% vim: tw=50 % 07/10/2022 11AM \section{Vector spaces and subspaces} Let $F$ be an arbitrary field (eg $\RR$ or $\CC$). \begin{flashcard} \begin{definition*}[$F$ vector space] An $F$ vector space (a vector space over $F$) is an abelian group $(V, +)$ equipped with a function \[ F \times V \to V \] \[ (\lambda, v) \mapsto \lambda v \] such that: \begin{itemize} \item \cloze{$\lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2$} \item \cloze{$(\lambda_1 + \lambda_2)v = \lambda_1 v + \lambda_2 v$} \item \cloze{$\lambda(\mu v) = (\lambda \mu) v$} \item \cloze{$1v = v$} \end{itemize} \end{definition*} \end{flashcard} \noindent We know how to \begin{itemize} \item sum two vectors \item multiply a vector $v \in V$ by a scalar $\lambda \in F$. \end{itemize} \subsubsection*{Examples} \begin{enumerate}[(i)] \item $n \in \NN$, $F^n$: column vectors of length $n$ with entries in $F$: \[ v \in F^n, v = \left| \begin{matrix} x_1 \\ \vdots \\ x_n \end{matrix} \right. , \qquad x_i \in F, 1 \le i \le n \] \[ v + w = \left| \begin{matrix} v_1 \\ \vdots \\ v_n \end{matrix} \right. + \left| \begin{matrix} w_1 \\ \vdots \\ w_n \end{matrix} \right. = \left| \begin{matrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{matrix} \right. \] \[ \lambda v = \left| \begin{matrix} \lambda v_1 \\ \vdots \\ \lambda v_n \end{matrix} \right. \qquad \lambda \in F \] check: $F^n$ is an $F$ vector space. \item Any set $X$, \[ \RR^X = \{f : X \to \RR\} \] (set of real valued functions on $X$) Then $\RR^X$ is an $\RR$ vector space \[ (f_1 + f_2)(x) = f_1(x) + f_2(x) \] \[ (\lambda f)(x) = \lambda f(x), \qquad \lambda \in \RR \] \item $\mathcal{M}_{n, m}(F) \equiv n \times m$ $F$ valued matrices. Sum is sum of entries, $\lambda M = (\lambda m_{ij})$. \end{enumerate} \begin{remark*} The axiom of scalar multiplication imply that: \[ \forall \,\, v \in V, \quad 0_F v = 0_V \] \end{remark*} \begin{definition*}[Subspace] Let $V$ be a vector space over $F$. A subset $U$ of $V$ is a vector subspace of $V$ (denoted $U \le V$) if: \begin{itemize} \item $0_V \in U$ \item $(u_1, u_2) \in U \times U \implies u_1 + u_2 \in U$ \item $\forall \,\, (\lambda, u) \in F \times U, \lambda u \in U$. \end{itemize} The last two properties can be combined into a single property: \begin{itemize} \item $\forall (\lambda_1, \lambda_2, u_1, u_2) \in F \times F \times U \times U, \quad \lambda_1 u_1 + \lambda_2 u_2 \in U$ ($*$) \end{itemize} \end{definition*} \hiddenfc{ \begin{definition*}[Subspace] Let $V$ be a vector space over $F$. A \cloze{\fcemph{non-empty}} subset $U$ of $V$ is a vector subspace of $V$ (denoted $U \le V$) if: \[ \cloze{\forall \,\, (\lambda_1, \lambda_2, u_1, u_2) \in F \times F \times U \times U, \quad \lambda_1 u_1 + \lambda_2 u_2 \in U \qquad \text{and} \qquad 0_V \in U} \] \end{definition*} } \begin{hiddenflashcard}[how-to-check-subspace] How to check if $U \subset V$ is a subspace? \\ \cloze{ Check $0_V \in U$ and check \[ \forall \lambda_1, \lambda_2 \in F, \forall u_1, u_2 \in U, \qquad \lambda_1 u_1 + \lambda_2 u_2 \in U \] } \end{hiddenflashcard} \noindent Property ($*$) means that $U$ is stable by \begin{itemize} \item scalar multiplication \item vector addition \end{itemize} \begin{example*} $V$ is an $F$ vector space, and $U \le V$. Then $U$ is an $F$ vector space. \end{example*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $V = \RR^\RR$ space of functions $f : \RR \to \RR$. \begin{itemize} \item Let $\mathcal{C}(\RR)$ be the space of continuous functions $f : \RR \to \RR$. Then $\mathcal{C}(\RR) \le V$. \item Let $\PP(\RR)$ be the space of polynomials of one variable. Then $\PP(\RR) \le V$. \end{itemize} \item Let \[ V = \left\{ \left| \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \right. \in \RR^3 : x_1 + x_2 + x_3 = t \right\} \] check: that this is a subspace of $\RR^3$ for $t = 0$ only. \end{enumerate} \begin{warning*} The union of two subspaces is generally \emph{not} a subspace. (It is typically not stable by addition). \end{warning*} \begin{example*} $V = \RR^2$, with $U_1 = \{(x, 0) : x \in \RR\}$, $U_2 = \{(0, y) : y \in \RR\}$. Both subspaces, but the union isn't since \[ \ub{(1, 0)}_{\in U_1} + \ub{(0, 1)}_{\in U_2} = (1, 1) \not\in U \cup V \] \end{example*} \begin{proposition*} Let $V$ be an $F$ vector space. Let $U, W \le V$. Then \[ U \cap W \le V \] \end{proposition*} \begin{proof} \begin{itemize} \item $0 \in U, 0 \in W \implies 0 \in U \cap W$. \item Stability: let $(\lambda_1, \lambda_2, v_1, v_2) \in F \times F \times (U \cap W) \times (U \cap W)$. Then \[ \ub{\lambda_1 v_1}_{\in U} + \ub{\lambda_2 v_2}_{\in U} \in U \] and similarly for $W$, hence \[ \lambda_1 v_1 + \lambda_2 v_2 \in U \cap W \] \end{itemize} \end{proof} \begin{definition*}[Sum of subspaces] Let $V$ be an $F$ vector space. Let $U \le V$, $W \le V$. Then the \emph{sum} of $U$ and $V$ is the set: \[ U + W = \{u + w : (u, w) \in U \times W\} \] \end{definition*} \begin{example*} Use $V = \RR^2$ and $U_1, U_2$ from the previous example. Then $U_1 + U_2 = V$. \end{example*} \begin{proposition*} Let $V$ be an $F$ vector space, with $U, W \le V$. Then \[ U + W \le V \] \end{proposition*} \begin{proof} \begin{itemize} \item $0 = \ub{0}_{\in U} + \ub{0}_{\in W} \in U + W$ \item Consider $\lambda_1 f + \lambda_2 g$ for $\lambda_1, \lambda_2 \in F$ and $f, g \in U + W$. Then let: \[ f = \ub{f_1}_{\in U} + \ub{f_2}_{\in W} \] \[ g = \ub{g_1}_{\in U} + \ub{g_2}_{\in W} \] so \begin{align*} \lambda_1 f + \lambda_2 g &= \lambda_1 (f_1 + f_2) + \lambda_2 (g_1 + g_2) \\ &= \ub{(\lambda_1 \ub{f_1}_{\in U} + \lambda_2 \ub{g_1}_{\in U})}_{\in U} + \ub{(\lambda_1 \ub{f_2}_{\in W} + \lambda_2 \ub{g_2}_{\in W})}_{\in W} \\ &\in U + W \end{align*} \end{itemize} \end{proof} \myskip Exercise: Show that $U + W$ is the \emph{smallest} subspace of $V$ which contains both $U$ and $W$. \subsection{Subspaces and Quotient} \begin{definition*}[Quotient] Let $V$ be an $F$ vector space. Let $U \le V$. The quotient space $V / U$ is the abelian group $V / u$ equipped with the scalar product multiplication: \[ F \times V / U \to V / U \] \[ (\lambda, v + U) \mapsto \lambda v + U \tag{$*$} \] \end{definition*} \begin{proposition*} $V / U$ is an $F$ vector space. \end{proposition*} \begin{remark*} The multiplication is well defined: \[ v_1 + U = v_2 + U \] \[ \implies v_1 - v_2 \in U \] \[ \implies \lambda(v_1 - v_2) \in U \] \[ \implies \lambda v_1 + U = \lambda v_2 + U \in V / U \] \end{remark*} \noindent Exercise: Prove that $V / U$ is an $F$ vector space.