% vim: tw=50 % 16/11/2022 11AM \subsection{Bilinear Forms} Bilinear form: $\varphi : V \times V \to F$. \begin{itemize} \item $\dim_F V < \infty$, $\mathcal{B}$ basis of $V$. \item $[\varphi]_{\mathcal{B}} = [\varphi]_{\mathcal{B}, \mathcal{B}} = (\varphi(e_i, e_j))_{1 \le i, j \le n}$. $\mathcal{B} = (e_i)_{1 \le i \le n}$. \end{itemize} \begin{lemma*} $\varphi : V \times V \to F$ bilinear, $\mathcal{B}, \mathcal{B}'$ two basis of $V$, $P = [\id]_{\mathcal{B}', \mathcal{B}}$ then \[ [\varphi]_{\mathcal{B}'} = P^\top [\varphi]_{\mathcal{B}} P \] \end{lemma*} \begin{proof} Special case of the general formula $\to$ Lecture 10. \end{proof} \begin{flashcard}[congruent-matrices] \begin{definition*}[Congruent matrices] \cloze{$A, B \in \mathcal{M}_n(F)$, we say that $A$ and $B$ are \emph{congruent} if and only if there exists $P$ invertible such that \[ A = P^\top B P \]} \end{definition*} \end{flashcard} \begin{remark*} This defines an equivalence relation. \end{remark*} \begin{definition*}[Symmetric] A bilinear form $\varphi$ on $V$ is \emph{symmetric} if: \[ \varphi(u, v) = \varphi(v, u) \quad \forall (u, v) \subset V \times V \] \end{definition*} \begin{remark*} \begin{itemize} \item $A \in \mathcal{M}_n(F)$, we say that $A$ is symmetric if and only if $A = A^\top$ \[ \iff A = (a_{ij})_{1 \le i, j \le n}, a_{ij} = a_{ji} \] \item $\varphi$ symmetric $\iff$ $[\varphi]_{\mathcal{B}}$ is symmetric in \emph{any} basis $\mathcal{B}$ of $V$. \end{itemize} \end{remark*} \begin{remark*} To be able to represent $\varphi$ by a diagonal matrix, then $\varphi$ must be symmetric \[ P^\top AP = D \implies D^\top P^\top A^\top P \] \[ \implies A = A^\top \] \end{remark*} \begin{flashcard}[quadratic-form] \begin{definition*}[Quadratic form] \cloze{A map $Q : V \to F$ is a \emph{quadratic form} if and only if there exists a bilinear form $\varphi : V \times V \to F$ such that $\forall u \in V$, \[ Q(u) = \varphi(u, u) \]} \end{definition*} \end{flashcard} \begin{remark*} $\mathcal{B} = (e_i)_{1 \le i \le n}$, $A = [\varphi]_{\mathcal{B}} = (\ub{\varphi(e_i, e_j)}_{a_{ij}})_{1 \le i, j \le n}$. Then \[ u = \sum_{i = 1}^n x_i e_i, x = (x_1, \dots, x_n)^\top \] Then \begin{align*} Q(u) &= \varphi(u, u) \\ &= \varphi \left( \sum_{i = 1}^n x_i e_i, \sum_{i = 1}^n x_i e_i \right) \\ &= \sum_{i = 1}^n \sum_{j = 1}^n x_i x_j \ub{\varphi(e_i, e_j)}_{a_{ij}} \\ &= \sum_{i = 1}^n \sum_{j = 1}^n x_i x_j a_{ij} \\ &= x^\top A x \end{align*} so \[ \boxed{Q(u) = x^\top A x} \] \end{remark*} \noindent Observation: \begin{align*} x^\top A x &= \sum_{i, j = 1}^n a_{ij} x_i x_j \\ &= \sum_{i, j = 1}^n a_{ji} x_i x_j \\ &= \half \sum_{i, j = 1}^n (a_{ij} + a_{ji}) x_i x_j \\ &= \half x^\top (A + A^\top) x \end{align*} and $\half(A + A^\top)$ is symmetric. \begin{proposition*} If $Q : V \to F$ is a quadratic form, then there exists a \emph{unique symmetric} bilinear form $\varphi : V \times V \to F$ such that: \[ \forall u \in V, Q(u) = \varphi(u, u) \] \end{proposition*} \begin{proof} Let $\psi$ bilinear form on $V$ such that \[ \forall u, Q(u) = \psi(u, u) \] Let \[ \varphi(u, v) = \half (\psi(u, v) + \psi(v, u)) \] \begin{itemize} \item $\varphi$ symmetric \item $\varphi(u, u) = \psi(u, u) = Q(u)$. \end{itemize} $\to$ existence of $\varphi$ symmetric. Now uniqueness. Let $\varphi$ be a symmetric bilinear form such that $\varphi(u, u) = Q(u) \forall u \in V$. Then \begin{align*} Q(u + v) &= \varphi(u + v, u + v) \\ &= \varphi(u, u) + \varphi(v, u) + \varphi(v, u) + \varphi(v, v) \\ &= Q(u) + 2 \varphi(u, v) + Q(v) \end{align*} so \[ \boxed{\varphi(u, v) = \half [Q(u + v) - Q(u) - Q(v)]} \] $\equiv$ POLARIZATION IDENTITY. \end{proof} \begin{theorem*}[Diagonalisation of symmetric bilinear forms] Let $\varphi : V \times V \to F$ be a symmetric bilinear form ($\dim_F V < \infty$). Then there exists a basis $\mathcal{B}$ of $V$ such that: \[ [\varphi]_{\mathcal{B}} \text{ is diagonal} \] \end{theorem*} \begin{hiddenflashcard}[key-idea-diagonalisation-of-symmetric-bilinear-forms] Key ideas in the algorithm for diagonalisation of symmetric bilinear forms? \\ \cloze{ If $\varphi(u, u) = 0$ for all $u \in V$, then $\varphi$ is identically zero, hence done. \\ Otherwise, $\exists u \in V \setminus \{0\}$ such that $\varphi(u, u) \neq 0$. Define \[ U = \ker\{\varphi(u, \bullet) : V \to F, v \mapsto \varphi(u, v)\} \] By rank nullity, $\dim U = \dim V - 1$. Now show $U + \langle u \rangle = U \oplus \langle u \rangle$ (check intersection is zero). Deduce $U + \langle u \rangle = V$ by counting dimensions. \\ Induct. } \end{hiddenflashcard} \noindent $\implies$ extensions to infinite dimensional cases. \begin{proof} \begin{itemize} \item $\dim_F V < \infty$. \item Induction on the dimension $n$. \item $n = 0, 1$ are clear. \item Suppose that the theorem holds for all dimensions $< n$. \begin{enumerate}[(1)] \item Let $\varphi : V \times V \to F$ be a symmetric bilinear form. If $\varphi(u, u) = 0$, $\forall u \in V$, $\varphi$ is identically zero. (polarization identity). \[ \implies \exists u \in V \setminus \{0\} \mid \varphi(u, u) \neq 0 \] (because $\varphi \neq 0$). \item Let us call $u = e_1$. ($e_1 \neq 0$, $\varpi(e_1, e_1) \neq 0$). Let us define \begin{align*} U &= (\langle e_1 \rangle)^\perp \\ &= \{v \in V \mid \varphi(e_1, v) = 0\} \\ &= \Ker \{\varphi(e_1, \bullet) : V \to F, v \mapsto \varphi(e_1, v)\} \end{align*} (linear because $\varphi$ is bilinear). Now rank nullity: \[ \dim V = n = 1 + \dim U \] ($r(\varphi(e_1, \bullet)) = 1$ $\varphi(e_1, e_1) \neq 0$) So $\dim U = n - 1$. \item Claim $U + \langle e_1 \rangle = U \oplus \langle e_1 \rangle$. Indeed, $v \in \langle e_1 \rangle \cap U$ then $v = \lambda e_1$, $\lambda \in F$. \[ \varphi(e_1, v) = 0 \quad (v \in U) \] so $0 = \varphi(e_1, \lambda e_1) = \lambda \varphi(e_1, e_1)$ so $\lambda = 0$, so $v = 0$. \item Conclusion $V = \langle e_1 \rangle \oplus U$, by counting dimensions. \item Complete $(e_2, \dots, e_n)$ basis of $U$. So $\mathcal{B} = (e_1, e_2, \dots, e_n)$ basis of $V$. And: \begin{center} \includegraphics[width=0.6\linewidth] {images/1fd617d665a411ed.png} \end{center} ($\varphi(e_j, e_1) = \varphi(e_1, e_j) = 0$ for $2 \le j \le n$). \[ A' = (\varphi(e_i, e_k))_{2 \le i, j \le n} \] Then $(A')^\top = A'$ since $\varphi$ symmetric. \[ \implies \varphi |_U : U \times U \to F \] bilinear symmetric with matrix $A'$. By the induction hypotheses, I can find $\mathcal{B}' = (e_2', \dots, e_n')$ basis of $U$ in which $[\varphi|_U]_{\mathcal{B}'}$ is diagonal. Then \[ [\varphi]_{(e_1, e_2', \dots, e_n')} \] diagonal form. \qedhere \end{enumerate} \end{itemize} \end{proof} \begin{remark*} $\varphi(e_1, e_1) \neq 0$ \[ \implies V = \langle e_1 \rangle \oplus U \] \[ U = \langle e_1 \rangle^\perp \] \end{remark*} \begin{example*} $V = \RR^3$ \begin{itemize} \item $Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_3^2 + 2x_1 x_2 + 2x_1 x_3 - 2x_2 x_3 = x^\top A x$ where \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix} \] \item Diagonalise: Two ways. \begin{enumerate}[(1)] \item Follow the proof of diagonalisation $\to$ algorithm. \item ``Complete the square'' \begin{align*} Q(x_1, x_2, x_3) &= x_1^2 + x_2^2 + 2x_3^2 + 2x_1 x_2 + 2x_1 x_3 - 2x_2 x_3 \\ &= (x_1 + x_2 + x_3)^2 + x_3^2 - 4x_2 x_3 \\ &= \ub{(x_1 + x_2 + x_3)}_{x_1'}^2 + \ub{(x_3 - 2x_2)}_{x_2'}^2 - \ub{(2x_2)}_{x_3'}^2 \end{align*} \begin{itemize} \item $P$, \[ P^\top AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \] \item To find $P$, remember: \[ \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & 0 \end{pmatrix} = P^{-1} \] \end{itemize} \end{enumerate} \end{itemize} \end{example*}