% vim: tw=50 % 31/10/2022 11AM \begin{corollary*} Similar matrices have the same trace \end{corollary*} \begin{proof} \begin{align*} \Trace(P^{-1}AP) &= \Trace(APP^{-1}) \\ &= \Trace(A) \end{align*} \end{proof} \begin{definition*} If $\alpha : V \to V$ linear (endomorphism) we can define: \[ \Trace \alpha = \Trace([\alpha]_{\mathcal{B}}) \] in any basis $\mathcal{B}$ (does not depend on the choice $\mathcal{B}$). \end{definition*} \begin{flashcard}[trace-of-dual-map] \begin{lemma*} $\alpha : V \to V$, $\alpha^* : V^* \to V^*$ dual map, then \[ \Trace \alpha = \Trace \alpha^* \] \end{lemma*} \begin{proof} \cloze{ \begin{align*} \Trace \alpha &= \Trace([\alpha]_{\mathcal{B}}) \\ &= \Trace([\alpha]_{\mathcal{B}}^\top) \\ &= \Trace([\alpha^*]_{\mathcal{B}^*}) &&\text{(because $[\alpha]_{\mathcal{B}}^\top = [\alpha^*]_{\mathcal{B}^*}$)} \qedhere \end{align*} } \end{proof} \end{flashcard} \subsection{Determinants} \subsubsection*{Permutations and transpositions} \begin{itemize} \item permutation: $S_n = $ group of permutations of $\{1, \dots, n\}$ \[ \sigma : \{1, \dots, n\} \to \{1, \dots, n\} \] is a bijection. Then $\sigma$ is a permutation. \item Transposition $k \neq l$, $\tau_{kl} \in S_n$ just swaps $k$ and $l$. \item Decomposition: any permutation of $\sigma$ can be decomposed as a product of transpositions \[ \sigma = \prod_{i = 1}^{n\sigma} \tau_i \] $\tau_i$ transposition. \item Signature: $\eps : S_n \to \{-1, 1\}$, \[ \sigma \mapsto \begin{cases} 1 & \text{if $n_\sigma$ even} \\ -1 & \text{if $n_\sigma$ odd} \end{cases} \] $\eps(\sigma) = $ signature of $\sigma$. \emph{and} $\eps$ is a group homomorphism. \end{itemize} \begin{definition*}[Determinant] $A \in \mathcal{M}_n(F)$ (square matrix), \[ A = (a_{ij})_{\substack{1 \le i \le n\\1 \le j \le n}} \] We define the determinant of $A$ as: \[ \det A = \sum_{\sigma \in S_n} \eps(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n) n} \] \end{definition*} \begin{example*} \[ \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} a_{11}a_{22} - a_{12}a_{21} \] \end{example*} \begin{lemma*} If $A = (a_{ij})$ is an upper (lower) triangular matrix with 0 on the diagonal: \[ a_{ij} = 0 \text{for $i \ge j$ (resp $i \le j$)} \] then $\det A = 0$. \end{lemma*} \begin{proof} For $a_{\sigma(1)1} \cdots a_{\sigma(n)n}$ not to be zero, I need $\sigma(j) < j$ for all $j \in \{1, \dots, n\}$ which is \emph{impossible} for $\sigma \in S_n$. So all the terms are 0, so $\det A = 0$. \end{proof} \myskip Exercise: Show similarly that if instead we allow the diagonal elements to be nonzero, then the determinant is the product of the diagonal elements. \begin{lemma*} $\det A = \det(A^\top)$ \end{lemma*} \begin{proof} \begin{align*} \det A &= \sum_{\sigma \in S_n} \eps(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n} \\ &= \sum_{\sigma \in S_n} \eps(\sigma) \prod_{i = 1}^n a_{\sigma(i) i} \\ &= \sum_{\sigma \in S_n} \eps(\sigma) \prod_{j = 1}^n a_{j\sigma^{-1}(j)} \end{align*} Now remember $\eps(\sigma \sigma^{-1}) = \eps(\sigma) \eps(\sigma^{-1})$ so since $\eps(\sigma) \in \{-1, 1\}$, \[ \implies \eps(\sigma^{-1}) = \eps(\sigma) \] \begin{align*} \det A &= \sum_{\sigma \in S_n} \eps(\sigma) \prod_{i = 1}^n a_{i \sigma^{-1}(i)} \\ &= \sum_{\sigma \in S_n} \eps(\sigma^{-1}) \prod_{i = 1}^n a_{i\sigma^{-1}}(i) \\ &= \sum_{\sigma \in S_n} \eps(\sigma) \prod_{i = 1}^n a_{i\sigma(i)} \\ &= \det(A^\top) \end{align*} \end{proof} \myskip Why this formula for $\det A$? \begin{flashcard}[volume-form-defn] \begin{definition*} A \emph{volume form} $d$ on $F^n$ is a function \[ \ub{F^n \times \cdots \times F^n}_{n \text{ times}} \to F \] such that \begin{enumerate}[(i)] \item \cloze{$d$ is multilinear: for any $1 \le i \le n$, for all $v_1, \dots, v_{i - 1}, v_{i + 1}, \dots, v_n \in F^n$, \[ v \mapsto d(v_1, \dots, v_{i - 1}, v, v_{i + 1}, \dots, v_n) \] is linear (i.e. an element of $(F^n)^*$) (linear with respect to all coordinate)} \item \cloze{$d$ alternate: if $v_i = v_j$ for some $i \neq j$, then \[ d(v_1, \dots, v_n) = 0 \]} \end{enumerate} \end{definition*} \end{flashcard} \noindent We want to show that there is in fact only \emph{one} (up to a multiplicative constant) volume form on $F^n \times \cdots \times F^n$ which is given by the determinant: \[ A = (a_{ij}) = (A^{(1)} \mid \cdots \mid A^{(n)}) \] (column vectors) \[ \det A = \det(A^{(1)}, \dots, A^{(n)}) \] \begin{lemma*} $F^n \times \cdots \times F^n \to F$ \[ (A^{(1)}, \dots, A^{(n)}) \mapsto \det A \] is a volume form. \end{lemma*} \begin{proof} \begin{enumerate}[(i)] \item multilinear $\sigma \in S_n$, then $\prod_{i = 1}^n a_{\sigma(i)i}$ is multilinear: there is only one term from each column appearing in the expression. The sum of multilinear maps is multilinear, so $\det$ is multilinear. \item Alternate: Assume $k \neq l$, $A^{(k)} = A^{(l)}$. I want to show $\det A = 0$. Indeed: let $\tau$ be the transposition which swaps $k$ and $l$. Then since $A^{(k)} = A^{(l)}$ then $a_{ij} = a_{i\tau{j}}$ for all $i, j$. We can decompose: \[ S_n = A_n \sqcup \tau A_n \] then \begin{align*} \det A &= \sum_{\sigma \in S_n} \eps(\sigma) \prod_{i = 1}^n a_{i\sigma(i)} \\ &= \sum_{\sigma \in A_n} \prod_{i = 1}^n a_{i\sigma(i)} + \sum_{\sigma \in \tau A_n} \eps(\sigma) \prod_{i = 1}^n a_{i \tau\sigma(i)} \\ &= \sum_{\sigma \in A_n} \prod_{i = 1}^n a_{i\sigma(i)} - \sum_{\sigma \in A_n} a_{i\tau\sigma(i)} \\ &= \sum_{\sigma \in A_n} \prod_{i = 1}^n a_{i\sigma(i)} - \sum_{\sigma \in A_n} \prod_{i = 1}^n a_{i\sigma(i)} \\ &= 0 \end{align*} \end{enumerate} \end{proof} \begin{lemma*} Let $d$ be a volume form. Then swapping two entries changes the sign. \end{lemma*} \begin{proof} Equivalent definition of ``alternate''. \begin{align*} 0 &= d(v_1, \dots, v_i + v_j, \dots, v_i + v_j, \dots, v_n) \\ &= d(v_1, \dots, v_i, \dots, v_i, \dots, v_n) + d(v_1, \dots, v_i, \dots, v_j, \dots, v_n) \\ &~~~ + d(v_1, \dots v_j, \dots, v_i, \dots, v_n) + d(v_1, \dots, v_j, \dots, v_j, \dots, v_n) \\ &= 0 + d(v_1, \dots, v_i, \dots, v_j, \dots, v_n) + d(v_1, \dots, v_j, \dots, v_i, \dots, v_n) \end{align*} \end{proof}