% vim: tw=50 % 28/10/2022 11AM \begin{remark*} $T \le V^+$, we can define \[ T^0 = \{v \in V \mid \theta(v) = 0, \theta \in T\} \] \end{remark*} \begin{flashcard}[annihilator-of-sum-and-intersection] \begin{lemma*} Let $V$ be a \fcemph{finite dimensional} vector space over $F$. Let $U_1, U_2 \le V$. Then \begin{enumerate}[(i)] \item $(U_1 \cloze{+} U_2)^0 = U_1^0 \cloze{\cap} U_2^0$ \item $(U_1 \cloze{\cap} U_2)^0 = U_1^0 \cloze{+} U_2^0$ \end{enumerate} \end{lemma*} \begin{proof} \begin{enumerate}[(i)] \item \cloze{Exercise.} \item \cloze{Take $^0$ of (i) and use $U^{00} = U$.} \end{enumerate} \end{proof} \end{flashcard} \subsection{Bilinear Forms} $\implies$ Quadratic algebra. \begin{flashcard}[bilinear-form-defn] \begin{definition*} $U, V$ vector spaces over $F$. Then: \[ \varphi : U \times V \to F \] is a \emph{bilinear form} if \cloze{it ``linear in both components'': \begin{itemize} \item $\varphi(u, \bullet) : V \to F$ is linear for all $u \in U$ ($v \mapsto \varphi(u, v)$). \item $\varphi(\bullet, v) : U \to F$ is linear for all $v \in V$ ($u \mapsto \varphi(u, v)$) \end{itemize}} \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(i)] \item $V \times V^* \to F$ \[ (v, \theta) \mapsto \theta(v) \] \item Scalar product / dot product on $U = V = \RR^n$ \item $U = V = \mathcal{C}([0, 1], \RR)$ \[ \varphi(f, g) = \int_0^1 f(t) g(t) \dd t\] (``infinite dimensional scalar product) \end{enumerate} \begin{flashcard}[bilinear-form-matrix] \begin{definition*}[matrix of a bilinear form in a basis] $\mathcal{B} = (e_1, \dots, e_m)$ basis of $U$, $\mathcal{C} = (f_1, \dots, f_n)$ basis of $V$. $\varphi : U \times V \to F$ bilinear form. \\ The matrix of $\varphi$ with respect to $\mathcal{B}$ and $\mathcal{C}$ is: \[ \cloze{[\varphi]_{\mathcal{B}, \mathcal{C}} = (\ub{\varphi(e_i, f_j)}_{\in F})_{\substack{1 \le i \le m \\ 1 \le j \le n}}} \] \end{definition*} \end{flashcard} \begin{lemma*} $\varphi(u, v) = [u]_{\mathcal{B}}^\top [\varphi]_{\mathcal{B}, \mathcal{C}} [v]_{\mathcal{C}}$. ($*$) \end{lemma*} \noindent Link between the bilinear form and its matrix in given basis. \begin{proof} $u = \sum_{i = 1}^m \lambda_i e_i$, $v = \sum_{j = 1}^n \mu_j f_j$. Then by linearity: \begin{align*} \varphi(u, v) &= \varphi \left( \sum_{i = 1}^m \lambda_i e_i, \sum_{j = 1}^n \mu_j e_j \right) \\ &= \sum_{i = 1}^m \sum_{j = 1}^n \lambda_i \mu_j \varphi(e_i, e_j) \\ &= [u]_{\mathcal{B}}^\top [\varphi]_{\mathcal{B}, \mathcal{C}} [v]_{\mathcal{C}} \end{align*} \end{proof} \begin{remark*} $[\varphi]_{\mathcal{B}, \mathcal{C}}$ is the only matrix such that ($*$) holds. \end{remark*} \begin{notation*} $\varphi : U \times V \to F$ bilinear form, then it determines two linear maps: \[ \varphi_L : U \to V^* \] \[ \varphi_L(u) : V \to F \] \[ v \mapsto \varphi(u, v) \] define $\varphi_R$ similarly. \end{notation*} \begin{lemma*} $\mathcal{B} = (e_1, \dots, e_m)$ basis of $U$, $B^* = (\eps_1, \dots, \eps_m)$ dual basis of $U^*$. $\mathcal{C} = (f_1, \dots, f_n)$ basis of $V$, $\mathcal{C}^* = (\eta_1, \dots, \eta_n)$ dual basis of $V^*$. Let $A = [\varphi]_{\mathcal{B}, \mathcal{C}}$ then: \[ [\varphi_R]_{\mathcal{C}, \mathcal{B}^*} = A \] \[ [\varphi]_{\mathcal{B}, \mathcal{C}^*} = A^\top \] \end{lemma*} \begin{proof} \begin{align*} \varphi_L(e_i)(f_j) &= \varphi(e_i, f_j) = A_{ij} \\ \implies \varphi_L(e_i) &= \sum A_{ij} \eta_j \end{align*} similarly for $\varphi_R$. \end{proof} \begin{flashcard}[bilinear-form-degenerate] \begin{definition*}[Degenerate / non degenerate bilinear form] \cloze{$\Ker \varphi_L$: ``left kernel of $\varphi$'', $\Ker \varphi_R$: ``right kernel of $\varphi$''.} We say that $\varphi$ is non-degenerate if \[ \cloze{\Ker \varphi_L = \{0\} \quad \text{and} \quad \Ker \varphi_R = \{0\}} \] Otherwise, we say that $\varphi$ is degenerate. \end{definition*} \end{flashcard} \begin{lemma*} $U$, $V$ finite dimensional. $\mathcal{B}$ basis of $U$, $\mathcal{C}$ basis of $V$. $\varphi : U \times V \to F$ bilinear form, $A = [\varphi]_{\mathcal{B}, \mathcal{C}}$. Then $\varphi$ non degenerate $\iff$ $A$ invertible. \end{lemma*} \begin{corollary*} $\varphi$ non degenerate \[ \implies \dim U = \dim V \] \end{corollary*} \begin{proof} \begin{align*} \varphi \text{ non degenerate} &\iff \Ker \varphi_L = \{0\} \text{ and } \Ker \varphi_R = \{0\} \\ &\iff n(A^\top) = 0 \text{ and } n(A) = 0 \\ &\iff r(A^\top) = \dim U \text{ and } r(A) = \dim V \\ &\iff \text{$A$ invertible and then: $\dim U = \dim V$} \end{align*} \end{proof} \begin{remark*} $\varphi : \RR^n \times \RR^n \to \RR$ scalar product, then $\varphi$ is non degenerate, and if we take the usual bases, then $[\varphi]_{\mathcal{B}, \mathcal{B}} = I_n$. \end{remark*} \begin{corollary*} When $U$ and $V$ are finite dimensional, then choosing a \emph{non degenerate} bilinear form $\varphi : U \to V \to F$ is equivalent to choosing an isomorphism $\varphi_L : U \to V^*$. \end{corollary*} \begin{flashcard}[bilinear-form-orthogonal] \begin{definition*} $T \subset U$, we define: \[ T^\perp = \cloze{\{v \in V \mid \varphi(t, v) = 0, \forall t \in T\}} \] Similarly define for $S \subset V$ \[ {}^\perp S = \cloze{\{u \in U, \varphi(u, s) = 0, \forall s \in S\}} \] \end{definition*} \end{flashcard} \subsubsection*{Change basis for bilinear forms} \begin{flashcard}[bilinear-form-change-basis-formula] \begin{proposition*} \begin{itemize} \item $\mathcal{B}$, $\mathcal{B}'$ basis of $U$, $P = [\id]_{\mathcal{B}', \mathcal{B}}$ \item $\mathcal{C}, \mathcal{C}'$ basis of $V$, $Q = [\id]_{\mathcal{C}', \mathcal{C}}$. \end{itemize} Let $\varphi : U \times V \to F$ bilinear form, then \[ [\varphi]_{\mathcal{B}', \mathcal{C}'} = \cloze{P^\top [\varphi]_{\mathcal{B}, \mathcal{C}} Q} \] change of basis formula for bilinear forms. \end{proposition*} \end{flashcard} \begin{proof} \begin{align*} \varphi(u, v) &= [u]_{\mathcal{B}}^\top [\varphi]_{\mathcal{B}, \mathcal{C}}[v]_{\mathcal{C}} \\ &= (P[u]_{\mathcal{B}'})^\top [\varphi]_{\mathcal{B}, \mathcal{C}} (Q[v]_{\mathcal{C}'}) \\ &= [u]_{\mathcal{B}'}^\top (P^\top [\varphi]_{\mathcal{B}, \mathcal{C}} Q) [v]_{\mathcal{C}'} \end{align*} \end{proof} \begin{definition*} The rank of $\varphi$ ($r(\varphi)$) is the rank of any matrix representing $\varphi$. \end{definition*} \noindent Indeed, $r(P^\top AQ) = r(A)$ for any invertible $P, Q$. \begin{remark*} $r(\varphi) = r(\varphi_R) = r(\varphi_L)$. (we computed matrices in a basis and $r(A) = r(A^\top)$) \end{remark*} \noindent More applications later: scalar product. \subsection{Determinant and Traces} \begin{definition*} $A \in \mathcal{M}_n(F) = \mathcal{M}_{n \times n}(F)$ We define the trace of $A$ \[ \Trace A = \sum_{i = 1}^n A_{ii} \] \[ A = (A_{ij})_{1 \le i, j \le n} \] \end{definition*} \begin{remark*} $\mathcal{M}_n(F) \to F$ linear form ($A \mapsto \Trace A$). \end{remark*} \begin{lemma*} $\Trace(AB) = \Trace(BA)$. \end{lemma*} \begin{proof} \begin{align*} \Trace(AB) = \sum_{i = 1}^n \left( \sum_{j = 1}^n a_{ij} b_{ji} \right) \\ &= \cdots \\ &= \Trace(BA) \end{align*} \end{proof}