% vim: tw=50 % 02/11/2022 11AM \begin{corollary*} $\sigma \in S_n$, $d$ volume form, then: \[ d(v_{\sigma(1)}, \dots, v_{\sigma(n)}) = \eps(\sigma) d(v_1, \dots, v_n) \] \end{corollary*} \begin{proof} $\sigma = \prod_{i = 1}^{n\sigma} \tau_i$. \end{proof} \begin{theorem*} Let $d$ be a volume form on $F^n$. Let $A = (A^{(1)}| \cdots | A^{(n)})$. Then \[ d(A^{(1)}| \cdots |A^{(n)}) d(e_1, \dots, e_n) \det A \] \end{theorem*} \noindent Up to a constant, $\det$ is the \emph{only} volume form on $F^n$. \begin{proof} \begin{align*} d(A^{(1)}, \dots, A^{(n)}) &= d \left( \sum_{i = 1}^n a_{i1} e_i , \dots, A^{(n)} \right) \\ &= \sum_{i = 1}^n a_{i1} d(e_i, A^{(2)}, \dots, A^{(n)}) \\ &= \sum_{i = 1}^n a_{i1} d \left( e_i, \sum_{j = 1}^n a_{j2} e_j, \dots, A^{(n)} \right) \\ &= \sum_{i = 1}^n \sum_{j = 1}^n a_{i1} a_{j2} d(e_i, e_j, \dots, A^{(n)}) \\ &= \sum_{\substack{1 \le i_1 \le n\\1 \le i_2 \le n\\ \vdots\\1 \le i_n \le n}} \left( \prod_{k = 1}^n a_{i_k k} d(e_{i_1}, e_{i_2}, \dots, e_{i_n}) \right) \end{align*} The last $d$ term is nonzero only if all the $i_k$ are different, so we can write the $i_k$ as a permutation. This means we can continue and get \begin{align*} d(A^{(1)}, \dots, A^{(n)}) &= \sum_{\sigma \in S_n} \prod_{k = 1}^n a_{\sigma(k)k} d(e_{\sigma(1)}, \dots, e_{\sigma(n)}) \\ &= \sum_{\sigma \in S_n} \left[ \prod_{k = 1}^n a_{\sigma(k)k} \right] \eps(\sigma) d(e_1, \dots, e_n) \\ &= d(e_1, \dots, e_n) \left[ \sum_{\sigma \in S_n} \eps(\sigma) \prod_{k = 1}^n a_{\sigma(k)k} \right] \\ &= d(e_1, \dots, e_n) \det A \qedhere \end{align*} \end{proof} \begin{corollary*} $\det$ is the \emph{only} volume form such that \[ d(e_1, \dots, e_n) = 1 \] \end{corollary*} \subsection{Some properties of determinants} \begin{flashcard}[det-is-multiplicative] \begin{lemma*} $A, B \in \mathcal{M}_n(F)$, then: \[ \det(AB) = (\det A)(\det B) \] \end{lemma*} \begin{proof} \cloze{Indeed, pick $A$. Consider the map: \[ d_A : \ub{F^n \times \cdots \times F^n}_n \to F \] defined by \[ (v_1, \dots, v_n) \mapsto \det(A v_1, \dots, A v_n) \] Then: \begin{itemize} \item $d_A$ is multilinear: $v_i \mapsto A v_i$ is linear. \item $d_A$ is alternate: if $v_i = v_j$ then $A v_i = A v_j$. \end{itemize} so $d_A$ is a volume form.\prompt{ Hence we know $d_A = C\det$, then compute $C = \det A$.}} \fcscrap{In particular, \[ d_A(v_1, \dots, v_n) = C \det(v_1, \dots, v_n) \] Now we compute $C$. $A e_i = (A)$ so \[ d_A(e_1, \dots, e_n) = \det(A e_1, \dots, A e_n) = \det(a_1, \dots, A_n) = \det A \] So \[ C = \det A \] We have proved: \begin{align*} d_A(v_1, \dots, v_n) &= d(A v_1, \dots, A v_n) \\ &= (\det A) \det(v_1, \dots, v_n) \end{align*} Now observe: \[ AB = ((AB)_1, \dots, (AB)_n) \] \[ (AB)_i = AB_i \] so \begin{align*} \det(AB) &= \det(AB_1, \dots, AB_n) \\ &= \det(A) \det(B_1, \dots, B_n) \\ &= \det(A) \det(B) \end{align*} } \end{proof} \end{flashcard} \begin{definition*} $A \in \mathcal{M}_n(F)$, we say that: \begin{enumerate}[(i)] \item $A$ is \emph{singular} if $\det A = 0$ \item $A$ is \emph{non singular} if $\det A \neq 0$. \end{enumerate} \end{definition*} \begin{lemma*} $A$ is invertible implies $A$ is non singular. \end{lemma*} \begin{proof} $A$ is invertible. \[ \implies \exists A^{-1}, AA^{-1} = A^{-1}A = I_n \] \[ \implies \det(AA^{-1}) = \det(A^{-1}A) = \det I_n = 1 \] \[ \implies (\det A)(\det A^{-1}) = 1 \] \[ \implies \det A \neq 0 \] \end{proof} \begin{remark*} We have proved that \[ \det(A^{-1}) = \frac{1}{\det A} \] \end{remark*} \begin{theorem*} Let $A \in \mathcal{M}_n(F)$. Then the following are equivalent: \begin{enumerate}[(i)] \item $A$ is invertible \item $A$ is non singular \item $r(A) = n$ \end{enumerate} \end{theorem*} \begin{proof} (i) $\iff$ (iii) done (rank nullity Theorem). (i) $\implies$ (iii) is lemma above. We need to show (ii) $\implies$ (iii). Indeed, assume $r(A) < n$. Then \[ \iff \dim \Span\{c_1, \dots, c_n\} < n \] \[ \implies \exists (\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0) \] \[ \sum_{i = 1}^n \lambda_i c_i = 0 \] I pick $j$ such that $\lambda_j \neq 0$ \[ \implies c_j = -\frac{1}{\lambda_j} \sum_{i \neq j} \lambda_i c_i \] \begin{align*} \implies \det A &= \det (c_1, \dots, c_j, \dots, c_n) \\ &= \det \left( c_1, \dots, -\frac{1}{\lambda_j} \sum_{i \neq j} \lambda_i c_i, \dots, c_n \right) \\ &= \sum_{i \neq j} -\frac{1}{\lambda_j} \det(c_1, \dots, c_i, \dots, c_n) \\ &= 0 \end{align*} \end{proof} \begin{remark*} This gives us the sharp criterion for invertibility of a linear system of $n$ equations with $n$ unknowns: \[ Y \in F^n \] \[ A \in \mathcal{M}_n(F) \] \[ AX = Y, X \in F^n \] exists a unique solution if and only if $A$ is invertible, which happens if and only if $\det A \neq 0$. \end{remark*} \subsubsection*{Determinant of linear maps} \begin{lemma*} Conjugate matrices have the same determinant. \end{lemma*} \begin{proof} \begin{align*} \det(P^{-1} AP) &= \det(P^{-1}) \det A \det P \\ &= \frac{1}{\det P} \det A \det P \\ &= \det A \end{align*} ($P$ invertible implies $\det P \neq 0$). \end{proof} \begin{definition*} $\alpha : V \to V$ linear (endomorphism). We define \[ \det \alpha = \det([\alpha]_{\mathcal{B}}) \] $\mathcal{B}$ is any basis of $V$. This number does not depend on the choice of the basis! \end{definition*} \begin{theorem*} $\det : L(V, V) \to F$ satisfies: \begin{enumerate}[(i)] \item $\det \id = 1$ \item $\det (\alpha \circ \beta) = \det(\alpha) \det(\beta)$ \item $\det(\alpha) \neq 0$ if and only if $\alpha$ is invertible and then \[ \det(\alpha^{-1}) = (\det\alpha)^{-1} \] \end{enumerate} \end{theorem*} \begin{proof} Pick a basis and express in terms of $[\alpha]_{\mathcal{B}}$ and $[\beta]_{\mathcal{B}}$. \end{proof} \subsubsection*{Determinant of block matrices} \begin{lemma*} $A \in \mathcal{M}_k(F)$, $\mathcal{B} \in \mathcal{M}_l(F)$ and $C \in \mathcal{M}_{k, l}(F)$. Let \[ M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in \mathcal{M}_n(F) \] ($n = k + l$) then \[ \det M = (\det A)(\det B) \] \end{lemma*} \begin{proof} \[ \det M = \sum_{\sigma \in S_n} \eps(\sigma) \prod_{i = 1}^n m_{\sigma(i) i} \tag{$*$} \] Observation: \[ m_{\sigma(i)i} = 0 \] if $i \le k$, $\sigma(i) > k$. So In ($*$), we need only sum over $\sigma \in S_n$ such that: \begin{enumerate}[(i)] \item $\forall j \in [1, k]$, $\sigma(j) \in [1, k]$ \item and hence $\forall j \in [k + 1, n]$, $\sigma(j) \in [k + 1, n]$. \end{enumerate} In other words, we restrict to $\sigma$ of the form: \[ \sigma_1 : \{1, \dots, k\} \to \{1, \dots, k\} \] \[ \sigma_2 : \{k + 1, \dots, n\} \to \{k + 1, \dots, n\} \] \begin{enumerate}[(i)] \item $m_{\sigma(j)j}$ with $1 \le j \le k$, then $\sigma(j) \in \{1, \dots, k\}$, can be rewritten as \[ m_{\sigma(j)j} = a_{\sigma(j)j} = a_{\sigma_1(j)j} \] \item Similarly, for $k + 1 \le j \le n$, $k + 1 \le \sigma(j) \le n$, \[ m_{\sigma(j)j} = b_{\sigma(j)j} = b_{\sigma_1(j)j} \] \end{enumerate} Note that \[ \eps(\sigma) = \eps(\sigma_1)\eps(\sigma_2) \] so then \begin{align*} \det M &= \sum_{\sigma S_n} \eps(\sigma) \prod_{i = 1}^n m_{\sigma(i) i} \\ &= \sum_{\substack{\sigma_1 \in S_k\\ \sigma_2 \in S_l}} \eps(\sigma_1 \circ \sigma_2) \prod_{i = 1}^k a_{\sigma_1(i)i} \prod_{j = k + 1}^n b_{\sigma_2(j)j} \\ &= \sum_{\substack{\sigma_1 \in S_k\\ \sigma_2 \in S_l}} \eps(\sigma_1) \eps(\sigma_2) \prod_{i = 1}^k a_{\sigma_1(i)i} \prod_{j = k + 1}^n b_{\sigma_2(j)j} \\ &= \left( \sum_{\sigma_1 \in S_k} \eps(\sigma_1) \prod_{i = 1}^k a_{\sigma_1(i)i} \right) \left( \sum_{\sigma_2 \in S_l} \eps(\sigma_2) \prod_{j = k + 1}^n a_{\sigma_2(j)j} \right) \\ &= (\det A)(\det B) \qedhere \end{align*} \end{proof}