% vim: tw=50 % 14/11/2022 11AM \begin{example*}[Jordan block] \[ J_\lambda = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & \lambda \end{pmatrix} \in \mathcal{M}_n(F) \] Check $g_\lambda = 1$, $a_\lambda = n$, $c_\lambda = n$ \end{example*} \begin{lemma*}[characterisation of diagonalisable endomorphisms over $F = \CC$] $F = \CC$, $\dim_\CC V = n < \infty$, $\alpha \in \mathcal{L}(V)$. The following are equivalent: \begin{enumerate}[(i)] \item $\alpha$ diagonalisable \item $\forall \lambda$ eigenvalue of $\alpha$, $a_\lambda = g_\lambda$ \item $\forall \lambda$ eigenvalue of $\alpha$, $c_\lambda = 1$. \end{enumerate} \end{lemma*} \begin{proof} (i) $\iff$ (iii) done. We need (i) $\iff$ (ii). Indeed, let $(\lambda_1, \dots, \lambda_k)$ be the \emph{distinct} eigenvalues of $\alpha$. We showed: \[ \alpha \text{ diagonalisable} \iff V = \bigoplus_{i = 1}^k V_{\lambda_i} \] \begin{align*} \dim V &= n &= \deg \chi_\alpha \\ &= \sum_{i = 1}^k a_{\lambda_i} \end{align*} \[ (\chi_\alpha(t) = (-1)^n \prod_{i = 1}^k (t - \lambda_i)^{a_i}) \] so \[ \alpha \text{ diagonalisable} \iff \sum_{i = 1}^k a_{\lambda_i} = \sum_{i = 1}^k g_{\lambda_i} \tag{$*$} \] We know: $\forall 1 \le i \le k$, $g_{\lambda_i} \le a_{\lambda_i}$. Hence ($*$) holds $\iff \forall 1 \le i \le k$, $a_{\lambda_i} = g_{\lambda_i}$. \end{proof} \subsection{Jordan normal form} \begin{note*} In this subsection, $F = \CC$. \end{note*} \begin{definition*}[Jordan normal form] Let $A \in \mathcal{M}_n(\CC)$, we say that $A$ is in Jordan Normal Form (JNF) if it is a block diagonal matrix: \[ A = \begin{pmatrix} J_{n_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{n_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{n_k}(\lambda_k) \end{pmatrix} \] where: \begin{itemize} \item $k \ge 1$, $k$ integer \item $n_1, \dots, n_k$ integers \item $\sum_{i = 1}^k n_i = n$ \item $\lambda_i \in \CC$, $1 \le i \le k$: they need \emph{not} be distinct \item $m \in \NN$, $m \neq 0$, $\lambda \in \CC$, $J_m(\lambda) = \lambda)$ if $m = 1$, \begin{center} \includegraphics[width=0.6\linewidth] {images/3549a7be640e11ed.png} \end{center} \end{itemize} \end{definition*} \begin{example*} $n = 3$, \[ A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} J_1(\lambda & 0 & 0 \\ 0 & J_1(\lambda) & 0 \\ 0 & 0 & J_1(\lambda) \end{pmatrix} \] so this is in Jordan Normal Form. \end{example*} \begin{theorem*} Every matrix $A \in \mathcal{M}_n(\CC)$ is similar to a matrix in Jordan Normal Form, which is unique up to reordering the Jordan block. \end{theorem*} \begin{proof} Non examinable (in Groups, Rings and Modules class). (Proof is in lecturer's notes). \end{proof} \begin{example*} $n = 2$, possible JNF in this case? \[ \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \quad m = (t - \lambda_1)(t - \lambda_2), \quad \lambda_1 \neq \lambda_2 \] \[ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \quad m = (t - \lambda) \] \[ \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \quad m = (t - \lambda)^2 \] \end{example*} \begin{example*} $n = 3$, \[ \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \quad (t - \lambda_1)(t - \lambda_2)(t - \lambda_3) \quad \lambda_1, \lambda_2, \lambda_3 \text{ distinct} \] \[ \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} \quad (t - \lambda_1)(t - \lambda_2) \] \[ \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_2 \end{pmatrix} \quad (t - \lambda_1)(t - \lambda_2)^2 \] \[ \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \quad (t - \lambda) \] \[ \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \quad (t - \lambda)^2 \] \[ \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \quad (t - \lambda)^3 \] \end{example*} \noindent Useful observation: which explains why JNF is unique. $\to$ we can directly compute in the JNF the quantities $a_\lambda, g_\lambda, c_\lambda$. Indeed, let $M \ge 2$ and let $J_m(\lambda)$. Then \begin{center} \includegraphics[width=0.6\linewidth] {images/9657be14640f11ed.png} \end{center} \begin{center} \includegraphics[width=0.6\linewidth] {images/afcd15a6640f11ed.png} \end{center} By induction we can show: \begin{center} \includegraphics[width=0.6\linewidth] {images/c0cd77e2640f11ed.png} \end{center} for $k \le m$, and is 0 for $k = m$. We say that the matrix $(J_m - \lambda \id)$ is \emph{nilpotent} of order $m$. ($u^m = 0$ and $u^{m - 1} \neq 0$). So \[ a_\lambda \equiv \text{sum of sizes of blocks with eigenvalue $\lambda$} \equiv \text{number of $\lambda$ on the diagonal} \] \[ g_\lambda = \dim \Ker(A - \lambda \id) = \text{number of blocks with eigenvalue $\lambda$} \] \[ c_\lambda J_m(\lambda) \to (t - \lambda)^m \text{kills it} \] (because $(J_m - \lambda \id)$ is nilpotent of order exactly $m$) so \[ c_\lambda \equiv \text{size of the largest block with eigenvalue $\lambda$} \] \begin{example*} \[ A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \] Find a basis in which $A$ is Jordan Normal Form? \begin{enumerate}[(i)] \item $\chi_A(t) = (t - 1)^2$ eigenvalue $\lambda = 1$. $A - \id \neq 0$ implies $m_A(t) = (t - 1)^2$, and Jordan Normal Form \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] \item Eigenvectors: \[ A - \id = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \] $\Ker(A - \id) = \langle v_1 \rangle$, $v_1 = (1, -1)^\top$. I look for a (non-unique!) $v_2$ such that \[ (A - \id) v_2 = v_1 \] $v_2 = (-1, 0)^\top$ works. \[ [A]_{\mathcal{B}} = J_1(1) \] for $\mathcal{B} = (v_1, v_2)$. \[ P^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} \] \[ A = \ub{\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}}_{P^{-1}} \ub{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{J} \ub{\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}^{-1}}_{P} \] \end{enumerate} \end{example*} \noindent Exercise: \[ A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \] Find a basis in which $A$ is JNF. \begin{theorem*}[Generalised eigenspace decomposition] \begin{itemize} \item $\dim_\CC V = n < \infty$ \item $\alpha \in \mathcal{L}(V)$. \item $m_\alpha(t) = (t - \lambda_1)^{c_1} \cdots (t - \lambda_k)^{c_k}$ \item $\lambda_1, \dots, \lambda_k$ distinct eigenvalues of $\alpha$. \end{itemize} Then \[ V = \bigoplus_{j = 1}^k V_j \] \[ V_j = \Ker [(\alpha - \lambda \id)^{c_j}] \] ($V_j$ is generalised eigenspace) \end{theorem*} \begin{remark*} $\alpha$ diagonalisable, $c_j = 1$. THen $V_j$ eigenspace associated to $\lambda_j$. \end{remark*} \begin{proof} projectors onto $V_j$ are \emph{explicit}. Indeed, let \[p_j(t) = \prod_{i \neq j} (t - \lambda_i)^{c_i} \] Then the $p_j$ have no common factor, so by Euclid's algorithm, we can find $q_1, \dots, q_k$ polynomials such that \[ \sum_{i = 1}^k p_i q_i = 1 \tag{$*$} \] We define \[ \pi_j = q_j p_j(\alpha) \] \begin{enumerate}[(i)] \item By ($*$), \[ \id = \sum_{j = 1}^k q_j p_j (\alpha) = \sum_{j = 1}^k \pi_j \] \[ \implies \forall v \in V, v = \sum_{j = 1}^k \pi_j(v) \] \item $m_\alpha(\alpha) = 0$, $m_\alpha = \prod_{j = 1}^k (t - \lambda_j)^{c_j}$ \[ \implies (\alpha - \lambda_j \id)^{c_j} \pi_j = (\alpha - \lambda_j \id)^{c_j} q_j p_j(\alpha) = 0\] \[ \implies \forall v \in V, \pi(v) \in V_j \] \[ V_j = \Ker(\alpha - \lambda_j \id)^{c_j} \] Hence $\forall v \in V$ \[ v = \sum_{j = 1}^k \pi_j(v) \] \[ \implies V = \sum_{j = 1}^k V_{\lambda_j} \] \item Show that: \[ \sum_{j = 1}^k V_{\lambda_j} = \bigoplus_{j = 1}^k V_{\lambda_j} \] Indeed, $\pi_i \pi_j = 0$ if $i \neq j$ and so $\pi_i = \pi_i \left( \sum_{j = 1}^k \pi_j \right) = \pi_i^2$. \[ \implies \pi_i |_{V_{\lambda_i}} = \id \] $\implies$ direct sum projection follows: \[ v = V_{\lambda_i} \cap \left( \sum_{i \neq j} V_{\lambda_i} \right) \] \[ v = \sum_{i \neq j} v_j, \quad v_j \in V_{\lambda_j} \] If apply $\pi_i$ and use: \[ \pi_i |_{V_{\lambda_i}} = \id \] \[ \pi_i |_{V_{\lambda_j}} = 0 \text{ for $j \neq i$} \] so $v = 0$. \end{enumerate} \end{proof} \myskip \[ V = \bigoplus_{i = 1}^k V_{\lambda_i} \] \[ V_{\lambda_i} = \Ker (\alpha - \lambda_i \id)^{c_{\lambda_i}} \] By definition \[ (\alpha - \lambda_i \id) |_{V_{\lambda_i}} \] is nilpotent, since \[ (\alpha - \lambda_i \id)^{c_{\lambda_i}} |_{V_{\lambda_i}} = 0 \] $\implies$ all I need to do is to find JNF nilpotent endomorphism. \begin{itemize} \item $\alpha \in \mathcal{L}(V)$, $\dim_\CC V = n$, $a^k = 0$, $a^{k - 1} \neq 0$. $\stackrel{?}{\implies}$ JNF with blocks $J_m(0)$. $\to$ By induction on the dimension. \[ \alpha^k = 0, \alpha^{k - 1} \neq 0 \] \[ \implies \exists x \in V, (x, \alpha(x), \dots, \alpha^{k - 1}(x)) \] free. \end{itemize} \noindent Question: $F = \Span \langle x, \alpha(x), \dots, \alpha^{k - 1}(x) \rangle$. Can I find $G$ such that: \[ V = F \oplus G \] $G$ stable by $\alpha$? \\ $\to$ done.