% vim: tw=50 % 18/11/2022 11AM \subsection{Sylvester's law / Sesquilinear forms} Recall: \begin{theorem*} $\dim_F V < \infty$, $\varphi : V \times V \to F$ is a \emph{symmetric} bilinear form $\implies$ there exists $\mathcal{B}$ basis of $V$ in which $[\varphi]_{\mathcal{B}}$ is diagonal. \end{theorem*} \begin{remark*} We take $F = \RR$ or $\CC$ in this subsection. \end{remark*} \begin{corollary*} $F = \CC$, $\dim_\CC V < \infty$, $\varphi$ symmetric bilinear form on $V$. Then there exists basis of $V$ such that \[ [\varphi]_{\mathcal{B}} = \left( \begin{tabular}{c|c} $I_r$ & $0$ \\ \hline $0$ & $0$ \end{tabular} \right), \qquad r = \operatorname{rank}(\varphi) \] \end{corollary*} \begin{proof} Pick a basis $\mathcal{E} = (e_1, \dots, e_n)$ such that \[ [\varphi]_{\mathcal{E}} = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix} \] Reorder $e_i$ such that $a_i \neq 0$ for $1 \le i \le r$, $a_i = 0$ for $i > r$. For $i \le r$, I let $\sqrt{a_i}$ be \emph{a} choice of complex root of $a_i$, we define: \[ v_i = \begin{cases} \frac{e_i}{\sqrt{a_i}} & \text{for $1 \le i \le r$} \\ e_i & \text{for $i < r$} \end{cases} \] $\mathcal{B} = (v_1, \dots, v_r, e_{r + 1}, \dots, e_n)$, $\mathcal{B}$ basis of $V$ \[ \implies [\varphi]_{\mathcal{B}} = \left( \begin{tabular}{c|c} $I_r$ & $0$ \\ \hline $0$ & $0$ \end{tabular} \right) \qedhere \] \end{proof} \begin{corollary*} Every \emph{symmetric} matrix of $\mathcal{M}_n(\CC)$ is \emph{congruent} to a \emph{UNIQUE} matrix of the form: \[ \left( \begin{tabular}{c|c} $I_r$ & $0$ \\ \hline \\ $0$ & $0$ \end{tabular} \right) \] \end{corollary*} \noindent We want to address the same problem with $F = \RR$. $\to$ we cannot take complex roots this time. \begin{corollary*} $F = \RR$, $\dim_\RR V < \infty$, $\varphi$ \emph{symmetric} bilinear form on $V$. Then there exists $\mathcal{B} = (v_1, \dots, v_n)$ basis of $V$ such that \begin{center} \includegraphics[width=0.6\linewidth] {images/b47439966a9e11ed.png} \end{center} $p, q \ge 0$, $p + q = r(\varphi)$. \end{corollary*} \begin{proof} $\mathcal{E} = (e_1, \dots, e_n)$ basis of $V$ such that \[ [\varphi]_{\mathcal{E}} = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix} \qquad a_i \in \RR \] Reorder $a_i$ so that: \begin{itemize} \item $a_i > 0$ for $1 \le i \le p$ \item $a_i < 0$ for $p + 1 \le i \le q$ \item $a_i = 0$ for $i \ge q + 1$ \end{itemize} We define: \[ v_i = \begin{cases} \frac{e_i}{\sqrt{a_i}} & 1 \le i \le p \\ \frac{e_i}{\sqrt{|a_i|}} & p + 1 \le i \le q \\ e_i & i \ge q + 1 \end{cases} \] Then let $\mathcal{B} = (v_1, \dots, v_n)$ and then $[\varphi]_{\mathcal{B}}$ has the announced form. \end{proof} \begin{definition*}[signature] We define (under the assumptions above) \[ s(\varphi) = p - q \equiv \text{signature of $\varphi$} \] (we also speak of the signature of the associated quadratic form $Q(u) = \varphi(u, u)$) \end{definition*} \noindent This definition makes sense: \begin{theorem*}[Sylvester's law of inertia] $F = \RR$, $\dim_\RR V < \infty$, $\varphi$ symmetric bilinear form on $V$. If $\varphi$ is represented by: \begin{center} \includegraphics[width=0.6\linewidth] {images/a7fe5f066a9f11ed.png} \end{center} with $\mathcal{B}, \mathcal{B}'$ bases of $V$. Then $p = p'$ and $q = q'$. \end{theorem*} \begin{definition*} $\varphi$ be a symmetric bilinear form on a real valued vector space ($F = \RR$). We say that: \begin{enumerate}[(i)] \item $\varphi$ is \emph{positive definite} \[ \iff \forall u \in V \setminus \{0\}, \quad \varphi(u, u) > 0 \] \item $\varphi$ is \emph{positive semi definite} \[ \iff \forall u \in V, \quad \varphi(u, u) \ge 0 \] \item $\varphi$ is \emph{negative definite} \[ \iff \forall u \in V \setminus \{0\}, \quad \varphi(u, u) < 0 \] \item $\varphi$ is negative semi definite \[ \iff \forall u \in V, \quad \varphi(u, u) \le 0 \] \end{enumerate} \end{definition*} \begin{example*} \[ \left( \begin{tabular}{c|c} $I_p$ & $0$ \\ \hline $0$ & $0$ \end{tabular} \right) \] \begin{itemize} \item positive definite for $p = n$ \item positive semi definite for $p \le n$. \end{itemize} \end{example*} \begin{hiddenflashcard}[proof-of-sylvesters-law-of-inertia] Proof of Sylvester's law of inertia? \\ \cloze{ Prove $p$ is the largest possible dimension of a subspace on which $\varphi$ is positive definite (call this number $p'$, so want to prove $p = p'$ always). Let $X$ be the span of the first $p$ columns of $[\varphi]$ and let $Y$ be the span of the rest. \\ Then $\varphi$ is positive definite on $X$, so $p \ge p'$. \\ Suppose $\varphi$ pos def on $X'$. Show $X' \cap Y = \{0\}$, hence $\dim(X' + Y) = \dim(X') + \dim(Y)$, so $\dim(X') \le \dim(V) - \dim(Y) = \dim(X) = p$. So $p' \le p$. \\ So $p = p'$. } \end{hiddenflashcard} \begin{proof} (Of Sylvester's law of inertia) \\ In order to prove that $p$ is independent of the choice of the basis, we show that $p$ has a geometric interpretation: \\ Claim: $p$ is the largest dimension of subspace on which $\varphi$ is positive definite. \\ Proof: \\ Say $\mathcal{B} = (v_1, \dots, v_n)$ in which: \begin{center} \includegraphics[width=0.6\linewidth] {images/557c868a6aa011ed.png} \end{center} \begin{enumerate}[(1)] \item Let $X = \langle v_1, \dots, v_p \rangle$. Then $\varphi$ is positive definite on $X$. Indeed, $u = \sum_{i = 1}^p \lambda_i v_i$, \begin{align*} Q(u) &= \varphi(u, u) \\ &= \varphi \left( \sum_{i = 1}^p \lambda_i v_i, \sum_{i = 1}^p \lambda_i v_i \right) \\ &= \sum_{i, j = 1}^n \lambda_i \lambda_j \varphi(v_i, v_j) \\ &= \sum_{i = 1}^p \lambda_i^2 &> 0 &&\text{for $u \neq 0$} \end{align*} $\dim X = p$, $\varphi|_{X \times X}$ is positive definite. \item Suppose that $\varphi$ is definite positive when restricted to another subspace $X'$. Let $X = \langle v_1, \dots, v_p \rangle$, $Y = \langle v_{p + 1}, \dots, v_n \rangle$, $\mathcal{B} = (v_1, \dots, v_n)$. Then \begin{center} \includegraphics[width=0.6\linewidth] {images/f11937826aa011ed.png} \end{center} $\implies$ We know that $\varphi$ is negative semi definite on $Y$. So $Y \cap X' = \{0\}$. Indeed, if $u \in Y \cap X'$ and $u \neq 0$, then $u \in Y$ so $\varphi(u, u) \le 0$, but $u \in X'$ so $\varphi(u, u) > 0$. So $Y \cap X' = \{0\}$. So $Y + X' = Y \oplus X'$, so $\dim Y + \dim X' \le n$, and $\dim Y = n - p$ so $\dim X' \le p$. \end{enumerate} So now we know that $p$ has a geometric interpretation / is unique. Then by considering $-\varphi$, we find that $q$ is unique too. \end{proof} \begin{remark*} Similarly, $q$ is the largest dimension of a subset on which $\varphi$ is negative definite. \end{remark*} \begin{definition*} $K = \text{kernel of a bilinear form $\varphi$} = \{v \in V \mid \forall u \in V, \varphi(u, v) = 0\}$. \end{definition*} \begin{remark*} $\dim K + r(\varphi) = n$ \end{remark*} \begin{remark*} $F = \RR$. One notices that there is a subspace $T$ of dimension $n - (p + q) + \min\{p, q\}$ such that $\varphi |_T = 0$. Indeed: $\mathcal{B} = (v_1, \dots, v_n)$, \begin{center} \includegraphics[width=0.6\linewidth] {images/bb355a506aa111ed.png} \end{center} $T = \langle \ub{v_1 + v_{p + 1}, \dots, v_q + v_{p + q}}_{q}, \ub{v_{p + q + 1}, \dots, v_n}_{n - (p + q)} \rangle$ (if $p \ge q$). Check $\varphi|_T = 0$ ($\forall (u, v) \in T \times T, \varphi(u, v) = 0$). Moreover, one can show that this is the largest dimension of a subspace $T'$ on which $\varphi|_{T' \times T'} = 0$ \end{remark*} \subsubsection*{Sesquilinear Forms} \begin{itemize} \item $F = \CC$ \item Standard \emph{inner product} on $\CC^n$ is $\langle x, y \rangle = \sum_{i = 1}^n x_i \ol{y_i}$. In particular, \[ \|x\|^2 = \langle x, x \rangle = \ub{\sum_{i = 1}^n |x_i|^2}_{\in \RR^+} \] \end{itemize} \begin{warning*} $\CC^n \times \CC^n \to \CC$ \[ (x, y) \mapsto \langle x, y \rangle = \sum_{i = 1}^n x_i \ol{y_i} \] is \emph{not} a bilinear form: $\lambda \in \CC$, \[ \langle \lambda x, y \rangle = \sum_{i = 1}^n \lambda x_i \ol{y_i} = \lambda \langle x, y \rangle \] \[ \langle x, \lambda y \rangle = \sum_{i = 1}^n x_i \ol{\lambda y_i} = \ol{\lambda} \langle x, y \rangle \] $\to$ antilinear with respect to the second coordinate. \end{warning*} \begin{definition*} $V, W$ $\CC$ vector spaces. A sesquilinear form $\varphi$ is a function $\varphi : V \times W \to \CC$ such that: \begin{enumerate}[(i)] \item $\varphi(\lambda_1 v_1 + \lambda_2 v_2, w) = \lambda_1 \varphi(v_1, w) + \lambda_2 \varphi(v_2, w)$ (linear with respect to the first coordinate) \item $\varphi(v, \lambda_1 w_1 + \lambda_2 w_2) = \ol{\lambda_1} \varphi(v, w_1) + \ol{\lambda_2} \varphi(v, w_2)$ (antilinear with respect to the second coordinate). \end{enumerate} \end{definition*}