% vim: tw=50 % 04/11/2022 11AM \begin{corollary*} $A_1, \dots, A_k$ are square matrices, then \[ \det \begin{pmatrix} A_1 & * & * & \cdots & * \\ 0 & A_2 & * & \cdots & * \\ 0 & 0 & A_3 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_k \end{pmatrix} = (\det A_1) \cdots (\det A_k) \] \end{corollary*} \begin{proof} By induction on $k$. \end{proof} \myskip In particular, if $A$ is filled with zeros below the diagonal, then $\det A$ is the product of the entries on the diagonal. (But this is also quite easy to show directly from the definition of $\det A$). \begin{warning*} In general: \[ \det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq \det A \det D - \det B \det C \] \end{warning*} \begin{remark*} In $\RR^3$, we have that $(\bf{a} \times \bf{b}) \cdot \bf{c}$ is a volume form (and represents the volume of a parallelepiped), and in fact, $\det(\bf{a}, \bf{b}, \bf{c}) = (\bf{a} \times \bf{b}) \cdot \bf{c}$. \end{remark*} \subsection{Adjugate matrix} Observation: We know that swapping two column vectors flips the sign of the determinant, and we also know that $\det A = \det A^\top$. So we find that swapping two rows changes the determinant by a factor of -1. \begin{remark*} We could prove properties of determinant using the decomposition of $A$ into elementary matrices. \end{remark*} \subsubsection*{Column (line) expansion and adjugate matrix} Column expansion is to reduce the computation of $n \times n$ determinants to $(n - 1) \times (n - 1)$ determinants. Very useful to compute determinants. \begin{flashcard}[minor-defn] \begin{definition*} $A \in \mathcal{M}_n(F)$. Pick $i, j \le n$. We define: \[ A_{\hat{ij}} \in \mathcal{M}_{n - 1}(F) \] \cloze{obtained by removing the $i$-th row and the $j$-th column from $A$.} \end{definition*} \end{flashcard} \begin{example*} \[ A = \begin{pmatrix} 1 & 2 & -7 \\ 2 & 1 & 0 \\ -3 & 6 & 1 \end{pmatrix} \] \[ A_{\hat{32}} = \begin{pmatrix} 1 & -7 \\ 2 & 0 \end{pmatrix} \] \end{example*} \begin{lemma*}[Expansion of the determinant] Let $A \in \mathcal{M}_n(F)$. \begin{enumerate}[(i)] \item Expansion with respect to the $j$-th column: pick $1 \le j \le n$, then: \[ \det A = \sum_{i = 1}^n (-1)^{i + j} a_{ij} \det A_{\hat{ij}} \tag{$*$} \] \item Expansion with respect to the $i$-th row: pick $1 \le i \le n$, then \[ \det A = \sum_{j = 1}^n (-1)^{i + j} \det A_{\hat{ij}} \] \end{enumerate} Powerful tool to compute determinants. \end{lemma*} \begin{example*} \[ A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 & 1 \\ 4 & 2 & -7 \end{pmatrix} \] \[ \det A = -(2) \begin{vmatrix} 3 & 1 \\ 4 & -7 \end{vmatrix} + (-1) \begin{vmatrix} 1 & -1 \\ 4 & -7 \end{vmatrix} - 2 \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} \] \end{example*} \begin{proof} Expansion with respect to the $j$-th column (row expansion formula follows by taking transpose). Pick $1 \le j \le n$. \begin{itemize} \item $A = (A^{(1)} \mid A^{(2)} \mid \cdots \mid A^{(j)} \mid \cdots \mid A^{(n)})$ \[ A^{(j)} = \sum_{i = 1}^n a_{ij} e_i, \quad A = (a_{ij})_{1 \le i , j \le n} \] \item \begin{align*} \det A &= \det \left( A^{(1)}, \dots, \sum_{i = 1}^n a_{ij} e_i, \dots, A^{(n)} \right) \\ &= \sum_{i = 1}^n a_{ij} \det (A^{(1)}, \dots, e_i, \dots, A^{(n)}) \\ \det (A^{(1)} \mid \cdots \mid e_i \mid \cdots \mid A^{(n)}) &= (-1)^{j - 1} \det (e_i \mid A^{(1)} \mid A^{(j - 1)} \mid A^{(j + 1)} \mid \cdots \mid A^{(n)}) \\ &= (-1)^{i - 1}(-1)^{j - 1} \det (A_{\hat{ij}}) \\ &= (-1)^{i + j} \det(A_{\hat{ij}}) \end{align*} so \begin{align*} \det A &= \sum_{i = 1}^n a_{ij} \det(A^{(1)}, \dots, a^{(j - 1)}, e_i, \dots, A^{(n)}) \\ &= \sum_{i = 1}^n a_{ij} (-1)^{i + j} \det A_{\hat{ij}} \qedhere \end{align*} \end{itemize} \end{proof} \begin{flashcard}[adjugate-defn] \begin{definition*}[Adjugate matrix] Let $A \in \mathcal{M}_n(F)$. The adjugate matrix $\adj(A)$ is the $n \times n$ matrix with $(i, j)$ entry given by \[ \cloze{(-1)^{i + j} \det(A_{\hat{ji}})} \] \end{definition*} \end{flashcard} \begin{theorem*} Let $A \in \mathcal{M}_n(F)$, then \[ \adj(A) A = (\det A) I_n \] \end{theorem*} \noindent In particular, when $A$ is invertible, \[ A^{-1} = \frac{1}{\det A} \adj(A) \] \begin{proof} We just proved: ($*$) \begin{itemize} \item \begin{align*} \det A &= \sum_{i = 1}^n (-1)^{i + j} (\det A_{\hat{ij}}) a_{ij} \\ &= \sum_{i = 1}^n (\adj(A))_{ji} a_{ij} \\ &= (\adj(A)A)_{jj} \end{align*} \item For $j \neq k$ we have \begin{align*} 0 &= \det (A^{(1)}, \dots, A^{(k)}, \dots, A^{(k)}, \dots, A^{(n)}) \\ &= \det \left( a^{(1)}, \dots, \sum_{i = 1}^n a_{ik} e_i, \dots, A^{(k)}, \dots, A^{(n)} \right) \\ &= \sum_{i = 1}^n a_{ik} \det (A^{(1)}, \dots, e_i, \dots, A^{(n)}) \\ &= \sum_{i = 1}^n (\adj(A))_{ji} a_{ik} \\ &= (\adj(A)A)_{jk} \\ &= 0 \end{align*} for $j \neq k$. \end{itemize} So done. \end{proof} \subsubsection*{Cramer rule} \begin{proposition*} Let $A \in \mathcal{M}_n(F)$ be invertible. Let $b \in F^n$. Then the unique solution to $Ax = b$ is given by: \[ x_o = \frac{1}{\det A}\det(A_{\hat{i}} b) \] $1 \le i \le n$ where $A_{\hat{i}} b$ is obtained by replacing the $i$-th column of $A$ by $b$. \end{proposition*} \noindent Algorithmically, this avoids computing $A^{-1}$. TODO: CHECK WHETHER NEEDS EDITING.