqx} \end{center} $\{v_1, v_2\}$ spans $V$. \end{example*} \begin{definition*}[Finite dimension] Let $V$ be an $F$ vector space. We say that $V$ is finite dimensional if it is spanned by a finite set. \end{definition*} \begin{example*} Let $V_1 = P[x]$ be the set of polynomials over $\RR$, and let $V = P_n[x]$ be the set of polynomials over $\RR$ with degree $\le n$. Then $\{1, x, \dots, x^n\}$ spans $P_n[x]$, so $P_n[x] = \langle 1, x, \dots, x^n \rangle$. So $P_n[x]$ is finite dimensional. \\ On the other hand, $P[x]$ is \emph{not} finite dimensional: it is infinite dimensional, because there is no family of $V$ with finitely many elements which spans $V$. \end{example*} \noindent Question: If $V$ is finite dimensional, is there a \emph{minimal} number of vectors in the family so that they span $V$. \begin{definition*}[Independence] We say that $(v_1, \dots, v_n)$ elements of $V$ are \emph{linearly independent} if: \[ \sum_{i = 1}^n \lambda_i v_i = 0, ~ \lambda_i \in F \implies \lambda_i = 0 ~\forall i \] \end{definition*} \begin{remark*} \begin{enumerate}[(1)] \item We also say that the family $(v_1, \dots, v_n)$ is \emph{free}. \item Equivalently, $(v_1, \dots, v_n)$ are \emph{not} linearly independent if one of these vectors is a linear combination of the remaining $(n - 1)$ ones. Indeed, $\exists (\lambda_1, \dots, \lambda_n)$ \emph{not all zero} (that is, there exists $j$ such that $\lambda_j \neq 0$), such that \[ \sum_{i = 1}^n \lambda_i v_i = 0 \implies v_j = -\frac{1}{\lambda_j} \sum_{\substack{i = 1 \\ i \neq j}}^n \lambda_i v_i \] \end{enumerate} \end{remark*} \begin{example*} $V = \RR^3$. If $(v_1, v_2)$ free, and $v_3$ is coplanar with both, then $(v_1, v_2, v_3$ is not free. \end{example*} \begin{remark*} $(v_i)_{1 \le i \le n}$ free family (linearly independent) then $\forall 1 \le i \le n$, $v_i \neq 0$. \end{remark*} \begin{definition*}[Basis] A sub set $S$ of $V$ is a \emph{basis} of $V$ if and only if: \begin{itemize} \item $\langle S \rangle = V$ (generating family) \item $S$ linearly independent / free \end{itemize} \end{definition*} \begin{remark*} When $S$ spans $V$, we say that $S$ is a generating family. So a basis is a free generating family. \end{remark*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item \[ V = \RR^n = \left\{ \left| \begin{matrix} x_1 \\ \vdots \\ x_n \end{matrix} \right. , x_i \in \RR, 1 \le i \le n\right\} \] \[ e_i = \left| \begin{matrix} 0 \\ \vdots \\ 1 \quad \text{(in position $i$)} \\ \vdots \\ 0 \end{matrix} \right. \] Then $(e_i)_{1 \le i \le n}$ is a basis of $V$. \item $V = \CC$. If $F = \CC$ then $\{1\}$ is a basis of $V$. If $F = \RR$ then $\{1, i\}$ is a basis of $V$. \item $V = P[x] = \{\text{polynomials over $\RR$}\}$, $S = \{x^n : n \ge 0\}$. Then $S$ is a basis for $V$. \end{enumerate} \begin{lemma*} Let $V$ be an $F$ vector space. Then $(v_1, \dots, v_n)$ is a basis of $V$ if and only if any vector $v \in V$ has a \emph{unique} decomposition: \[ v = \sum_{i = 1}^n \lambda_i v_i , \quad \lambda_i \in F \] \end{lemma*} \begin{notation*} $(\lambda_1, \dots, \lambda_n)$ are the \emph{coordinates} of $v$ in the basis $(v_1, \dots, v_n)$. \end{notation*} \begin{proof} By assumption, $\langle v_1, \dots, v_n \rangle = V$ so \[ \forall v \in V, \exists (\lambda_1, \dots, \lambda_n) \in F^n \qquad v = \sum_{i = 1}^n \lambda_i v_i \] Uniqueness: let \[ v = \sum_{i = 1}^n \lambda_i v_i = \sum_{i = 1}^n \lambda_i' v_i \] \[ \implies \sum_{i = 1}^n (\lambda_i - \lambda_i') v_i = 0 \] \[ \implies \forall 1 \le i \le n, ~\lambda_i = \lambda_i' \] \end{proof} \begin{lemma*} If $(v_1, \dots, v_n)$ spans $V$, then some subset of this family is a basis of $V$. \end{lemma*} \begin{proof} If $(v_1, \dots, v_n)$ are linearly independent then done. Let's assume they are not independent. Then by possible reordering the vectors, \[ v_n \in \langle v_1, \dots, v_{n - 1} \rangle \] ($v_n$ is a linear combination of $v_1, \dots, v_{n - 1}$) so \[ V = \langle v_1, \dots, v_n \rangle = \langle v_1, \dots, v_{n - 1} \rangle \] Now we can iterate until the resulting set is a basis of $V$. (We only have to iterate finitely many times since $n$ is finite). \end{proof} \begin{flashcard} \begin{theorem*}[Steinitz exchange lemma] Let $V$ be a \emph{finite dimensional} vector space over $F$. Take: \begin{enumerate}[(i)] \item \cloze{$(v_1, \dots, v_m)$ free} \item \cloze{$(w_1, \dots, w_n)$ generating ($\langle w_1, \dots, w_n \rangle = V$).} \end{enumerate} Then \cloze{$m \le n$}, and \cloze{up to reordering,} \[ \cloze{(v_1, \dots, v_m, w_{m + 1}, \dots, w_n)} \] \cloze{spans $V$}. \end{theorem*} \end{flashcard}