Linear Algebra

June 3, 2023

Contents

Lectures

[Lecture 1](#page-2-1) [Lecture 2](#page-6-1) [Lecture 3](#page-10-0) [Lecture 4](#page-14-0) [Lecture 5](#page-19-0) [Lecture 6](#page-24-1) [Lecture 7](#page-27-0) [Lecture 8](#page-32-1) [Lecture 9](#page-37-1) [Lecture 10](#page-40-0) [Lecture 11](#page-45-0) [Lecture 12](#page-49-0) [Lecture 13](#page-55-0) [Lecture 14](#page-59-1) [Lecture 15](#page-64-1) [Lecture 16](#page-68-0) [Lecture 17](#page-72-0) [Lecture 18](#page-80-1) [Lecture 19](#page-85-1) [Lecture 20](#page-92-1) [Lecture 21](#page-97-0) [Lecture 22](#page-103-1) [Lecture 23](#page-108-1)

[Lecture 24](#page-112-1)

Start of

[lecture 1](https://notes.ggim.me/LA#lecturelink.1) 1 Vector spaces and subspaces

Let F be an arbitrary field (eg $\mathbb R$ or $\mathbb C$).

Definition (F vector space). An F vector space (a vector space over F) is an abelian group $(V,+)$ equipped with a function

> $F \times V \to V$ $(\lambda, v) \mapsto \lambda v$

such that:

- $\lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2$
- $(\lambda_1 + \lambda_2)v = \lambda_1v + \lambda_2v$
- $\lambda(\mu v) = (\lambda \mu) v$
- $1v = v$

We know how to

- $\bullet\,$ sum two vectors
- multiply a vector $v \in V$ by a scalar $\lambda \in F$.

Examples

(i) $n \in \mathbb{N}$, F^n : column vectors of length n with entries in F:

$$
v \in F^n, v = \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix}, \quad x_i \in F, 1 \le i \le n
$$

$$
v + w = \begin{vmatrix} v_1 \\ \vdots \\ v_n \end{vmatrix} + \begin{vmatrix} w_1 \\ \vdots \\ w_n \end{vmatrix} = \begin{vmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{vmatrix}
$$

$$
\lambda v = \begin{vmatrix} \lambda v_1 \\ \vdots \\ \lambda v_n \end{vmatrix}
$$

$$
\lambda \in F
$$

check: F^n is an F vector space.

(ii) Any set X ,

$$
\mathbb{R}^X = \{ f : X \to \mathbb{R} \}
$$

(set of real valued functions on X) Then \mathbb{R}^X is an $\mathbb R$ vector space

$$
(f_1 + f_2)(x) = f_1(x) + f_2(x)
$$

$$
(\lambda f)(x) = \lambda f(x), \qquad \lambda \in \mathbb{R}
$$

(iii) $\mathcal{M}_{n,m}(F) \equiv n \times m$ F valued matrices. Sum is sum of entries, $\lambda M = (\lambda m_{ij})$.

Remark. The axiom of scalar multiplication imply that:

 $\forall v \in V$, $0_F v = 0_V$

Definition (Subspace). Let V be a vector space over F. A subset U of V is a vector subspace of V (denoted $U \leq V$) if:

 $0_V \in U$

- \bullet $(u_1, u_2) \in U \times U \implies u_1 + u_2 \in U$
- $\bullet \ \forall (\lambda, u) \in F \times U, \lambda u \in U.$

The last two properties can be combined into a single property:

 $\bullet \ \ \forall (\lambda_1, \lambda_2, u_1, u_2) \in F \times F \times U \times U, \quad \lambda_1 u_1 + \lambda_2 u_2 \in U \ (*)$

Property $(*)$ means that U is stable by

- scalar multiplication
- vector addition

Example. V is an F vector space, and $U \leq V$. Then U is an F vector space.

Examples

(1) $V = \mathbb{R}^{\mathbb{R}}$ space of functions $f : \mathbb{R} \to \mathbb{R}$.

- Let $\mathcal{C}(\mathbb{R})$ be the space of continuous functions $f : \mathbb{R} \to \mathbb{R}$. Then $\mathcal{C}(\mathbb{R}) \leq V$.
- Let $\mathbb{P}(\mathbb{R})$ be the space of polynomials of one variable. Then $\mathbb{P}(\mathbb{R}) \leq V$.

(2) Let

$$
V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 + x_2 + x_3 = t \right\}
$$

check: that this is a subspace of \mathbb{R}^3 for $t = 0$ only.

Warning. The union of two subspaces is generally not a subspace. (It is typically not stable by addition).

Example. $V = \mathbb{R}^2$, with $U_1 = \{(x, 0) : x \in \mathbb{R}\}, U_2 = \{(0, y) : y \in \mathbb{R}\}.$ Both subspaces, but the union isn't since

$$
\underbrace{(1,0)}_{\in U_1} + \underbrace{(0,1)}_{\in U_2} = (1,1) \notin U \cup V
$$

Proposition. Let V be an F vector space. Let $U, W \leq V$. Then

 $U \cap W \leq V$

Proof. $\bullet \ 0 \in U, 0 \in W \implies 0 \in U \cap W$.

Stability: let $(\lambda_1, \lambda_2, v_1, v_2) \in F \times F \times (U \cap W) \times (U \cap W)$. Then

$$
\underbrace{\lambda_1 v_1}_{\in U} + \underbrace{\lambda_2 v_2}_{\in U} \in U
$$

and similarly for W , hence

$$
\lambda_1 v_1 + \lambda_2 v_2 \in U \cap W
$$

 \Box

Definition (Sum of subspaces). Let V be an F vector space. Let $U \leq V, W \leq V$. Then the sum of U and V is the set:

$$
U + W = \{u + w : (u, w) \in U \times W\}
$$

Example. Use $V = \mathbb{R}^2$ and U_1, U_2 from the previous example. Then $U_1 + U_2 = V$.

Proposition. Let V be an F vector space, with $U, W \leq V$. Then

 $U + W \leq V$

Proof. \bullet $0 = 0$ $\widetilde{\in}$ $+$ 0 ϵW $\in U + W$

• Consider $\lambda_1 f + \lambda_2 g$ for $\lambda_1, \lambda_2 \in F$ and $f, g \in U + W$. Then let:

$$
f = \underbrace{f_1}_{\in U} + \underbrace{f_2}_{\in W}
$$

$$
g = \underbrace{g_1}_{\in U} + \underbrace{g_2}_{\in W}
$$

so

$$
\lambda_1 f + \lambda_2 g = \lambda_1 (f_1 + f_2) + \lambda_2 (g_1 + g_2)
$$

= $(\lambda_1 f_1 + \lambda_2 g_1) + (\lambda_1 f_2 + \lambda_2 g_2)$
 $\underbrace{\underbrace{\qquad \qquad }_{\in U} \qquad \qquad \in U}}_{\in U} + (\lambda_1 f_2 + \lambda_2 g_2)$
 $\underbrace{\qquad \qquad }_{\in W} \qquad \qquad \in W}$
 $\in U + W$

Exercise: Show that $U + W$ is the *smallest* subspace of V which contains both U and W.

1.1 Subspaces and Quotient

Definition (Quotient). Let V be an F vector space. Let $U \leq V$. The quotient space V/U is the abelian group V/u equipped with the scalar product multiplication:

$$
F \times V/U \to V/U
$$

$$
(\lambda, v + U) \mapsto \lambda v + U
$$
 (*)

Proposition. V/U is an F vector space.

Remark. The multiplication is well defined:

$$
v_1 + U = v_2 + U
$$

$$
\implies v_1 - v_2 \in U
$$

$$
\implies \lambda (v_1 - v_2) \in U
$$

$$
\implies \lambda v_1 + U = \lambda v_2 + U \in V/U
$$

Exercise: Prove that V/U is an F vector space.

Start of

[lecture 2](https://notes.ggim.me/LA#lecturelink.2) 1.2 Spans, linear independence and the Steinitz exchange lemma

Definition (Spand of a family of vectors). Let V be an F vector space. Let $S \subset V$ be a subset $(S =$ collection of vectors). We define:

$$
\langle S \rangle = \{ \text{finite linear combination of elements of } S \}
$$

$$
^{\text{``span of } S"} = \left\{ \sum_{s \in J} \lambda_s v_s, v_s \in S, \lambda_s \in F, J \text{ is finite} \right\}
$$

Convention: $\langle \emptyset \rangle = \{0\}.$

Remark. $\langle S \rangle$ is the smallest vector subspace which contains S.

Examples

 (1) $V = \mathbb{R}^3$

$$
S = \left\{ \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 2 & -4 \end{pmatrix} \right\}
$$

$$
\implies \langle S \rangle = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} (a, b) \in \mathbb{R}^2 \right\}
$$

(2)

$$
V = \mathbb{R}^{n} = \left\{ \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}, x_{i} \in \mathbb{R}, 1 \leq i \leq n \right\}
$$

Define:

$$
e_i = \begin{vmatrix} 0 \\ \vdots \\ 1 \\ \text{(in position } i) \\ \vdots \\ 0 \end{vmatrix}
$$

$$
\implies V = \langle e_1, \dots, e_n \rangle
$$

(3) X is a set, $V = \mathbb{R}^X = \{f : X \to \mathbb{R}\}.$

$$
S_x: X \to \mathbb{R}
$$

$$
y \mapsto \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}
$$

$$
\langle (S_x)_{x \in X} \rangle = \text{span}((S_x)_{x \in X})
$$

= {f \in \mathbb{R}^X : f has finite support}

(Support of f is $\{x \in X : f(x) \neq 0\}$)

Definition. Let V be an F vector space. Let S be a subset of V . We say that S spans V if:

 $\langle S \rangle = V.$

Example.
$$
V = \mathbb{R}^2
$$

$$
\begin{cases} v_1 \\ v_2 \end{cases}
$$

 v_1
 v_2

Definition (Finite dimension). Let V be an F vector space. We say that V is finite dimensional if it is spanned by a finite set.

Example. Let $V_1 = P[x]$ be the set of polynomials over R, and let $V = P_n[x]$ be the set of polynomials over R with degree $\leq n$. Then $\{1, x, \ldots, x^n\}$ spans $P_n[x]$, so $P_n[x] = \langle 1, x, \ldots, x^n \rangle$. So $P_n[x]$ is finite dimensional.

On the other hand, $P[x]$ is *not* finite dimensional: it is infinite dimensional, because there is no family of V with finitely many elements which spans V .

Question: If V is finite dimensional, is there a *minimal* number of vectors in the family so that they span V .

Definition (Independence). We say that (v_1, \ldots, v_n) elements of V are *linearly* independent if:

$$
\sum_{i=1}^{n} \lambda_i v_i = 0, \ \lambda_i \in F \implies \lambda_i = 0 \ \forall i
$$

Remark. (1) We also say that the family (v_1, \ldots, v_n) is free.

(2) Equivalently, (v_1, \ldots, v_n) are not linearly independent if one of these vectors is a linear combination of the remaining $(n-1)$ ones. Indeed, $\exists (\lambda_1, \ldots, \lambda_n)$ not all zero (that is, there exists j such that $\lambda_j \neq 0$), such that

$$
\sum_{i=1}^{n} \lambda_i v_i = 0 \implies v_j = -\frac{1}{\lambda_j} \sum_{\substack{i=1 \ i \neq j}}^{n} \lambda_i v_i
$$

Example. $V = \mathbb{R}^3$. If (v_1, v_2) free, and v_3 is coplanar with both, then (v_1, v_2, v_3) is not free.

Remark. $(v_i)_{1 \leq i \leq n}$ free family (linearly independent) then $\forall 1 \leq i \leq n, v_i \neq 0$.

Definition (Basis). A sub set S of V is a basis of V if and only if:

- $\langle S \rangle = V$ (generating family)
- S linearly independent / free

Remark. When S spans V, we say that S is a generating family. So a basis is a free generating family.

Examples

(1)

$$
V = \mathbb{R}^{n} = \left\{ \begin{vmatrix} x_{1} \\ \vdots \\ x_{n} \end{vmatrix} \text{ s.t. } 1 \leq i \leq n \right\}
$$

$$
e_{i} = \begin{vmatrix} 0 \\ \vdots \\ 1 \quad \text{(in position } i) \\ \vdots \\ 0 \end{vmatrix}
$$

Then $(e_i)_{1 \leq i \leq n}$ is a basis of V.

(2) $V = \mathbb{C}$. If $F = \mathbb{C}$ then $\{1\}$ is a basis of V. If $F = \mathbb{R}$ then $\{1, i\}$ is a basis of V.

(3) $V = P[x] = \{\text{polynomials over } \mathbb{R}\}, S = \{x^n : n \geq 0\}.$ Then S is a basis for V.

Lemma. Let V be an F vector space. Then (v_1, \ldots, v_n) is a basis of V if and only if any vector $v \in V$ has a $\it unique$ decomposition:

$$
v = \sum_{i=1}^{n} \lambda_i v_i, \quad \lambda_i \in F
$$

Notation. $(\lambda_1, \ldots, \lambda_n)$ are the *coordinates* of v in the basis (v_1, \ldots, v_n) .

Proof. By assumption, $\langle v_1, \ldots, v_n \rangle = V$ so

$$
\forall v \in V, \exists (\lambda_1, \dots, \lambda_n) \in F^n \qquad v = \sum_{i=1}^n \lambda_i v_i
$$

Uniqueness: let

$$
v = \sum_{i=1}^{n} \lambda_i v_i = \sum_{i=1}^{n} \lambda'_i v_i
$$

$$
\implies \sum_{i=1}^{n} (\lambda_i - \lambda'_i) v_i = 0
$$

$$
\implies \forall 1 \le i \le n, \ \lambda_i = \lambda'_i
$$

Lemma. If (v_1, \ldots, v_n) spans V, then some subset of this family is a basis of V.

Proof. If (v_1, \ldots, v_n) are linearly independent then done. Let's assume they are not independent. Then by possible reordering the vectors,

$$
v_n \in \langle v_1, \ldots, v_{n-1} \rangle
$$

 $(v_n$ is a linear combination of v_1, \ldots, v_{n-1}) so

$$
V = \langle v_1, \ldots, v_n \rangle = \langle v_1, \ldots, v_{n-1} \rangle
$$

Now we can iterate until the resulting set is a basis of V . (We only have to iterate finitely many times since n is finite). \Box

Theorem (Steinitz exchange lemma). Let V be a *finite dimensional* vector space over F. Take:

(i) (v_1, \ldots, v_m) free

(ii) (w_1, \ldots, w_n) generating $(\langle w_1, \ldots, w_n \rangle = V)$.

Then $m \leq n$, and up to reordering,

 $(v_1, \ldots, v_m, w_{m+1}, \ldots, w_n)$

spans V .

Start of

[lecture 3](https://notes.ggim.me/LA#lecturelink.3) Proof. Induction. Suppose that we have replaced $l \ (\geq 0)$ of the w_i . Reordering if necessary:

$$
\langle v_1,\ldots,v_l,w_{l+1},\ldots,w_n\rangle=V
$$

If $m = l$ then we are done. So assume $l < m$. Then take $v_{l+1} \in V$, and we must have

$$
v_{l+1} = \sum_{i \leq l} a_i v_i + \sum_{i > l} \beta_i w_i
$$

Since the family (v_1, \ldots, v_{l+1}) is free, we must have that one of the β_i is non zero. So up to reordering, $\beta_{l+1} \neq 0$

$$
\implies w_{l+1} = \frac{1}{\beta_{l+1}} \left[v_{l+1} - \sum_{i \leq l} \alpha_i v_i - \sum_{i > l+1} \beta_i w_i \right]
$$

So

$$
w_{l+1} \in \langle v_1, \ldots, v_{l+1}, w_{l+2}, \ldots, w_n \rangle
$$

hence we have that

$$
V = \langle v_1, \dots, v_l, w_{l+1}, \dots, w_n \rangle
$$

= $\langle v_1, \dots, v_{l+1}, w_{l+2}, \dots, w_n \rangle$

so we can induct up on l. The base case $l = 0$ is trivial, so we deduce the last part of the lemma (which also trivially proves that $m \leq n$). \Box

1.3 Basis, dimension, direct sums

Corollary (of Steinitz). Let V be a finite dimensional vector space over F . Then any two basis of V have the same number of vectors called the *dimension* of V , denoted dim_F V ($\in \mathbb{N}$).

Proof. (v_1, \ldots, v_n) , (w_1, \ldots, w_m) basis of V over F. Then since $(v_i)_{1 \leq i \leq n}$ free, $(w_i)_{1 \leq i \leq m}$ generating, by Steinitz exchange lemma, $n \leq m$. Similarly $m \leq n$, so $n = m$. \Box

Corollary. Let V be a vector space over F with dimension $n \in \mathbb{N}$.

- (i) any set of independent vectors has at *most* n elements, with equality if and only if it is a basis
- (ii) any spanning (generating) set of vectors has at least n elements with equality if and only if it is a basis.

Proof. Exercise.

Proposition. Let U, W be subspaces of V . If U and W are finite dimensional, then so is $(U+W)$ and:

 $\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$

Proof. Pick (v_1, \ldots, v_n) basis of $U \cap W$. Extend to bases:

$$
\langle v_1, \dots, v_l, u_1, \dots, u_m \rangle = U
$$

$$
\langle v_1, \dots, v_l, w_1, \dots, w_n \rangle = W
$$

Claim. $(v_1, ..., v_l, u_1, ..., u_m, w_1, ..., w_n)$ is a basis of $U + W$.

 \Box

Proving it is a generating family is an exercise. Proving it is a free family:

$$
\sum_{i=1}^{l} \alpha_i v_i + \sum_{i=1}^{m} \beta_i u_i + \sum_{i=1}^{n} \gamma_i w_i = 0
$$
\n
$$
\implies \sum_{i=1}^{n} \gamma_i w_i \in U \cap W
$$
\n
$$
\implies \sum_{i=1}^{l} S_i v_i = \sum_{i=1}^{n} \gamma_i w_i
$$
\n
$$
\implies \sum_{i=1}^{l} (\alpha_i - S_i) v_i + \sum_{i=1}^{m} \beta_i u_i = 0
$$
\n
$$
\implies \sum_{i=1}^{l} (\alpha_i - S_i) v_i + \sum_{i=1}^{m} \beta_i u_i = 0
$$
\n
$$
\implies \sum_{i=1}^{l} \alpha_i v_i + \sum_{i=1}^{n} \gamma_i w_i = 0
$$
\n
$$
\implies \sum_{i=1}^{l} \alpha_i v_i = \gamma_i = 0
$$
\n
$$
(*)
$$

so the set is free, so it's a basis.

Proposition. Let V be a finite dimensional vector space over F. Let $U \leq V$. Then U and V/U are both finite dimensional and:

$$
\dim V = \dim U + \dim(V/U)
$$

Proof. Let (u_1, \ldots, u_l) be a basis of U. Complete it to a basis $(u_1, \ldots, u_l, w_{l+1}, \ldots, w_n)$ of V .

Claim. $(w_{l+1} + U, ..., w_n + U)$ is a basis of V/U .

Exercise.

Remark. V vector space over F with $U \leq V$. We say that U is proper if $U \neq V$. U proper implies $\dim U < \dim V$, since $V/U \neq \{\emptyset\}$.

 \Box

 \Box

Definition (Direct sum). Let V be a vector space, and $U, W \leq V$. We say

 $V = U \oplus W$

We say "V is the *direct* sum of U and W" if and only if any element $v \in V$ can be uniquely decomposed:

 $v = u + w$, $u \in U$, $w \in W$

Equivalently,

 $V = U \oplus W \iff \forall v \in V, \exists! (u, w) \in U \times W \quad v = u + w$

Warning 1. If $V = U \oplus W$, we say that W is a complement of U in V. There is no uniqueness of such a complement.

Example. $V = \mathbb{R}^2 = \langle (1,0) \rangle \oplus \langle (0,1) \rangle = \langle (1,0) \rangle \oplus \langle (1,1) \rangle$.

Notation. We will in the sequel systematically use the following notation. Let two collections of vectors:

$$
\mathcal{B}_1 = \{v_1, \dots, v_l\}
$$

$$
\mathcal{B}_2 = \{w_1, \dots, w_m\}
$$

then

$$
\mathcal{B}_1 \cup \mathcal{B}_2 = \{u_1, \ldots, u_l, w_l, \ldots, w_m\}
$$

not a set, because we care about the order. (it is more like a list) With this notation:

 ${u_1} \cup {u_1} = {u_1, u_1}$

so the collection $\{u_1\} \cup \{u_1\}$ is never a free family.

Lemma. $U, W \leq V$. Then the following are equivalent (TFAE):

- (i) $V = U \oplus W$
- (ii) $V = U + W$ and $U \cap W = \{0\}$
- (iii) For any basis \mathcal{B}_1 of U, \mathcal{B}_2 of W, the union $\mathcal{B} = \mathcal{B}_1 + \mathcal{B}_2$ is a basis of V.

(R) $\phi \to$ (i) $V = U + W$ implies that $\forall v \in V$, there exists $(u, w) \in U \times W$ such that

 $v = u + w$. So it is generating. To show it is free, let $u_1 + w_1 = u_2 + w_2 = v$. Then

$$
\underbrace{u_1 - u_2}_{\in U} = \underbrace{w_2 - w_1}_{\in W}
$$
\n
$$
\implies u_1 - u_2, w_1 - w_2 \in U \cap W = \{0\}
$$
\n
$$
\implies u_1 = u_2, w_1 = w_2
$$

(i) \implies (iii) \mathcal{B}_1 basis of U, \mathcal{B}_2 basis of W. Let $\mathcal{B} = \mathcal{B}_1 + \mathcal{B}_2$. It is clearly a generating family of $U + W = V$ It is a free family because

$$
\sum \lambda_i v_i = 0
$$

must be decomposed as $0_U + 0_W$ since $V = U \oplus W$. So

$$
\sum_{u_1 \in \mathcal{B}_1} \lambda_i u_i = 0
$$

$$
\sum_{w_1 \in \mathcal{B}_2} \lambda_i w_i = 0
$$

so $\lambda_i = 0$ for all *i*.

(iii) \implies (ii) We need to show

$$
V = U + W, \quad U \cap W = \{0\}
$$

This is obvious.

Start of

[lecture 4](https://notes.ggim.me/LA#lecturelink.4) Definition. Let V be a vector space over F. Let $V_1, \ldots, V_l \leq V$ (subspaces). (i) Notation: $\sum_{i=1}^{l} V_i = \{x_1 + \cdots + v_l, v_j \in V_j, 1 \le j \le l\}$

(ii) The sum is direct, denoted by:

$$
\sum_{i=1}^{l} V_i = \bigoplus_{i=1}^{l} V_i
$$

if and only if

$$
v_1 + \dots + v_l = v'_1 + \dots + v'_l \implies v_1 = v'_1, \dots, v_l = v'_l
$$

Equivalently:

$$
V = \bigoplus_{i=1}^{l} V_i \iff \forall v \in V \exists! v_i \ v = \sum_i v_i
$$

 \Box

Exercise: the following are equivalent:

- (i) $\sum_{i=1}^{l} = \bigoplus_{i=1}^{l} V_i$ (sum is direct)
- (ii) $\forall i, V_i \cap \left(\sum_{j \neq i} V_j \right) = \{0\}.$
- (iii) For *any* basis of V_i ,

$$
\mathcal{B} = \bigcup_{i=1}^l \mathcal{B}_i
$$

is a basis of $\sum_{i=1}^{l} V_i$.

1.4 Linear maps, isomorphism and the rank-nullity Theorem

Definition (Linear map). Let V, W be vector spaces of F. A map $\alpha: V \to W$ is linear if and only if:

$$
\forall (\lambda_1, \lambda_2) \in F^2, \forall (v_1, v_2) \in V \times V
$$

$$
\alpha(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2)
$$

Examples

- (i) Matrices are linear maps.
- (ii) α : $\mathcal{C}([0,1]) \to \mathcal{C}([0,1])$ defined by

$$
f \mapsto \alpha(f)(x) = \int_0^x f(t) \mathrm{d}t
$$

is a linear map

(iii) Fix $x \in [a, b]$. $\mathcal{C}([a, b]) \to \mathbb{R}$ defined by $f \mapsto f(\lambda)$ is a linear map.

Remark. Let U, V, W be F vector spaces.

- (i) $\mathrm{id}_V : V \to V$ defined by $x \mapsto x$ is a linear map.
- (ii) If $\beta: U \to V$ and $\alpha: V \to W$ are linear, then $\alpha \circ \beta: U \to W$ is linear. (linearity is stable by composition)

Lemma. Let V, W be F vector spaces, and B a basis of V. Let $\alpha_0 : \mathcal{B} \to W$ be any map, then there is a unique linear map $\alpha: V \to W$ extending α_0 (a map such that $\forall v \in \mathcal{B}, \, \alpha(v) = \alpha_0(v)$.

Proof. For all $v \in V$, $v = \sum_{i=1}^{n} \lambda_i v_i$. Denote $\mathcal{B} = (v_1, \dots, v_n)$. By linearity: $\alpha : V \to W$ linear, so

$$
\alpha(v) = \alpha \left(\sum_{i=1}^{n} \lambda_i v_i \right)
$$

$$
= \sum_{i=1}^{n} \lambda_i \alpha(v_i)
$$

$$
= \sum_{i=1}^{n} \lambda_i \alpha_0(v_i)
$$

 \Box

Remark. This is true in the infinite dimensional case as well (and the proof is the same).

- Often, to define a linear map, we define its value on a basis and "extend by linearity".
- If $\alpha_1, \alpha_2 : V \to W$ are linear and agree on a basis of V, they are equal.

Definition (Isomorphism). Let V, W be vector spaces over F . A map

 $\alpha: V \to W$

is called an isomorphism if and only if:

- (i) α is linear;
- (ii) and α is bijective.

If such an α exists, we write $V \simeq W$ (V isomorphic to W).

Remark. If $\alpha: V \to W$ is an isomorphism then $\alpha^{-1}: W \to V$ is linear. Take $w_1 = \alpha(v_1), w_2 = \alpha(v_2)$. Then

$$
\alpha^{-1}(w_1 + w_2) = \alpha^{-1}(\alpha(v_1) + \alpha(v_2))
$$

= $\alpha^{-1}(\alpha(v_1 + v_2))$
= $v_1 + v_2$
= $\alpha^{-1}(w_1) + \alpha^{-1}(w_2)$

 $\alpha^{-1}(\lambda V) = \lambda \alpha^{-1}(v)$

Similarly, $\forall \lambda \in F, \forall v \in V$,

Lemma. \simeq is an equivalence relation on the class of all vector spaces of F.

- (i) $\mathrm{id}_V : V \to V$ is an isomorphism.
- (ii) $\alpha: V \to W$ isomorphism then $\alpha^{-1}: W \to V$ is an isomorphism.
- (iii) Let $\beta: U \to V$ and $\alpha: V \to W$ be isomorphisms. Then $\alpha \circ \beta$ is an isomorphism.

Theorem. If V is a vector space over F of dimension n , then:

 $V \simeq F^n$

Proof. Let $\mathcal{B} = (v_1, \ldots, v_n)$ be a basis of V. Then $\alpha : V \to f^n$ defined by

$$
v = \sum_{i=1}^{n} \lambda_i v_i \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}
$$

is an isomorphism (exercise).

Remark. Choosing a basis of V is like choosing an isomorphism from V to $Fⁿ$.

Theorem. Let V, W be vector spaces over F with finite dimension. Then:

$$
V \simeq W \iff \dim_F V = \dim_F W
$$

Proof. $\Leftarrow \dim_F V = \dim_F W = n$ implies that $V \simeq F^n$, $W \simeq F^n$ so $V \simeq W$.

 \Box

- \Rightarrow Let $\alpha: V \to W$ be an isomorphism. Let B be a basis of V. Then we claim that $\alpha(\mathcal{B})$ is a basis of W:
	- $\alpha(\mathcal{B})$ spans V follows from surjectivity of α .
	- $\alpha(\mathcal{B})$ free family follows from the injectivity of α .

so V and W have the same size basis so $\dim_F V = \dim_F W$.

 \Box

Definition (Kernel and Image of a linear map). Let V, W be vector spaces over F . Let $\alpha: V \to W$ be a linear map. We define:

(i)
$$
N(\alpha) = \ker \alpha = \{v \in V : \alpha(v) = 0\}
$$

(ii) $\text{im}(\alpha) = \{w \in W : \exists v \in V, w = \alpha(v)\}.$

Lemma. ker α is a vector subspace of V, and im α is a vector subspace of W.

Proof. $\bullet \lambda_1, \lambda_2 \in F$, $v_1, v_2 \in \text{ker } \alpha$ implies

$$
\alpha(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2) = 0
$$

hence $\lambda_1v_1 + \lambda_2v_2 \in \ker \alpha$.

• $\lambda_1, \lambda_2 \in F$, $w_1, w_2 \in \text{im }\alpha$. Let $w_1 = \alpha(v_1)$, $w_2 = \alpha(v_2)$. Then

$$
\lambda_1 w_1 + \lambda_2 w_2 = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2) = \alpha(\lambda_1 v_1 + \lambda_2 v_2)
$$

hence $\lambda_1w_1 + \lambda_2w_2 \in \text{im } \alpha$

 \Box

Example. $\alpha : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$, $f \mapsto \alpha(f) = f'' - f$. Then

- \bullet α is linear
- ker $\alpha = \{f \in C^{\infty}(\mathbb{R}) : f'' f = 0\} = \text{span}_{\mathbb{R}} \langle e^t, e^{-t} \rangle$
- im α ? Exercise.

Remark. $\alpha: V \to W$ linear map. Then α injective is equivalent to ker $\alpha = \{0\}$. $\alpha(v_1) = \alpha(v_2) \iff \alpha(v_1 - v_2) = 0.$

Theorem. Let V, W be vector spaces over F. Let $\alpha : V \to W$ be a linear map. Then

 $\overline{\alpha}: V/\ker \alpha \to \operatorname{im} \alpha$

$$
v + \ker \alpha \mapsto \alpha(v)
$$

is an isomorphism.

Proof. This follows from linearity.

• $\overline{\alpha}$ is well defined:

$$
v + \ker \alpha = v' + \ker \alpha
$$

\n
$$
\implies v - v' \in \ker \alpha
$$

\n
$$
\implies \alpha(v - v') = 0
$$

\n
$$
\implies \alpha(v) = \alpha(v')
$$

so $\overline{\alpha}$ is well-defined.

- $\bar{\alpha}$ linear follows from the linearity of α .
- $\bullet \ \overline{\alpha}$ is a bijection:
	- injectivity $\overline{\alpha}(v + \ker \alpha) = 0$ implies that $\alpha(v) = 0$ hence $v \in \ker \alpha$. So $v + \ker \alpha = 0 + \ker \alpha$.
	- surjectivity: follows form the definition of the image: w ∈ im α, ∃v ∈ V such that $w = \alpha(v) = \overline{\alpha}(v)$.

 \Box

Start of

[lecture 5](https://notes.ggim.me/LA#lecturelink.5) **Definition** (Rank and nullity). $r(\alpha) = \dim \mathbf{m} \alpha$ (rank)

• $n(\alpha) = \dim \ker \alpha$ (nullity)

Theorem (Rank nullity theorem). \bullet Let U, V be vector spaces over F, dim_F U < $+\infty$.

• Let $\alpha: U \to V$ be a linea map, then

 $\dim U = r(\alpha) + n(\alpha)$

Proof. We have proved that $U/\ker \alpha \simeq \operatorname{im}\alpha$. So $\dim(U/\ker \alpha) = \dim \operatorname{im}\alpha$. But $\dim(U/\ker \alpha) = \dim U - \dim \ker \alpha$. So $\dim U = \dim \ker \alpha + \dim \mathrm{im} \alpha = r(\alpha) + n(\alpha)$. \Box **Lemma.** Let V, W be vector spaces over F of equal finite dimension. Let $\alpha: V \to$ W be a linear map. Then the following are equivalent:

- \bullet α is injective
- \bullet α is surjective
- α is an isomorphism

Proof. Follows immediately from the rank-nullity theorem. (Exercise)

 \Box

Example. Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. Then consider $\alpha : \mathbb{R}^3 \to \mathbb{R}$ defined by $(x, y, z) \mapsto x + y + z$. Then ker $\alpha = V$ and im $\alpha = \mathbb{R}$, hence by rank nullity $3 = n(\alpha) + 1$ hence dim $V = 2$.

1.5 Linear maps from V to W and matrices

The space of linear maps from V to W . Let V , W be vector spaces over F .

$$
L(V, W) = \{ \alpha : V \to W \text{ linear} \}
$$

Proposition. $L(V, W)$ is a vector space over F with:

 $(\alpha_1 + \alpha_2)(v) = \alpha_1(v) + \alpha_2(v)$

 $(\lambda \alpha)(v) = \lambda \alpha(v)$

Moreover if V and W are finite dimensional over F, then so is $L(V, W)$ and:

 $\dim_F L(V,W) = (\dim_F V)(\dim_F W)$

Proof. Proof that it is a vector space is an exercise. We will prove the statement about dimensions soon.

 \Box

Matrices and linear maps

Definition (Matrix). A $m \times n$ matrix over F is an array with m rows and n columns with entries in F .

Notation. $\mathcal{M}_{m,n}(F)$ is the set of $m \times n$ matrices over F.

Proposition. $\mathcal{M}_{m,n}(F)$ is an F vector space under operations:

$$
\bullet \ (a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})
$$

• $\lambda(a_{ij}) = (\lambda a_{ij})$

Proof. Exercise.

Proposition. dim_F $\mathcal{M}_{m,n}(F) = m \times n$.

Proof. We exhibit a basis using *elementary* matrices. Pick $1 \le i \le m$, $1 \le j \le n$. Then we define E_{ij} to be the matrix which is 0 everywhere, except it is 1 in the entry that is in the *i*-th row and *j*-th column. Then (E_{ij}) is a basis of $\mathcal{M}_{m,n}(F)$. Clearly spans $\mathcal{M}_{m,n}(F)$. Family is free is an exercise. \Box

Representation of linear maps

- V, W vector spaces over $F, \alpha : V \to W$ linear map.
- Basis $\mathcal{B}(v_1, \ldots, v_n)$ basis of $V, \mathcal{C} = (w_1, \ldots, w_m)$ basis of W .
- Let $v \in V$, then we can write

$$
v = \sum_{j=1}^{n} \lambda_j v_j
$$

so we can consider the coordinates of v in the basis $\mathcal{B}(\lambda_1,\ldots,\lambda_n\in F^n)$. We may write this as $[v]_B$.

• Similarly for $w \in W$, we note $[w]_C$ in a similar way.

Definition (Matrix of α in β , β basis).

 $[\alpha]_{\mathcal{B},\mathcal{C}} \equiv$ matrix of α with respect to \mathcal{B},\mathcal{C}

We define it as:

$$
[\alpha]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} \vdots & \vdots & \vdots \\ [\alpha(v_1)]_{\mathcal{C}} & [\alpha(v_2)]_{\mathcal{C}} & \cdots & [\alpha(v_n)]_{\mathcal{C}} \\ \vdots & \vdots & \vdots \end{pmatrix}
$$

Observation:

$$
\alpha(v_j) = \sum_{i=1}^m a_{ij} w_i
$$

 \Box

Lemma. For any $v \in V$,

 $[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}} \cdot [v]_{\mathcal{B}}$

where

$$
(Av)_i = \sum_{j=1}^n a_{ij} \lambda_j
$$

Proof. Let $v \in V$, with

$$
v = \sum_{j=1}^{n} \lambda_j v_j
$$

Then

$$
\alpha(v) = \alpha \left(\sum_{j=1}^{n} \lambda_j v_j \right)
$$

$$
= \sum_{j=1}^{n} \lambda_j \alpha(v_j)
$$

$$
= \sum_{j=1}^{n} \lambda_j \sum_{i=1}^{m} a_{ij} w_i
$$

$$
= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \lambda_j \right) w_i
$$

 \Box

Lemma. Let $\beta: U \to V$, $\alpha: V \to W$ linear, and hence $\alpha \circ \beta: U \to W$ linear. Let A be a basis of U, B be a basis of V , and C a basis of W . Then

$$
[\alpha \circ \beta]_{\mathcal{A},\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[\beta]_{\mathcal{A},\mathcal{B}}
$$

Proof. $A = [\alpha]_{\mathcal{B}, \mathcal{C}}, B = [\beta]_{\mathcal{A}, \mathcal{B}}$. Pick $u_l \in \mathcal{A}$. Then

$$
(\alpha \circ \beta)(u_l) = \alpha(\beta(u_l))
$$

= $\alpha \left(\sum_j b_{jl} v_j \right)$
= $\sum_j b_{jl} \alpha(v_j)$
= $\sum_j b_{jl} \sum_i a_{ij} w_i$
= $\sum_i \left(\sum_j a_{ij} b_{jl} \right) w_i$

Proposition. If V and Ware vector spaces over F and $\dim_F V = n$ and $\dim_F W =$ m. Then $L(V, W) \simeq \mathcal{M}_{m,n}(F)$, and in particular, dim $L(V, W) = m \times n$.

Proof. Fix \mathcal{B}, \mathcal{C} basis of V, W .

Claim. $\theta: L(V, W) \to \mathcal{M}_{m,n}(F)$ defined by $\alpha \mapsto [\alpha]_{\mathcal{B},\mathcal{C}}$ is an isomorphism.

 \bullet θ is linear:

$$
[\lambda_1 \alpha_1 + \lambda_2 \alpha_2]_{\mathcal{B},\mathcal{C}} = \lambda_1[\alpha_1]_{\mathcal{B},\mathcal{C}} + \lambda_2[\alpha_2]_{\mathcal{B},\mathcal{C}}
$$

 $A = (a_{ij})$

 \bullet θ is surjective: let

Consider the map:

$$
\alpha: v_j \mapsto \sum_{i=1}^m a_{ij}w_i
$$

and extend by linearity. Then $[\alpha]_{\mathcal{B},\mathcal{C}} = A$.

 \bullet θ is injective because

$$
[\alpha]_{\mathcal{B},\mathcal{C}}=0\implies \alpha\equiv 0
$$

Hence, using θ , $L(V, W) \simeq \mathcal{M}_{m,n}(F)$.

24

 $\hfill \square$

Remark. Let \mathcal{B}, \mathcal{C} be bases of V, W. Let $\varepsilon_{\mathcal{B}} : V \to F^n$ be defined such that $v \mapsto [\alpha]_{\mathcal{B}}$, and similarly define $\varepsilon_{\mathcal{C}} : W \to F^m$ such that $w \mapsto [w]_{\mathcal{C}}$. Then the following diagram commutes:

Start of

[lecture 6](https://notes.ggim.me/LA#lecturelink.6) 1.6 Change of basis and equivalent matrices

Let $\beta: U \to V$, $\alpha: V \to W$ and $\mathcal{A}, \mathcal{B}, \mathcal{C}$ bases of U, V, W .

 $\Rightarrow [\alpha \circ \beta]_{\mathcal{A},\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}} [\beta]_{\mathcal{A},\mathcal{B}}$

Change basis

Let $\alpha: V \to W$ and let $\mathcal{B}, \mathcal{B}'$ and $\mathcal{C}, \mathcal{C}'$ be bases for V and W.

Definition. The "change of basis matrix" from
$$
\mathcal{B}'
$$
 to \mathcal{B} is
$$
P = (p_{ij})
$$

given by

$$
P = ([v_1']_B \cdots [v_n']_B) = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}}
$$

Lemma. $[v]_{\mathcal{B}} = P[v]_{\mathcal{B}}$

Proof.
$$
\bullet \ [\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{B}}
$$

•
$$
P = [\text{id}]_{\mathcal{B}',\mathcal{B}}
$$

$$
\implies [\mathrm{id}(v)]_{\mathcal{B}} = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}}[v]_{\mathcal{B}'}
$$

$$
\implies [v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}
$$

 $\hfill \square$

Remark. P is a $n \times n$ invertible matrix, and P^{-1} is the change of basis matrix from $\mathcal B$ to $\mathcal B'.$

Indeed

$$
[\alpha \circ \beta]_{\mathcal{A},\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[\beta]_{\mathcal{A},\mathcal{B}}
$$

$$
\implies [\text{id}]_{\mathcal{B},\mathcal{B}'}[\text{id}]_{\mathcal{B},\mathcal{B}'} = [\text{id}]_{\mathcal{B}',\mathcal{B}'} \equiv I_n
$$

$$
\implies [\text{id}]_{\mathcal{B}',\mathcal{B}}[\text{id}]_{\mathcal{B},\mathcal{B}'} = [\text{id}]_{\mathcal{B},\mathcal{B}} \equiv I_n
$$

We changed $\mathcal B$ to $\mathcal B'$ in V. We can also change basis to $\mathcal C$ to $\mathcal C'$ in W.

Proposition.
$$
A = [\alpha]_{\mathcal{B},\mathcal{C}}, A' = [\alpha]_{\mathcal{B}',\mathcal{C}'}, P = [\text{id}]_{\mathcal{B}',\mathcal{B}}, Q = [\text{id}]_{\mathcal{C}',\mathcal{C}}.
$$
 Then

$$
A' = Q^{-1}AP
$$

Proof.

$$
[\alpha(v)]_C = [\alpha]_{\mathcal{B},C}[v]_{\mathcal{B}}
$$

$$
[\alpha \circ \beta]_{\mathcal{A},C} = [\alpha]_{\mathcal{B},C}[\beta]_{\mathcal{A},\mathcal{B}}
$$

$$
[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}
$$

 \bullet

$$
[\alpha(v)]_{\mathcal{C}} = Q[\alpha(v)]_{\mathcal{C}} = Q[\alpha]_{\mathcal{B}',\mathcal{C}'} = QA'[v]_{\mathcal{B}'}
$$

•
$$
[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{B}} = AP[v]_{\mathcal{B}}.
$$

So for all $v \in V$,

$$
QA'[v]_{\mathcal{B}'} = AP[v]_{\mathcal{B}'}
$$

hence

$$
QA' = AP \implies A' = Q^{-1}AP
$$

Definition (Equivalent matrices). Two matrices $A, A' \in \mathcal{M}_{m,n}(F)$ are equivalent if:

$$
A' = Q^{-1}AF
$$

with $Q \in \mathcal{M}_{m,m}, P \in \mathcal{M}_{n,n}$, with both invertible.

Remark. This defines an equivalence relation on $\mathcal{M}_{m,n}(F)$.

- $A = I_m^{-1} A I_n$
- $A' = Q^{-1}AP \implies A = (Q^{-1})^{-1}A'P^{-1}$
- $A' = Q^{-1}AP$, $A'' = (Q')^{-1}A'P'$. Then

$$
A'' = (QQ')^{-1}A(PP')
$$

Proposition. Let V, W be vector spaces over F, with $\dim_F V = n$, $\dim_F W = m$. Let $\alpha: V \to W$ be a linear map. Then there exists B basis of V and C basis of W such that

$$
[\alpha]_{\mathcal{B},\mathcal{C}} = \left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right)
$$

Proof. Choose β and β wisely.

- Fix $r \in \mathbb{N}$ such that dim ker $\alpha = n r$.
- $N(\alpha) = \ker(\alpha) = \{x \in V, \alpha(x) = 0\}$
- Fix a basis of $N(\alpha)$: v_{r+1}, \ldots, v_n . Extend it to a basis of V, so

$$
\mathcal{B} = (v_1, \dots, v_r, \underbrace{v_{r+1}, \dots, v_n}_{\text{ker }\alpha})
$$

• Claim: $(\alpha(v_1), \ldots, \alpha(v_r))$ is a basis of im α .

– Span:

$$
v = \sum_{i=1}^{n} \lambda_i v_i
$$

$$
\implies \alpha(v) = \sum_{i=1}^{n} \lambda_i \alpha(v_i) = \sum_{i=1}^{r} \lambda_i \alpha(v_i)
$$

Let $y \in \text{im }\alpha$ then exists $v \in V$ such that $y = \alpha(v)$ then

$$
y = \sum_{i=1}^{r} \lambda_i \alpha(v_i)
$$

\n
$$
\implies y \in \langle \alpha(v_1), \dots, \alpha(v_r) \rangle
$$

– Free:

$$
\sum_{i=1}^{r} \lambda_i \alpha(v_i) = 0
$$

\n
$$
\implies \alpha \left(\sum_{i=1}^{r} \lambda_i v_i \right) = 0
$$

\n
$$
\implies \sum_{i=1}^{r} \lambda_i v_i \in \ker \alpha
$$

\n
$$
\implies \sum_{i=1}^{r} \lambda_i v_i = \sum_{i=r+1}^{n} \mu_i v_i
$$

\n
$$
\implies \sum_{i=1}^{r} \lambda_i v_i - \sum_{i=r+1}^{n} \mu_i v_i = 0
$$

but since $\mathcal B$ is free, we must have $\lambda_i = 0, \mu_i = 0$ so it's free.

Conclusion: $(\alpha(v_1), \ldots, \alpha(v_r))$ basis of im α , (v_{r+1}, \ldots, v_n) basis of ker α . Let

$$
B = (v_1, \dots, v_r, v_{r+1}, \dots, v_n)
$$

$$
C = (\alpha(v_1, \dots, \alpha(v_r), w_{r+1}, \dots, w_m))
$$

Then

$$
[\alpha]_{\mathcal{B},\mathcal{C}}=(\alpha(v_1),\ldots,\alpha(v_r),\alpha(v_{r+1}),\ldots,\alpha(v_n))
$$

 \Box

Remark. This provides another proof of the rank nullity theorem:

 $r(\alpha) + N(\alpha) = n$

Corollary. Any $m \times n$ matrix is equivalent to:

$$
\left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right)
$$

where $r = r(\alpha)$.

Start of [lecture 7](https://notes.ggim.me/LA#lecturelink.7) Definition. $A \in \mathcal{M}_{m,n}(F)$

- The column rank of $A, r(A)$ is the dimension of the span of the column vectors of A in F^m , i.e. if $A = (c_1, ..., c_n)$ then $r(A) = \dim_F \text{span}\{c_1, ..., c_n\}$.
- Similarly, the row rank is the column rank of A^{\top} .

Remark. If α is a linear map represented by A with respect to some basis, then

 $r(A) = r(\alpha) = \dim \mathrm{im} \, \alpha$

Proposition. Two matrices are equivalent if and only if $r(A) = r(A')$.

Proof. \Rightarrow If A and A' are equivalent, then they correspond to the same linear map α written in two different bases

$$
r(A) = r(\alpha) = r(A')
$$

 \Leftarrow $r(A) = r(A') = r$, then both A and A' are equivalent to:

$$
\left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right)
$$

so A and A' are equivalent.

Theorem. $r(A) = r(A^{\top})$ (column rank is the same as row rank)

Proof. Exercise.

1.7 Elementary operations and elementary matrices

Special case of the change of basis formula. Let $\alpha: V \to W$ be a linear map, $(\mathcal{B}, \mathcal{B}')$ bases of V, $(\mathcal{C}, \mathcal{C}')$ bases of W.

$$
[\alpha]_{\mathcal{B},\mathcal{C}} \to [\alpha]_{\mathcal{B}',\mathcal{C}}
$$

′

If $V = W$, $\alpha : V \to V$ linear then we call it an endomorphism.

- $\mathcal{B} = \mathcal{C}, \mathcal{B}' = \mathcal{C}'$
- P is change of matrix from \mathcal{B}' to \mathcal{B} .

then

$$
[\alpha]_{\mathcal{B}',\mathcal{B}'} = P^{-1}[\alpha]_{\mathcal{B},\mathcal{B}}P
$$

 \Box

 \Box

Definition. A, A' are $n \times n$ (square) matrices, we say that A and A' are similar (or conjugate) if and only if:

- $A' = P^{-1}AF$
- *P* is $n \times n$ square invertible.

Central concept when we will study diagonalisation of matrices. (Spectral theory)

1.8 Elementary operations and elementary matrices

Definition. Elementary *column* operation on an $m \times n$ matrix A:

- (i) swap columns i and j $(i \neq j)$
- (ii) replace column i by λ times column i $(\lambda \neq 0, \lambda \in F)$
- (iii) add λ times column i to column j (with $i \neq j$)
- Elementary row operations: analogous way
- Elementary operations are invertible
- These operations can be realised through the action of *elementary matrices*. (i) $i, j, i \neq j$.

 (ii) *i*

(iii)
$$
i, j, \lambda, i \neq j
$$

$$
C_{i,j,\lambda} = \mathrm{id} + E_{i,j}
$$

Link between elementary operations / matrices:

an elementary column (row) operation can be performed by multiplying A by the corresponding elementary matrix from the right (left) \rightarrow Exercise.

Now a constructive proof that any $m \times n$ matrix is equivalent to

$$
\left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right)
$$

- Start with A. If all entries are zero, done.
- Pick $a_{ij} = \lambda \neq 0$. Swap rows i and 1 and swap columns j and 1. Then λ is in position (1, 1)
- Multiply column 1 by $\frac{1}{\lambda}$ to get 1 in position (1, 1).
- Now clean out row 1 and column 1 using elementary operations of type (iii).
- Iterate with \tilde{A} (the $(m-1) \times (n-1)$ sub matrix)
- Then at the end of the process we will have shown that

$$
\left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right) \equiv Q^{-1}AP = \underbrace{E'_p \cdots E'_1}_{\text{row operations}} A \underbrace{E_1 \cdots E_c}_{\text{column operations}}
$$

Variation

Gauss' pivot algorithm. If you use *only* row operations, we can reach the so called "row echelon form" of the matrix

- Assume that $a_{i1} \neq 0$ for some i
- Swap rows i and 1
- Divide first row by $\lambda = a_{i1}$, to get 1 in (1, 1)
- $\bullet\,$ Use 1 to clean the rest of the first column
- Move to second column
- Iterate.

This procedure is exactly what you do when solving a linear system of equations: Gauss' pivot algorithm

Representation of square invertible matrices

Lemma. If A is $n \times n$ square invertible matrix, then we can obtain I_n using row elementary operations only (or column operations only).

- Proof. We do the proof for column operations. We argue by induction on the number of rows
	- Suppose that we could reach a form where the upper left corner is I_k . We want to obtain the same structure with $k \to k + 1$.
	- Claim: there exists $j > k$ such that $\lambda = a_{k+1,j} \neq 0$. Otherwise the vector $\delta_{i(k+1)}$ is not in the span of the column vectors of A (exercise) which contradicts the assumption that A is invertible.
	- Swap column $k + 1$ and j
	- Divide column $k + 1$ by $\lambda = a_{k+1,j} \neq 0$
	- Use 1 to clear the rest of the $k + 1$ -th row using elementary operation of type (iii).
	- This completes the inductive step.
	- Continue until $k = n$.

Outcome:

$$
AE_1 \cdots E_c = I_n
$$

$$
\implies A^{-1} = E_1 \cdots E_c
$$

so this gives an algorithm for computing A^{-1} . (useful for solving $AX = F$, linear system of equations).

 \Box

Proposition. Any invertible square matrix is a product of elementary matrices.

Start of

[lecture 8](https://notes.ggim.me/LA#lecturelink.8) 1.9 Dual spaces and dual maps

Definition. Let V be a vector space. The we define

$$
V^* = \text{dual of } V
$$

= $L(V, F)$
= { $\alpha : V \rightarrow F$ linear}

Notation. $\alpha: V \to F$ linear. Then α is a linear form.

Examples

(i)

$$
\text{Tr}: \mathcal{M}_{n,n}(F) \to F
$$
\n
$$
A = (a_{ij}) \mapsto \sum_{i=1}^{n} a_{ii}
$$
\n
$$
\implies \text{Tr} \in \mathcal{M}_{n,n}^*(F)
$$
\n(ii) $f: [0,1] \to \mathbb{R}$ \n
$$
T_f: \mathcal{C}^{\infty}([0,1], \mathbb{R})
$$
\n
$$
\varphi \mapsto \int_0^1 f(x)\varphi(x)dx
$$
\nthen T_f is a linear form on $\mathcal{C}^{\infty}([0,1], \mathbb{R})$ (\mathbb{R} vector, so

then T_f is a linear form on $\mathcal{C}^{\infty}([0,1], \mathbb{R})$ ($\mathbb R$ vector space). Quantum mechanics. A function defines a linear form.

Lemma (Dual basis). Let V be a vector space over F with a finite basis

 $\mathcal{B} = \{e_1, \ldots, e_n\}$

Then there exists a basis for V^* given by

$$
\mathcal{B}^* = \{\varepsilon_1, \ldots, \varepsilon_n\}
$$

with

$$
\varepsilon_j \left(\sum_{i=1}^n a_i e_i \right) = a_j, \quad 1 \le j \le n
$$

We call \mathcal{B}^* the dual basis of \mathcal{B} .

Remark. Kronecker symbol

$$
\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}
$$

$$
\varepsilon_j \left(\sum_{i=1}^n a_i e_i \right) = a_j \iff \varepsilon_j(a_i) = \delta_{ij}
$$

Proof. Let $\{\varepsilon_1, \ldots, \varepsilon_n\}$ be defined as above.

- (1) Check that it is free: indeed, $\sum_{j=1}^{n} \lambda_j \varepsilon_j = 0$ \Rightarrow $\sum_{n=1}^{n}$ $j=1$ $\lambda_j \varepsilon_j(e_i) = 0$ \Rightarrow $\sum_{n=1}^{n}$ $j=1$ $\lambda_i = 0 \quad \forall 1 \leq i \leq n$ \implies family is free
- (2) Check that it is generating: Pick $\alpha \in V^*$, then $x \in V$:

$$
\alpha(x) = \alpha \left(\sum_{j=1}^{n} \lambda_j e_j\right) = \sum_{j=1}^{n} \lambda_j a(e_j)
$$

On the other hand, let the linear form:

$$
\sum_{j=1}^n \alpha(e_j)\varepsilon_j\in V^*
$$

Then:

$$
\sum_{j=1}^{n} \alpha(e_j) \varepsilon_j(x) = \sum_{j=1}^{n} \alpha(e_j) \varepsilon_j \left(\sum_{k=1}^{n} \lambda_k e_k\right)
$$

$$
= \sum_{j=1}^{n} \alpha(e_j) \sum_{k=1}^{n} \lambda_k \varepsilon_k(e_k)
$$

$$
= \sum_{j=1}^{n} \alpha(e_j) \lambda_j
$$

$$
= \alpha(x)
$$

$$
\implies \alpha = \sum_{j=1}^{n} \alpha(e_j) \varepsilon_j
$$

 $\hfill \square$

Corollary. V finite dimensional,

$$
\implies \dim V^* = \dim V
$$

Warning. These results about V^* are not relevant / very different when talking about infinite dimensional vector spaces instead.

Remark. It is sometimes convenient to think of V^* as the space of row vectors of length *n* over F, i.e. let (e_1, \ldots, e_n) be a basis of V, $x = \sum_{i=1}^n x_i e_i \in V$, and let $(\varepsilon_1,\ldots,\varepsilon_n)$ be a basis of V with $\alpha=\sum_{i=1}^n\alpha_i\varepsilon_i\in V^*$. Then

$$
\alpha(x) = \sum_{i=1}^{n} \alpha \varepsilon_i \left(\sum_{j=1}^{n} x_j e_j \right)
$$

$$
= \sum_{i=1}^{n} a_i \sum_{j=1}^{n} x_j \varepsilon_i(e_j)
$$

$$
= \sum_{i=1}^{n} a_i x_i
$$

$$
= (\alpha_1, \dots, \alpha_n)
$$

(scalar product structure)

Definition. If $U \leq V$ (vector subspace), we define the *annihilator* of U by: $U^0 = \{ \alpha \in V^* : \forall u \in U, \alpha(u) = 0 \}$

Lemma. $0 \leq V^*$ (vector subspace) (ii) If $U \leq V$ and dim $V < \infty$ then dim $V = \dim U + \dim U^0$.

Proof. (i) $0 \in U^0$. If $\alpha, \alpha' \in U^0$, then, for all $u \in U$,

$$
(\alpha + \alpha')(u) = \alpha(u) + \alpha'(u) = 0
$$

and for all $\lambda \in F$,

 $(\lambda \alpha)(u) = \lambda \alpha(u) = 0$

so $U^0 \leq V^*$.

(ii) Let $U \leq V$, dim $V = n$. Let (e_1, \ldots, e_k) be a basis of U, complete it to a basis

 $\mathcal{B} = (e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$

of V. Let $(\varepsilon_1,\ldots,\varepsilon_n)$ be the dual basis of B. We claim that $U^0 = \langle \varepsilon_{k+1},\ldots,\varepsilon_n \rangle$.

• Pick $i > k$, then:

$$
\varepsilon_i(e_k) = \delta_{ik} = 0
$$

so $\varepsilon_i \in U^0$, since $U = \langle e_1, \ldots, e_k \rangle$. So

$$
\langle \varepsilon_{k+1}, \dots, \varepsilon_n \rangle \leq U^0
$$

• Let $\alpha \in U^0$, then let $\alpha \in V^*$, with

$$
\alpha = \sum_{i=1}^{n} \alpha_i \varepsilon_i
$$

Now for $i \leq k$:

$$
\alpha \in U^0 \implies \alpha(e_i) = 0 \ \forall 1 \leq i \leq k
$$

$$
\implies \sum_{j=1}^n \alpha_j \varepsilon_j(e_i) = 0
$$

$$
\implies \alpha_i = 0 \quad \forall 1 \leq i \leq k
$$

$$
\implies \alpha = \sum_{i=1}^n \alpha_i \varepsilon_i = \sum_{i=k+1}^n \alpha_i \varepsilon_i
$$

$$
\implies \alpha \in \langle \varepsilon_{k+1}, \dots, \varepsilon_n \rangle
$$

$$
\implies U^0 \leq \langle \varepsilon_{k+1}, \dots, \varepsilon_n \rangle
$$

 $\hfill \square$

Lemma. Let V, W be vector spaces over F. Let $\alpha \in \mathcal{L}(V, W)$. Then the map: $\alpha^*:W^*\to V^*$

$$
\varepsilon\mapsto\varepsilon\circ\alpha
$$

is an element of $\mathcal{L}(W^*, V^*)$. It is called the *dual* map of α .

Proof. $\bullet \varepsilon \circ \alpha : V \to F$ linear follows by linearity of ε and α , so $\varepsilon \circ \alpha \in V^*$.
• α^* linear: let $\theta_1, \theta_2 \in W^*$, then

$$
\alpha^*(\theta_1 + \theta_2) = (\theta_1 + \theta_2)(\alpha)
$$

= $\theta_1 \circ \alpha + \theta_2 \circ \alpha$
= $\alpha^*(\theta_1) + \alpha^*(\theta_2)$

and similarly for all $\lambda \in F$,

$$
\alpha^*(\lambda \theta) = \lambda \alpha^*(\theta)
$$

so α^* is linear, i.e. $\alpha^* \in \mathcal{L}(V^*, W^*)$.

 \Box

Proposition (Dual map matrix). Let V, W be finite dimensional spaces over F with basis respectively $\mathcal B$ and $\mathcal C$. Let $\mathcal B^*,$ $\mathcal C^*$ be the dual basis of $\mathcal B$ and $\mathcal C$. Then:

$$
[\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*} = [\alpha]_{\mathcal{B},\mathcal{C}}^{\top}
$$

Proof. $\mathcal{B} = (b_1, ..., b_n), C = (c_1, ..., c_m), \mathcal{B}^* = (\beta_1, ..., \beta_n), C^* = (\gamma_1, ..., \gamma_m).$ Say $[\alpha]_{\mathcal{B},\mathcal{C}} = A = (a_{ij})_{1 \le i \le m, 1 \le j \le n}$

Recall: $\alpha^*: W^* \to V^*$. Let us compute:

$$
\alpha^*(\gamma_r)(b_s) = \gamma_r \circ \alpha(b_s)
$$

= $\gamma_r(\alpha(b_s))$
= $\gamma_r \left(\sum_t a_{ts} c_t\right)$
= $\sum_t a_{ts} \gamma_r(c_t)$
= a_{rs}

Say

$$
[\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*} = (\alpha^*(\gamma_1), \dots, \alpha^*(\gamma_m)) \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}
$$

$$
= (m_{ij})_{1 \le i \le n, 1 \le j \le m}
$$

$$
\implies \alpha^*(\gamma_r) = \sum_{i=1}^n m_{ir} \beta_i
$$

$$
\implies \alpha^*(\gamma_r)(b_s) = \sum_{i=1}^n m_{ir} \beta_i(b_s)
$$

$$
= m_{sr}
$$

Conclusion $\alpha^*(\gamma_r)(b_s) = a_{rs} = m_{sr}$ so $[\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*} = [\alpha]_{\mathcal{B},\mathcal{C}}^{\top}.$

 $\hfill \square$

Start of

[lecture 9](https://notes.ggim.me/LA#lecturelink.9) 1.10 Properties of the dual map, double dual

Let V, W be vector spaces over $F, \alpha \in L(V, W)$.

$$
\mathcal{E}=(e_1,\ldots,e_n)
$$

basis of V

$$
\mathcal{F}=(f_1,\ldots,f_n)
$$

another basis of V . Let

$$
P = [\mathrm{id}]_{\mathcal{F},\mathcal{E}}
$$

(change of basis matrix from $\mathcal F$ to $\mathcal E$)

$$
\mathcal{E}^* = (\varepsilon_1, \dots, \varepsilon_n)
$$

$$
\mathcal{F}^* = (\eta_1, \dots, \eta_n)
$$

Lemma. Let P be the change of basis matrix from $\mathcal F$ to $\mathcal E$. Then the change of basis matrix from \mathcal{F}^* to \mathcal{E}^* is:

 $(P^{-1})^{\top}$

Proof.

$$
[\mathrm{id}]_{\mathcal{F}^*,\mathcal{E}^*} = [\mathrm{id}]_{\mathcal{E},\mathcal{F}}^{\top} = ([\mathrm{id}]_{\mathcal{F},\mathcal{E}}^{-1})^{\top} = (P^{-1})^{\top}
$$

 \Box

Properties of the dual map

Lemma. Let V, W be vector spaces over F. Let $\alpha \in \mathcal{L}(V, W)$ and $\alpha^* \in \mathcal{L}(W^*, V^*)$ be the dual map. Then:

- (i) $N(\alpha^*) = (\text{im }\alpha)^0$ (so α^* injective $\iff \alpha$ surjective)
- (ii) im $\alpha^* \leq (N(\alpha))^0$ with *equality* if V, W are finite dimensional (hence in this case, α^* surjective $\iff \alpha$ injective).

Dual method: there are many problems (controllability) where the understanding of α^* is simpler than the understanding of α .

Proof. (i) Let $\varepsilon \in W^*$. Then:

$$
\varepsilon \in N(\alpha^*) \iff \alpha^*(\varepsilon) = 0
$$

$$
\iff \alpha^*(\varepsilon) = \varepsilon(\alpha) = 0
$$

$$
\iff \forall x \in V, \ \varepsilon(\alpha)(x) = \varepsilon(\alpha(x)) = 0
$$

$$
\iff \varepsilon \in (\text{im } \alpha)
$$

(ii) Let us first show that:

$$
\operatorname{im}(\alpha^*) \le (N(\alpha))^0
$$

Indeed, let $\varepsilon \in \text{im}(\alpha^*)$

$$
\implies \varepsilon = \alpha^*(\varphi), \ \varphi \in W^*
$$

$$
\implies \forall u \in N(\alpha) \mid \varepsilon(u) = \alpha^*(\varphi)(u) = \varphi \circ \alpha(u)\varphi(\alpha(u)) = 0
$$

$$
\implies \varepsilon \in (N(\alpha))^0
$$

In finite dimension, we can compute the dimensions of $\text{im}(\alpha^*)$ and $(N(\alpha))^0$.

$$
\dim(\text{im}(\alpha^*)) = r(\alpha^*)
$$

$$
r(\alpha^*) = r([\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*}) = r([\alpha]_{\mathcal{B},\mathcal{C}}^{\top}) = r([\alpha]_{\mathcal{B},\mathcal{C}}) = r(\alpha)
$$

$$
\implies r(\alpha) = r(\alpha^*)
$$

so

$$
\dim(\operatorname{im} \alpha^*) = r(\alpha^*)
$$

+ $r(\alpha)$
= $\dim V - \dim N(\alpha)$
= $\dim[(N(\alpha))^0]$

so $\text{im}(\alpha^*) \leq (N(\alpha))^0$ and $\text{dim}(\text{im}(\alpha^*)) = \text{dim}[(N(\alpha))^0]$ so $\text{im}(\alpha^*) = [N(\alpha)]^0$.

Double dual

- V vector space over F
- $V^* = \mathcal{L}(V, f)$ dual of V. We define the bidual:

 $V^{**} = (V^*)^* = \mathcal{L}(V^*, F)$

 \Box

Very important space in infinite dimension: in general, there is no obvious connection between V and V^* (unless Hilbertian structure). However, there is a large class of function spaces wuch that $V \simeq V^{**}$.

Example. $p > 2$,

$$
L^{p}(\mathbb{R}) = \left\{ f : \mathbb{R} \to \mathbb{R} \left| \int_{\mathbb{R}} |f(x)|^{p} dx < \infty \right. \right\}
$$

Is a reflexive space.

In general, there is a canonical embedding of V into V^{**} . Indeed, pick $v \in V$, we define:

 $\hat{v}: V^* \to F$ $\varepsilon \mapsto \varepsilon(v)$

linear:

- $\varepsilon \in V^*$ implies $\varepsilon(v) \in F$.
- linearity: $\lambda_1, \lambda_2 \in F, \varepsilon_1, \varepsilon_2 \in V^*$

$$
\hat{v} = (\lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2) = (\lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2)(v)
$$

$$
= \lambda_1 \varepsilon_1(v) + \lambda_2 \varepsilon_2(v)
$$

$$
= \lambda_1 \hat{v}(\varepsilon_1) + \lambda_2 \hat{v}(\varepsilon_2)
$$

so $\hat{v} \in \mathcal{L}(V^*, F)$.

Theorem. If V is a *finite dimensional* vector space over F , then:

ˆ: V → V ∗∗

 $v \mapsto \hat{v}$

is an isomorphism.

(in infinite dimension we can show under canonical assumptions (Banach space) that: ˆ is injective)

Proof. • *V* finite dimensional. Given $v \in V$, $\hat{v} \in V^{**} \in \mathcal{L}(V^*, F)$.

• $\hat{\ }$ linear: let $v_1, v_2 \in V, \, \lambda_1, \lambda_2 F, \, \varepsilon \in V^*$:

$$
(\widehat{\lambda_1 v_1 + \lambda_2 v_2})(\varepsilon) = \varepsilon (\lambda_1 v_1 + \lambda_2 v_2)
$$

= $\lambda_1 \varepsilon (v_1) + \lambda_2 \varepsilon (v_2)$
= $\lambda_1 \hat{v}_1(\varepsilon) + \lambda_2 \hat{v}_2(\varepsilon)$

$$
\implies (\widehat{\lambda_1 v_1 + \lambda_2 v_2}) = \lambda_1 \hat{v}_1 + \lambda_2 \hat{v}_2
$$

• injective: indeed, let $e \in V \setminus \{0\}$. I extend (e, e_2, \ldots, e_n) basis of V. Let $(\varepsilon, \varepsilon_2, \dots, \varepsilon_n)$ the dual basis of (of V^*), then

$$
\hat{e}(\varepsilon) = \varepsilon(e) = 1
$$

$$
\implies \hat{e} \neq \{0\}
$$

$$
\implies N() = \{0\}
$$

so îs injective.

• ^ isomorphism. We can compute dimensions:

 $\dim V = \dim V^* = \dim [(V^*)^*] = \dim (V^{**})$

As a conclusion: $\hat{C}: V \to V^{**}$ is injective, dim $V = \dim V^{**}$, so \hat{C} is surjective, so \hat{C} is an isomorphism.

Lemma. Let V be a finite dimensional vector space over F, let $U \leq V$. Then

 $\hat{U}=U^{00}$

so after identification of V and V^{**} , we have

 $U \simeq U^{00}$

Proof. Let us show that: $U \leq U^{00}$.

• Indeed, let $u \in U$:

$$
\forall \varepsilon \in U^0, \varepsilon(u) = 0
$$

$$
\implies \forall \varepsilon \in U^0, \varepsilon(u) = \hat{u}(\varepsilon) = 0
$$

$$
\implies \hat{u} \in U^{00}
$$

$$
\implies \hat{U} \subset U^{00}
$$

Commute dimensions

$$
\dim U^{00} = \dim V - \dim U^0 = \dim U
$$

 \Box

 \Box

Remark. $T \leq V^*$ $T^0 = \{ v \in V \mid \theta(v) = 0, \forall \theta \in T \}$

Start of

[lecture 10](https://notes.ggim.me/LA#lecturelink.10) **Remark.** $T \leq V^+$, we can define

$$
T^{0} = \{ v \in V \mid \theta(v) = 0, \theta \in T \}
$$

Lemma. Let V be a finite dimensional vector space over F. Let $U_1, U_2 \leq V$. Then

(i) $(U_1 + U_2)^0 = U_1^0 \cap U_2^0$ (ii) $(U_1 \cap U_2)^0 = U_1^0 + U_2^0$

Proof. (i) Exercise.

(ii) Take 0 of (i) and use $U^{00} = U$.

1.11 Bilinear Forms

 \implies Quadratic algebra.

Definition. U, V vector spaces over F . Then:

 $\varphi: U \times V \to F$

is a bilinear form if it "linear in both components":

- $\varphi(u, \bullet) : V \to F$ is linear for all $u \in U$ $(v \mapsto \varphi(u, v))$.
- $\varphi(\bullet, v) : U \to F$ is linear for all $v \in V$ $(u \mapsto \varphi(u, v))$

Examples

(i) $V \times V^* \to F$

$$
(v, \theta) \mapsto \theta(v)
$$

- (ii) Scalar product / dot product on $U = V = \mathbb{R}^n$
- (iii) $U = V = C([0, 1], \mathbb{R})$

$$
\varphi(f,g) = \int_0^1 f(t)g(t)dt
$$

("infinite dimensional scalar product)

Definition (matrix of a bilinear form in a basis). $\mathcal{B} = (e_1, \ldots, e_m)$ basis of U, $\mathcal{C} = (f_1, \ldots, f_n)$ basis of V. $\varphi : U \times V \to F$ bilinear form. The matrix of φ with respect to β and β is:

$$
[\varphi]_{\mathcal{B},\mathcal{C}} = (\underbrace{\varphi(e_i,f_j)}_{\in F})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}
$$

 $\hfill \square$

Lemma. $\varphi(u, v) = [u]_B^\top[\varphi]_{\mathcal{B}, \mathcal{C}}[v]_{\mathcal{C}}.$ (*)

Link between the bilinear form and its matrix in given basis.

Proof. $u = \sum_{i=1}^{m} \lambda_i e_i$, $v = \sum_{j=1}^{n} \mu_j f_j$. Then by linearity:

$$
\varphi(u, v) = \varphi\left(\sum_{i=1}^{m} \lambda_i e_i, \sum_{j=1}^{n} \mu_j e_j\right)
$$

$$
= \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_i \mu_j \varphi(e_i, e_j)
$$

$$
= [u]_B^\top[\varphi]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{C}}
$$

 \Box

Remark. $[\varphi]_{\mathcal{B},\mathcal{C}}$ is the only matrix such that $(*)$ holds.

Notation. $\varphi: U \times V \to F$ bilinear form, then it determines two linear maps: $\varphi_L: U \to V^*$ $\varphi_L(u): V \to F$ $v \mapsto \varphi(u, v)$ define φ_R similarly.

Lemma. $\mathcal{B} = (e_1, \ldots, e_m)$ basis of U, $B^* = (\varepsilon_1, \ldots, \varepsilon_m)$ dual basis of U^* . $C =$ (f_1, \ldots, f_n) basis of $V, C^* = (\eta_1, \ldots, \eta_n)$ dual basis of V^* . Let $A = [\varphi]_{\mathcal{B},\mathcal{C}}$ then:

> $[\varphi_R]_{\mathcal{C},\mathcal{B}^*} = A$ $[\varphi]_{\mathcal{B},\mathcal{C}^*} = A^\top$

Proof.

$$
\varphi_L(e_i)(f_j) = \varphi(e_i, f_j) = A_{ij}
$$

\n
$$
\implies \varphi_L(e_i) = \sum A_{ij} \eta_j
$$

similarly for φ_R .

Definition (Degenerate / non degenerate bilinear form). ker φ_L : "left kernel of φ ", ker φ_R : "right kernel of φ ". We say that φ is non-degenerate if

$$
\ker \varphi_L = \{0\} \quad \text{and} \quad \ker \varphi_R = \{0\}
$$

Otherwise, we say that φ is degenerate.

Lemma. U, V finite dimensional. B basis of U, C basis of V. $\varphi: U \times V \to F$ bilinear form, $A = [\varphi]_{\mathcal{B},\mathcal{C}}$. Then φ non degenerate $\iff A$ invertible.

Corollary. φ non degenerate

$$
\implies \dim U = \dim V
$$

Proof.

$$
\varphi
$$
 non degenerate \iff ker $\varphi_L = \{0\}$ and ker $\varphi_R = \{0\}$
 \iff $n(A^{\top}) = 0$ and $n(A) = 0$
 \iff $r(A^{\top}) = \dim U$ and $r(A) = \dim V$
 \iff A invertible and then: $\dim U = \dim V$

 \Box

Remark. $\varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ scalar product, then φ is non degenerate, and if we take the usual bases, then $[\varphi]_{\mathcal{B},\mathcal{B}} = I_n$.

Corollary. When U and V are finite dimensional, then choosing a non degenerate bilinear form $\varphi: U \to V \to F$ is equivalent to choosing an isomorphism $\varphi_L: U \to$ V^* .

Definition. $T \subset U$, we define:

$$
T^{\perp} = \{ v \in V \mid \varphi(t, v) = 0, \forall t \in T \}
$$

Similarly define for $S \subset V$

$$
{}^{\perp}S = \{ u \in U, \varphi(u, s) = 0, \forall s \in S \}
$$

Change basis for bilinear forms

Proposition. ' basis of $U, P = [\text{id}]_{\mathcal{B}',\mathcal{B}}$ • C, C' basis of V, $Q = [\text{id}]_{C',C}$. Let $\varphi: U \times V \to F$ bilinear form, then

$$
[\varphi]_{\mathcal{B}',\mathcal{C}'} = P^\top[\varphi]_{\mathcal{B},\mathcal{C}}Q
$$

change of basis formula for bilinear forms.

Proof.

$$
\varphi(u, v) = [u]_B^\top[\varphi]_{\mathcal{B}, \mathcal{C}}[v]_{\mathcal{C}}
$$

=
$$
(P[u]_{\mathcal{B}})^\top[\varphi]_{\mathcal{B}, \mathcal{C}}(Q[v]_{\mathcal{C}'})
$$

=
$$
[u]_{\mathcal{B}'}^\top (P^\top[\varphi]_{\mathcal{B}, \mathcal{C}}Q)[v]_{\mathcal{C}'}
$$

 \Box

Definition. The rank of φ ($r(\varphi)$) is the rank of any matrix representing φ .

Indeed, $r(P^{\top}AQ) = r(A)$ for any invertible P, Q.

Remark. $r(\varphi) = r(\varphi_R) = r(\varphi_L)$. (we computed matrices in a basis and $r(A) =$ $r(A^{\top})$

More applications later: scalar product.

1.12 Determinant and Traces

Definition. $A \in \mathcal{M}_n(F) = \mathcal{M}_{n \times n}(F)$ We define the trace of A

$$
\operatorname{Tr} A = \sum_{i=1}^{n} A_{ii}
$$

 $A = (A_{ij})_{1 \le i,j \le n}$

Remark. $\mathcal{M}_n(F) \to F$ linear form $(A \mapsto \text{Tr } A)$.

Lemma. Tr(AB) = Tr(BA).

Proof.

$$
\operatorname{Tr}(AB) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} b_{ji} \right) = \dots
$$

$$
= \operatorname{Tr}(BA)
$$

 \Box

Start of

[lecture 11](https://notes.ggim.me/LA#lecturelink.11) Corollary. Similar matrices have the same trace

Proof.

$$
\operatorname{Tr}(P^{-1}AP) = \operatorname{Tr}(APP^{-1})
$$

$$
= \operatorname{Tr}(A)
$$

 \Box

Definition. If $\alpha: V \to V$ linear (endomorphism) we can define:

 $\text{Tr }\alpha = \text{Tr}([\alpha]_{\mathcal{B}})$

in any basis $\mathcal B$ (does not depend on the choice $\mathcal B$).

Lemma. $\alpha: V \to V$, $\alpha^*: V^* \to V^*$ dual map, then

Tr $\alpha = \text{Tr} \, \alpha^*$

Proof.

$$
\begin{aligned}\n\operatorname{Tr} \alpha &= \operatorname{Tr}([\alpha]_{\mathcal{B}}) \\
&= \operatorname{Tr}([\alpha]_{\mathcal{B}}^{\top}) \\
&= \operatorname{Tr}([\alpha^*]_{\mathcal{B}^*}) \qquad \text{(because } [\alpha]_{\mathcal{B}}^{\top} = [\alpha^*]_{\mathcal{B}^*}) \qquad \Box\n\end{aligned}
$$

1.13 Determinants

Permutations and transpositions

• permutation: $S_n = \text{group of permutations of } \{1, \ldots, n\}$

$$
\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}
$$

is a bijection. Then σ is a permutation.

- Transposition $k \neq l$, $\tau_{kl} \in S_n$ just swaps k and l.
- Decomposition: any permutation of σ can be decomposed as a product of transpositions

$$
\sigma = \prod_{i=1}^{n\sigma} \tau_i
$$

 τ_i transposition.

• Signature: ε : $S_n \to \{-1, 1\}$,

$$
\sigma \mapsto \begin{cases} 1 & \text{if } n_{\sigma} \text{ even} \\ -1 & \text{if } n_{\sigma} \text{ odd} \end{cases}
$$

 $\varepsilon(\sigma)$ = signature of σ . and ε is a group homomorphism.

Definition (Determinant). $A \in \mathcal{M}_n(F)$ (square matrix),

$$
A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}}
$$

We define the determinant of A as:

$$
\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n}
$$

Example.

$$
\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} a_{11}a_{22} - a_{12}a_{21}
$$

Lemma. If $A = (a_{ij})$ is an upper (lower) triangular matrix with 0 on the diagonal: $a_{ij} = 0$ for $i \geq j$ (resp $i \leq j$)

then det $A = 0$.

Proof. For $a_{\sigma(1)1} \cdots a_{\sigma(n)n}$ not to be zero, I need $\sigma(j) < j$ for all $j \in \{1, \ldots, n\}$ which is *impossible* for $\sigma \in S_n$. So all the terms are 0, so det $A = 0$.

Exercise: Show similarly that if instead we allow the diagonal elements to be nonzero, then the determinant is the product of the diagonal elements.

Lemma. det $A = det(A^{\top})$

Proof.

$$
\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n}
$$

$$
= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i)i}
$$

$$
= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n a_{j\sigma^{-1}(j)}
$$

Now remember $\varepsilon(\sigma\sigma^{-1}) = \varepsilon(\sigma)\varepsilon(\sigma^{-1})$ so since $\varepsilon(\sigma) \in \{-1, 1\},$

$$
\implies \varepsilon(\sigma^{-1}) = \varepsilon(\sigma)
$$

$$
\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\sigma^{-1}(i)}
$$

$$
= \sum_{\sigma \in S_n} \varepsilon(\sigma^{-1}) \prod_{i=1}^n a_{i\sigma^{-1}}(i)
$$

$$
= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\sigma(i)}
$$

$$
= \det(A^{\top})
$$

 \Box

Why this formula for det A?

Definition. A *volume form d* on F^n is a function

$$
\underbrace{F^n \times \cdots \times F^n}_{n \text{ times}} \to F
$$

such that

(i) d is multilinear: for any $1 \leq i \leq n$, for all $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \in F^n$,

 $v \mapsto d(v_1, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_n)$

is linear (i.e. an element of $(Fⁿ)[*]$) (linear with respect to all coordinate)

(ii) d alternate: if $v_i = v_j$ for some $i \neq j$, then

 $d(v_1, \ldots, v_n) = 0$

We want to show that there is in fact only *one* (up to a multiplicative constant) volume form on $F^n \times \cdots \times F^n$ which is given by the determinant:

$$
A = (a_{ij}) = (A^{(1)} | \cdots | A^{(n)})
$$

(column vectors)

$$
\det A = \det(A^{(1)}, \dots, A^{(n)})
$$

Lemma. $F^n \times \cdots \times F^n \to F$

$$
(A^{(1)}, \dots, A^{(n)}) \mapsto \det A
$$

is a volume form.

- *Proof.* (i) multilinear $\sigma \in S_n$, then $\prod_{i=1}^n a_{\sigma(i)i}$ is multilinear: there is only one term from each column appearing in the expression. The sum of multilinear maps is multilinear, so det is multilinear.
- (ii) Alternate: Assume $k \neq l$, $A^{(k)} = A^{(l)}$. I want to show det $A = 0$. Indeed: let τ be the transposition which swaps k and l. Then since $A^{(k)} = A^{(l)}$ then $a_{ij} = a_{i \tau j}$ for all i, j . We can decompose:

$$
S_n = A_n \sqcup \tau A_n
$$

then

$$
\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\sigma(i)}
$$

=
$$
\sum_{\sigma \in A_n} \prod_{i=1}^n a_{i\sigma(i)} + \sum_{\sigma \in \tau A_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\tau\sigma(i)}
$$

=
$$
\sum_{\sigma \in A_n} \prod_{i=1}^n a_{i\sigma(i)} - \sum_{\sigma \in A_n} a_{i\tau\sigma(i)}
$$

=
$$
\sum_{\sigma \in A_n} \prod_{i=1}^n a_{i\sigma(i)} - \sum_{\sigma \in A_n} \prod_{i=1}^n a_{i\sigma(i)}
$$

= 0

 \Box

Lemma. Let d be a volume form. Then swapping two entries changes the sign.

Proof. Equivalent definition of "alternate".

$$
0 = d(v_1, ..., v_i + v_j, ..., v_i + v_j, ..., v_n)
$$

= $d(v_1, ..., v_i, ..., v_i, ..., v_n) + d(v_1, ..., v_i, ..., v_j, ..., v_n)$
+ $d(v_1, ..., v_j, ..., v_i, ..., v_n) + d(v_1, ..., v_j, ..., v_j, ..., v_n)$
= $0 + d(v_1, ..., v_i, ..., v_j, ..., v_n) + d(v_1, ..., v_j, ..., v_i, ..., v_n)$

 $\hfill \square$

Start of

[lecture 12](https://notes.ggim.me/LA#lecturelink.12) **Corollary.** $\sigma \in S_n$, d volume form, then:

$$
d(v_{\sigma(1)},\ldots,v_{\sigma(n)})=\varepsilon(\sigma)d(v_1,\ldots,v_n)
$$

Proof. $\sigma = \prod_{i=1}^{n\sigma} \tau_i$.

Theorem. Let d be a volume form on F^n . Let $A = (A^{(1)} | \cdots | A^{(n)})$. Then $d(A^{(1)}|\cdots |A^{(n)})d(e_1,\ldots,e_n)\det A$

Up to a constant, det is the *only* volume form on F^n .

 \Box

Proof.

$$
d(A^{(1)},...,A^{(n)}) = d\left(\sum_{i=1}^{n} a_{i1}e_i,...,A^{(n)}\right)
$$

=
$$
\sum_{i=1}^{n} a_{i1}d(e_i, A^{(2)},...,A^{(n)})
$$

=
$$
\sum_{i=1}^{n} a_{i1}d\left(e_i, \sum_{j=1}^{n} a_{j2}e_j,...,A^{(n)}\right)
$$

=
$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i1}a_{j2}d(e_i, e_j,...,A^{(n)})
$$

=
$$
\sum_{\substack{1 \leq i_1 \leq n \\ 1 \leq i_2 \leq n}} \left(\prod_{k=1}^{n} a_{i_k}d(e_{i_1}, e_{i_2},...,e_{i_n})\right)
$$

=
$$
\sum_{\substack{1 \leq i_1 \leq n \\ i \leq i_n \leq n}} \left(\prod_{k=1}^{n} a_{i_k}d(e_{i_1}, e_{i_2},...,e_{i_n})\right)
$$

The last d term is nonzero only if all the i_k are different, so we can write the i_k as a permutation. This means we can continue and get

$$
d(A^{(1)}, \dots, A^{(n)}) = \sum_{\sigma \in S_n} \prod_{k=1}^n a_{\sigma(k)k} d(e_{\sigma(1)}, \dots, e_{\sigma(n)})
$$

=
$$
\sum_{\sigma \in S_n} \left[\prod_{k=1}^n a_{\sigma(k)k} \right] \varepsilon(\sigma) d(e_1, \dots, e_n)
$$

=
$$
d(e_1, \dots, e_n) \left[\sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{k=1}^n a_{\sigma(k)k} \right]
$$

=
$$
d(e_1, \dots, e_n) \det A
$$

Corollary. det is the only volume form such that

$$
d(e_1,\ldots,e_n)=1
$$

1.14 Some properties of determinants

Lemma. $A, B \in \mathcal{M}_n(F)$, then: $\det(AB) = (\det A)(\det B)$ Proof. Indeed, pick A. Consider the map:

$$
d_A: \underbrace{F^n \times \cdots \times F^n}_{n} \to F
$$

defined by

$$
(v_1, \ldots, v_n) \mapsto \det(Av_1, \ldots, Av_n)
$$

Then:

- d_A is multilinear: $v_i \mapsto Av_i$ is linear.
- d_A is alternate: if $v_i = v_j$ then $Av_i = Av_j$.

so d_A is a volume form. In particular,

$$
d_A(v_1,\ldots,v_n)=C\det(v_1,\ldots,v_n)
$$

Now we compute C. $Ae_i = (A)$ so

$$
d_A(e_1,\ldots,e_n)=\det(Ae_1,\ldots,Ae_n)=\det(a_1,\ldots,A_n)=\det A
$$

So

$$
C = \det A
$$

We have proved:

$$
d_A(v_1, \dots, v_n) = d(Av_1, \dots, Av_n)
$$

= (det A) det(v_1, \dots, v_n)

Now observe:

$$
AB = ((AB)_1, \dots, (AB)_n)
$$

$$
(AB)_i = AB_i
$$

so

$$
det(AB) = det(AB_1, ..., AB_n)
$$

= det(A) det(B₁, ..., B_n)
= det(A) det(B)

 \Box

Definition. $A \in \mathcal{M}_n(F)$, we say that:

(i) A is *singular* if $\det A = 0$

(ii) A is non singular if det $A \neq 0$.

Lemma. A is invertible implies A is non singular.

Proof. A is invertible.

$$
\implies \exists A^{-1}, AA^{-1} = A^{-1}A = I_n
$$

$$
\implies \det(AA^{-1}) = \det(A^{-1}A) = \det I_n = 1
$$

$$
\implies (\det A)(\det A^{-1}) = 1
$$

$$
\implies \det A \neq 0
$$

 \Box

Remark. We have proved that

$$
\det(A^{-1}) = \frac{1}{\det A}
$$

Theorem. Let $A \in \mathcal{M}_n(F)$. Then the following are equivalent:

- (i) A is invertible
- (ii) A is non singular
- (iii) $r(A) = n$

Proof. (i) \iff (iii) done (rank nullity Theorem). (i) \implies (iii) is lemma above. We need to show (ii) \implies (iii). Indeed, assume $r(A) < n$. Then

$$
\iff \dim \operatorname{span}\{c_1, \dots, c_n\} < n
$$
\n
$$
\implies \exists (\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)
$$
\n
$$
\sum_{i=1}^n \lambda_i c_i = 0
$$

I pick j such that $\lambda_j \neq 0$

$$
\implies c_j = -\frac{1}{\lambda_j} \sum_{i \neq j} \lambda_i c_i
$$

$$
\implies \det A = \det(c_1, \dots, c_j, \dots, c_n)
$$

$$
= \det \left(c_1, \dots, -\frac{1}{\lambda_j} \sum_{i \neq j} \lambda_i c_i, \dots, c_n \right)
$$

$$
= \sum_{i \neq j} -\frac{1}{\lambda_j} \det(c_1, \dots, c_i, \dots, c_n)
$$

$$
= 0
$$

Remark. This gives us the sharp criterion for invertibility of a linear system of n equations with n unknowns:

$$
Y \in F^n
$$

$$
A \in \mathcal{M}_n(F)
$$

$$
AX = Y, X \in F^n
$$

exists a unique solution if and only if A is invertible, which happens if and only if $\det A \neq 0.$

Determinant of linear maps

Lemma. Conjugate matrices have the same determinant.

Proof.

$$
\det(P^{-1}AP) = \det(P^{-1}) \det A \det P
$$

$$
= \frac{1}{\det P} \det A \det P
$$

$$
= \det A
$$

(*P* invertible implies det $P \neq 0$).

Definition. $\alpha: V \to V$ linear (endomorphism). We define

$$
\det \alpha = \det([\alpha]_{\mathcal{B}})
$$

 β is any basis of V. This number does not depend on the choice of the basis!

Theorem. det : $L(V, V) \rightarrow F$ satisfies:

- (i) det id $= 1$
- (ii) det($\alpha \circ \beta$) = det(α) det(β)
- (iii) det(α) \neq 0 if and only if α is invertible and then

$$
\det(\alpha^{-1}) = (\det \alpha)^{-1}
$$

Proof. Pick a basis and express in terms of $\alpha|_{\mathcal{B}}$ and $\beta|_{\mathcal{B}}$.

 \Box

 \Box

Determinant of block matrices

Lemma.
$$
A \in \mathcal{M}_k(F)
$$
, $B \in \mathcal{M}_l(F)$ and $C \in \mathcal{M}_{k,l}(F)$. Let
\n
$$
M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in \mathcal{M}_n(F)
$$
\n $(n = k + l)$ then

$$
\det M = (\det A)(\det B)
$$

Proof.

$$
\det M = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n m_{\sigma(i)i} \tag{*}
$$

Observation:

$$
m_{\sigma(i)i} = 0
$$

if $i \leq k$, $\sigma(i) > k$. So In (*), we need only sum over $\sigma \in S_n$ such that:

- (i) $\forall j \in [1, k], \sigma(j) \in [1, k]$
- (ii) and hence $\forall j \in [k+1, n], \sigma(j) \in [k+1, n].$

In other words, we restrict to σ of the form:

$$
\sigma_1: \{1, ..., k\} \to \{1, ..., k\}
$$

$$
\sigma_2: \{k+1, ..., n\} \to \{k+1, ..., n\}
$$

(i) $m_{\sigma(j)j}$ with $1 \leq j \leq k$, then $\sigma(j) \in \{1, ..., k\}$, can be rewritten as

$$
m_{\sigma(j)j} = a_{\sigma(j)j} = a_{\sigma_1(j)j}
$$

(ii) Similarly, for $k + 1 \leq j \leq n$, $k + 1 \leq \sigma(j) \leq n$,

$$
m_{\sigma(j)j} = b_{\sigma(j)j} = b_{\sigma_1(j)j}
$$

Note that

$$
\varepsilon(\sigma)=\varepsilon(\sigma_1)\varepsilon(\sigma_2)
$$

so then

$$
\det M = \sum_{\sigma S_n} \varepsilon(\sigma) \prod_{i=1}^n m_{\sigma(i)i}
$$

\n
$$
= \sum_{\substack{\sigma_1 \in S_k \\ \sigma_2 \in S_l}} \varepsilon(\sigma_1 \circ \sigma_2) \prod_{i=1}^k a_{\sigma_1(i)i} \prod_{j=k+1}^n b_{\sigma_2(j)j}
$$

\n
$$
= \sum_{\substack{\sigma_1 \in S_k \\ \sigma_2 \in S_l}} \varepsilon(\sigma_1) \varepsilon(\sigma_2) \prod_{i=1}^k a_{\sigma_1(i)i} \prod_{j=k+1}^n b_{\sigma_2(j)j}
$$

\n
$$
= \left(\sum_{\sigma_1 \in S_k} \varepsilon(\sigma_1) \prod_{i=1}^k a_{\sigma_1(i)i}\right) \left(\sum_{\sigma_2 \in S_l} \varepsilon(\sigma_2) \prod_{j=k+1}^n a_{\sigma_2(j)j}\right)
$$

\n
$$
= (\det A)(\det B) \qquad \qquad \Box
$$

Start of

[lecture 13](https://notes.ggim.me/LA#lecturelink.13) Corollary. A_1, \ldots, A_k are square matrices, then

$$
\det \begin{pmatrix} A_1 & * & * & \cdots & * \\ 0 & A_2 & * & \cdots & * \\ 0 & 0 & A_3 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_k \end{pmatrix} = (\det A_1) \cdots (\det A_k)
$$

Proof. By induction on k .

In particular, if A is filled with zeros below the diagonal, then det A is the product of the entries on the diagonal. (But this is also quite easy to show directly from the definition of det A).

Warning. In general:

 $\det \begin{pmatrix} A & B \ C & D \end{pmatrix} \neq \det A \det D - \det B \det C$

Remark. In \mathbb{R}^3 , we have that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is a volume form (and represents the volume of a parallelepiped), and in fact, $det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$.

 \Box

1.15 Adjugate matrix

Observation: We know that swapping two column vectors flips the sign of the determinant, and we also know that det $A = \det A^{\top}$. So we find that swapping two rows changes the determinant by a factor of -1.

Remark. We could prove properties of determinant using the decomposition of A into elementary matrices.

Column (line) expansion and adjugate matrix

Column expansion is to reduce the computation of $n \times n$ determinants to $(n-1) \times (n-1)$ determinants. Very useful to compute determinants.

Definition. $A \in \mathcal{M}_n(F)$. Pick $i, j \leq n$. We define:

 $A_{\hat{i}\hat{j}} \in \mathcal{M}_{n-1}(F)$

obtained by removing the *i*-th row and the *j*-th column from A .

Example.

$$
A = \begin{pmatrix} 1 & 2 & -7 \\ 2 & 1 & 0 \\ -3 & 6 & 1 \end{pmatrix}
$$

$$
A_{32} = \begin{pmatrix} 1 & -7 \\ 2 & 0 \end{pmatrix}
$$

Lemma (Expansion of the determinant). Let $A \in \mathcal{M}_n(F)$.

(i) Expansion with respect to the j-th column: pick $1 \leq j \leq n$, then:

$$
\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{\hat{ij}} \tag{*}
$$

(ii) Expansion with respect to the *i*-th row: pick $1 \leq i \leq n$, then

$$
\det A = \sum_{j=1}^{n} (-1)^{i+j} \det A_{\hat{ij}}
$$

Powerful tool to compute determinants.

Example.

$$
A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 & 1 \\ 4 & 2 & -7 \end{pmatrix}
$$

det $A = -(2) \begin{vmatrix} 3 & 1 \\ 4 & -7 \end{vmatrix} + (-1) \begin{vmatrix} 1 & -1 \\ 4 & -7 \end{vmatrix} - 2 \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix}$

Proof. Expansion with respect to the j -th column (row expansion formula follows by taking transpose). Pick $1 \leq j \leq n$.

•
$$
A = (A^{(1)} | A^{(2)} | \cdots | A^{(j)} | \cdots | A^{(n)})
$$

$$
A^{(j)} = \sum_{i=1}^{n} a_{ij} e_i, \quad A = (a_{ij})_{1 \le i, j \le n}
$$

$$
\det A = \det \left(A^{(1)}, \dots, \sum_{i=1}^{n} a_{ij} e_i, \dots, A^{(n)} \right)
$$

=
$$
\sum_{i=1}^{n} a_{ij} \det(A^{(1)}, \dots, e_i, \dots, A^{(n)})
$$

$$
\det(A^{(1)} | \dots | e_i | \dots | A^{(n)}) = (-1)^{j-1} \det(e_i | A^{(1)} | A^{(j-1)} | A^{(j+1)} | \dots | A^{(n)})
$$

=
$$
(-1)^{i-1} (-1)^{j-1} \det(A_{\hat{i}\hat{j}})
$$

=
$$
(-1)^{i+j} \det(A_{\hat{i}\hat{j}})
$$

so

$$
\det A = \sum_{i=1}^{n} a_{ij} \det(A^{(1)}, \dots, a^{(j-1)}, e_i, \dots, A^{(n)})
$$

=
$$
\sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det A_{ij}
$$

Definition (Adjugate matrix). Let $A \in \mathcal{M}_n(F)$. The adjugate matrix adj(A) is the $n\times n$ matrix with (i,j) entry given by

$$
(-1)^{i+j} \det(A_{\hat{j}i})
$$

Theorem. Let $A \in \mathcal{M}_n(F)$, then

$$
adj(A)A = (det A)I_n
$$

In particular, when A is invertible,

$$
A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)
$$

Proof. We just proved: (∗)

 \bullet

$$
\det A = \sum_{i=1}^{n} (-1)^{i+j} (\det A_{ij}) a_{ij}
$$

$$
= \sum_{i=1}^{n} (\mathrm{adj}(A))_{ji} a_{ij}
$$

$$
= (\mathrm{adj}(A)A)_{jj}
$$

• For $j \neq k$ we have

$$
0 = \det(A^{(1)}, \dots, A^{(k)}, \dots, A^{(k)}, \dots, A^{(n)})
$$

=
$$
\det \left(a^{(1)}, \dots, \sum_{i=1}^{n} a_{ik} e_i, \dots, A^{(k)}, \dots, A^{(n)} \right)
$$

=
$$
\sum_{i=1}^{n} a_{ik} \det(A^{(1)}, \dots, e_i, \dots, A^{(n)})
$$

=
$$
\sum_{i=1}^{n} (\text{adj}(A))_{ji} a_{ik}
$$

=
$$
(\text{adj}(A)A)_{jk}
$$

= 0

for $j \neq k$.

So done.

Cramer rule

Proposition. Let $A \in \mathcal{M}_n(F)$ be invertible. Let $b \in F^n$. Then the unique solution to $Ax = b$ is given by:

$$
x_o = \frac{1}{\det A} \det(A_i b)
$$

 $1 \leq i \leq n$ where $A_{\hat{i}}b$ is obtained by replacing the *i*-th column of A by *b*.

 \Box

Algorithmically, this avoids computing A^{-1} . TODO: CHECK WHETHER NEEDS EDITING.

Start of

[lecture 14](https://notes.ggim.me/LA#lecturelink.14) 1.16 Eigenvectors, eigenvalues and trigonal matrices

First step towards the diagonalisation of endomorphisms.

• V vector space over F, $\dim_F V = n < \infty$. $\alpha : V \to V$ linear (endomorphism of V). General problem: Can we find a basis $\mathcal B$ of V such that in this basis,

$$
[\alpha]_{\mathcal{B}} = [\alpha]_{\mathcal{B},\mathcal{B}}
$$

has a "nice" form.

Reminder: \mathcal{B}' another basis of $V, P =$ change of basis matrix,

$$
[\alpha]_{\mathcal{B}'} = P^{-1}[\alpha]_{\mathcal{B}} P
$$

Equivalently: given a matrix $A \in \mathcal{M}_n(F)$, is it conjugated to a matrix with a "simple" form?

Definition. (i) $\alpha \in \mathcal{L}(V)$ ($\alpha : V \to V$ linear) is *diagonalisable* if there exists a basis $\mathcal B$ of V such that $[\alpha]_{\mathcal B}$ in $\mathcal B$ is diagonal:

$$
[\alpha]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}
$$

(ii) $\alpha \in \mathcal{L}(V)$ is *triangulable* if there exists B basis of V such that $[\alpha]_{\mathcal{B}}$ is triangular:

$$
[\alpha]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}
$$

Remark. A matrix is diagonalisable (respectively triangulable) if and only if it is conjugated to a diagonal (respectively triangular) matrix.

Definition (eigenvalue, eigenvector, eigenspace). (i) $\lambda \in F$ is an eigenvalue of $\alpha \in \mathcal{L}(V)$ if and only if there exists $v \in V \setminus \{0\}$ such that $\alpha(v) = \lambda v$.

- (ii) $v \in V$ is an eigenvector of $\alpha \in \mathcal{L}(v)$ if and only if $v \neq 0$ and there exists $\lambda \in F$ such that $\alpha(v) = \lambda v$.
- (iii) $V_{\lambda} = \{v \in V \mid \alpha(v) = \lambda v\} \leq V$ is the eigenspace associated to $\lambda \in F$.

Remark. Once can write evalue, evectors, espace.

Lemma. $\alpha \in L(v)$, $\lambda \in F$, then

 λ eigenvalue \iff det($\alpha - \lambda$ id) = 0

Proof.

$$
\lambda \text{ eigenvalue} \iff \exists v \in V \setminus \{0\} \mid \alpha(v) = \lambda v
$$

$$
\iff \exists v \in V \setminus \{0\} \mid (\alpha - \lambda \mathrm{id})(v) = 0
$$

$$
= \ker(\alpha - \lambda \mathrm{id}) \neq \{0\}
$$

$$
= \alpha - \lambda \mathrm{id} \text{ not injective}
$$

$$
\iff \alpha - \lambda \mathrm{id} \text{ not bijective}
$$

$$
\iff \alpha - \lambda \mathrm{id} \text{ not bijective}
$$

$$
\iff \det(\alpha - \lambda \mathrm{id}) = 0
$$

Remark. If $\alpha(v_i) = \lambda v_i, v_i \neq 0$. I can complete it to a basis $(v_1, \ldots, v_{i-1}, v_i, \ldots, v_n)$ of V . Then $[\alpha]_{\mathcal{B}} = (|\cdots| (\lambda \text{ in } j\text{-th entry}) | \cdots)$

Elementary facts about polynomials

We will study $P(\alpha)$, P polynomial. $\alpha \in \mathcal{L}(V)$.

• F field,

$$
f(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0
$$

 $a_i \in F$. $n \equiv$ the largest exponent such that $a_n \neq 0$, $n = \deg f$.

 \bullet deg($f + g$) \leq max{deg f, deg g}, deg(fg) = deg f + deg g

- $F[t] = \{$ polynomials with coefficients in $F\}$
- λ root of $f(t) \iff f(\lambda) = 0$.

Lemma. λ is a root of f, then $t - \lambda$ divides f:

$$
f(t) = (t - \lambda)g(t), \quad g(t) \in F(t)
$$

Proof. $f(t) = a_n t^n + \dots + a_1 t + a_0, f(\lambda) = a_n \lambda^n + \dots + a_1 \lambda + a_0 = 0.$

$$
f(t) = f(t) - f(\lambda)
$$

= $a_n(t^n - \lambda^n) + \dots + a_1(t - \lambda)$
= $a_n(t - \lambda)(t^{n-1} + \lambda t^{n-2} + \dots + \lambda^{n-2}t + \lambda^{n-1}) + \dots$

Corollary. A nonzero polynomial of degree $n \geq 0$) has at most n roots (counted with multiplicity).

Proof. Induction on the degree. (Exercise)

Corollary. f_1, f_2 polynomials of degree $\lt n$ such that $f_1(t_i) = f_2(t_i)$, $(t_i)_{1 \leq i \leq n}$ n distinct values. Then $f_1 \equiv f_2$.

Proof. $f_1 - f_2$ has degree $\lt n$ and at least n roots so $f_1 - f_2 \equiv 0$.

Theorem. Any $f \in \mathbb{C}[t]$ of positive degree has a (complex) root (hence exactly $\deg f$ roots when counted with multiplicity).

So $f \in \mathbb{C}[t],$

$$
f(t) = c \prod_{i=1}^{r} (t - \lambda_i)_i^{\alpha} \quad c, \lambda_i \in \mathbb{C}, \alpha_i \in \mathbb{N}
$$

 \rightarrow complex analysis.

Definition (characteristic polynomial). Let $\alpha \in \mathcal{L}(V)$, the characteristic polynomial of α is

$$
\chi_{\alpha}(t) = \det(A - t\mathrm{id})
$$

 \Box

 \Box

 \Box

Remark. The fact that $det(A - \lambda id)$ is a polynomial in λ follows from the very definition of det.

Remark. Conjugate matrices have the same characteristic polynomial.

$$
det(P^{-1}AP - \lambda id) = det(P^{-1}(A - \lambda id)P)
$$

= det(A - \lambda id)

So we can define

$$
\chi_{\alpha}(t) = \det(A - \lambda \mathrm{id})
$$

where $A = [\alpha]_{\mathcal{B}}$, and the polynomial does not depend on the choice of basis.

Theorem. $\alpha \in \mathcal{L}(V)$ is triangulable if and only χ_{α} can be written as a product of linear factors over F:

$$
\chi_{\alpha}(t) = c \prod_{i=1}^{n} (t - \lambda_i)
$$

 \rightarrow If $F = \mathbb{C}$, any matrix is triangulable.

Proof. \Rightarrow Suppose α triangulable, then

$$
[\alpha]_{\mathcal{B}} = \begin{pmatrix} a_1 & * & \cdots & * \\ 0 & a_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}
$$

so

$$
\chi_{\alpha}(t) = \det \begin{pmatrix} a_1 & * & \cdots & * \\ 0 & a_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix} = \prod_{i=1}^n (a_i - t)
$$

- \Leftarrow We argue by induction on $n = \dim V$.
	- $n = 1$ easy.
	- $n > 1$. By assumption, let $\chi_{\alpha}(t)$ which has a root λ . Then $\chi_{\alpha}(\lambda) = 0$ if and only if λ is an eigenvalue of α . Let $U = V_{\lambda}$ be associated eigenspace. Let (v_1, \ldots, v_k) be a basis of U. We complete to (v_{k+1}, \ldots, v_n) of V

$$
span(v_{k+1},...,v_n) = W
$$

$$
V = U \oplus W
$$

 \bullet $[\alpha]_{\mathcal{B}} =$

 α induces an endormorphism $\overline{\alpha}: V/U \to V/U,$

$$
C = [\overline{\alpha}]_{\overline{\mathcal{B}}}, \overline{\mathcal{B}} = (v_{k+1} + U, \dots, v_n + U)
$$

Then: (block product)

$$
\det(\alpha - \mathrm{id}) =
$$

$$
\begin{aligned}\n\mathcal{A} \in \mathcal{F} \quad & \xrightarrow{\left(\begin{array}{c} \mathcal{A} - t\end{array}\right) \mathbb{I}} \mathcal{A} \quad & \mathcal{F} \quad \mathcal{F} \\
\xrightarrow{\kappa} \mathcal{F} \quad \mathcal{F} \quad \mathcal{F} \quad \mathcal{F} \\
\xrightarrow{\kappa} \mathcal{F} \quad \mathcal{F} \quad \mathcal{F} \quad \mathcal{F} \\
\xrightarrow{\kappa} \mathcal{F} \quad \mathcal{F}
$$

so use the induction because $\dim V/U = \dim V - \dim U < \dim V$. So $\tilde{\mathcal{B}} =$ $(\tilde{v}_{k+1}, \ldots, \tilde{v}_n)$ basis of W where:

$$
[C]_W = \begin{pmatrix} \tilde{a}_1 & * & \cdots & * \\ 0 & \tilde{a}_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \tilde{a}_n \end{pmatrix}
$$

implies $V = U \oplus W$,

$$
\hat{\mathcal{B}} = (v_1, \dots, v_k, \tilde{v}_{k+1}, \dots, \tilde{v}_n)
$$

basis of V in which

 \rightarrow triangular form.

 \Box

Start of

[lecture 15](https://notes.ggim.me/LA#lecturelink.15) **Lemma.** V n dimensional over $F = \mathbb{R}, \mathbb{C}, \alpha \in \mathcal{L}(V)$. Then $\chi_{\alpha}(t) = (-1)^n t^n$ + $c_{n-1}t^{n-1} + \cdots + c_0$, $c_0 = \det A = \det \alpha$, $c_{n-1} = (-1)^{n-1} \operatorname{Tr} A$.

Proof. $\bullet \ \chi_{\alpha}(t) = \det(\alpha - t\mathrm{id})$

$$
\implies \chi_{\alpha}(0) = \det \alpha = c_0
$$

• Say that $F = \mathbb{R}$ or \mathbb{C} (if $F = \mathbb{R}$, we can think of is as having complex entries as well). We know that α is triangulable over \mathbb{C} , so:

$$
\chi_{\alpha}(t) = \det \begin{pmatrix} a_1 - t & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n - t \end{pmatrix}
$$

$$
= \prod_{i=1}^n (a_i - 1)
$$

$$
= (-1)^n t^n + c_{n-1} t^{n-1} + \cdots + c_0
$$

$$
c_{n-1} = (-1)^{n-1} \sum_{i=1}^n i = 1^n a_i = \text{Tr } \alpha
$$

 \Box

1.17 Diagonalisation criterion and minimal polynomial

Notation (polynomial of an endomorphism). Pick $p(t)$ polynomial over F

$$
p(t) = a_n t^n + \dots + a_1 t + a_0, \quad a_i \in F
$$

 $A \in \mathcal{M}_n(F)$, for all $n, A^n \in \mathcal{M}_n(F)$. We define:

$$
p(A) = a_n A^n + \dots + a_1 A + a_i \text{id} \in \mathcal{M}_n(F)
$$

If $\alpha \in \mathcal{L}(V)$, we define

$$
p(\alpha) = a_n \alpha^n + \dots + a_1 \alpha + a_0 \text{id}
$$

where $\alpha = \alpha \circ \cdots \circ \alpha \in \mathcal{L}(V)$.

 \rightarrow very useful.

Theorem (Sharp criterion of diagonalisability). \bullet V vector space over F, $\dim_F V$ < ∞

 $\bullet \ \alpha \in \mathcal{L}(V)$

Then α is diagonalisable if and only if there exists a polynomial p which is the product of *distinct linear factors* such that $p(\alpha) = 0$.

$$
\alpha \text{ diagonalisable} \iff \exists (\lambda_1, \dots, \lambda_n) \text{ distinct }, \lambda_i \in F \text{ such that:}
$$

$$
p(t) = \prod_{i=1}^k (t - \lambda_i)
$$

$$
\text{and } p(\alpha) = 0
$$

Proof. \Rightarrow Suppose α is diagonalisable, with $\lambda_1, \ldots, \lambda_k$ the distinct eigenvalues. Let $p(t) = \prod_{i=1}^{k} (t - \lambda_i)$. Let B be the basis of V made of eigenvectors of α (it is precisely the basis in which $[\alpha]_{\mathcal{B}}$ is diagonal). Then $v \in \mathcal{B}$, then $\alpha(v) = \lambda_i(v)$ for some $i \in \{1, \ldots, k\}$, implies $(a - \lambda_i \text{id})(v) = 0$, implies

$$
p(\alpha) = \left[\prod_{j=1}^{k} (\alpha - \lambda_j \mathrm{id})\right](v) = 0
$$

but the terms in the product commute, i.e.

$$
(\alpha - \lambda_j \text{id})(\alpha - \lambda_k \text{id}) = (\alpha - \lambda_k \text{id})(\alpha - \lambda_j \text{id})
$$

so for all $v \in \mathcal{B}$, $p(\alpha)(v) = 0$, so $p(\alpha)(v) = 0$ for all $v \in V$ (since \mathcal{B} is a basis for V). So $p(\alpha) = 0$.

- \Leftarrow (Kernel lemma, Bezout's theorem for prime polynomials)
	- Suppose $p(\alpha) = 0$ for:

$$
p(t) = \prod_{i=1}^{k} (t - \lambda_i)
$$

$$
\lambda_i \neq \lambda_j, \, i \neq j.
$$

• Let $V_{\lambda_i} = \ker(\alpha - \lambda_i \text{id})$, we claim:

$$
V = \bigoplus_{i=1}^k V_{\lambda_i}
$$

Indeed let:

$$
q_j(t) = \prod_{\substack{i=1 \ i \neq j}}^k \left(\frac{t - \lambda_i}{\lambda_j - \lambda_i} \right), \quad 1 \leq j \leq k
$$

Then

$$
q_j(\lambda_i) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
$$

Hence let us consider:

$$
q(t) = \sum_{j=1}^{k} q_j(t)
$$

Then deg $q_j \leq k-1$, so deg $q \leq k-1$. Also $q(\lambda_j) = 1$ for all $1 \leq j \leq k$. So the polynomial $q(t) - 1$ has degree $\leq k - 1$ and at least k roots, so for all t, $q(t) = 1$. So for all t,

$$
q_1(t) + \cdots + q_k(t) = 1
$$

• Let us define the *projector*

$$
{1j}q{j}(\alpha)\in \mathcal{L}(V)
$$

Then

$$
\sum_{j=1}^{k} \pi_j = \sum_{j=1}^{k} q_j(\alpha)
$$

$$
= \left(\sum_{j=1}^{k} q_j\right)(\alpha)
$$

$$
= id
$$

This means for all $v \in V$,

$$
v = q(\alpha)(v) = \sum_{j=1}^{k} \pi_j(v) = \sum_{j=1}^{k} q_j(\alpha)(v)
$$

Observe: pick $j \in \{1 \ldots, k\},\$

$$
(\alpha - \lambda_j \mathrm{id}) q_j(\alpha)(v) = \frac{1}{\prod_{i \neq j} (\lambda_i - \lambda_j)} p(\alpha)(v) = 0
$$

so

$$
\forall j \in \{1, ..., k\}, \quad (\alpha - \lambda_j \text{id})\pi_j(v) = 0
$$

$$
\implies \forall j \in \{1, ..., k\}\pi_j(v) \in V_{\lambda_j}
$$

 $(\pi_j \text{ is a projector on } V_{\lambda_j})$ Now for all $v \in V$,

$$
v = \sum_{j=1}^{k} \pi_j(v)
$$

hence

$$
V = \sum_{j=1}^{k} V_{\lambda_j}
$$

We need to prove that the sum is direct. Indeed, let $v \in V_{\lambda_j} \cap \left(\sum_{i \neq j} V_{\lambda_i}\right)$. $- v \in V_{\lambda_j}$. Then

$$
\pi_j(v) = q_j(\alpha)(v)
$$

=
$$
\prod_{i=1, i \neq j}^k \frac{(\alpha - \lambda_i \mathrm{id})}{\lambda_i - \lambda_j}(v)
$$

=
$$
\left[\prod_{i=1, i \neq j}^k \frac{(\lambda_i - \lambda_j)}{\lambda_i - \lambda_j} \right](v)
$$

=
$$
v
$$

so $\pi_j |_{V_{\lambda_j}} = \text{id}.$

- By assumption $v \in \sum_{i \neq j} V_{\lambda_i}$. Now, $i_0 \neq j$, $v \in V_{\lambda_{i_0}}, \alpha(v) = \lambda_{i_0} v$,

$$
\implies \pi_j(v) = q_j(\alpha)(v)
$$

$$
= \left[\prod_{i \neq j} \frac{(\alpha - \lambda_i \mathrm{id})}{\lambda_i - \lambda_j} \right](v)
$$

$$
= \left(\prod_{i \neq j} \frac{\lambda_{i_0} - \lambda_j}{\lambda_i - \lambda_j} \right)
$$

$$
= 0
$$

so $\pi_j |_{V_{\lambda_i}} = 0$ for $i \neq j$.

As a conclusion: $v \in V_{\lambda_j} \cap \left(\sum_{i \neq j} V_{\lambda_i} \right)$ (1) $v \in V_{\lambda_i}$, implies $\pi_j(v) = v$ (2) $v \in \sum_{i \neq j} V_{\lambda_i}$ implies $\pi_j(v) = 0$

so $v = 0$. We have proved:

$$
V = \bigoplus_{j=1}^{k} V_{\lambda_j}
$$

$$
\pi_j |_{V_{\lambda_j}} = id
$$

$$
\pi_i |_{V_{\lambda_j}} = 0
$$

for $i \neq j$.

Remark. We have proved the following: if $\lambda_1, \ldots, \lambda_k$ are k distinct eigenvalues of α , then

$$
\sum_{i=1}^k V_{\lambda_i} = \bigoplus_{i=1}^k V_{\lambda_i}
$$

(always true) (and we know the projectors)

This means that the only way diagonalisation fails is if:

$$
\bigoplus_{i=1}^k V_{\lambda_i} = \sum_{j=1}^k V_{\lambda_j} \neq V
$$

 \Box

Example. $A \in \mathcal{M}_n(F)$, $F = \mathbb{C}$. A has finite order. (there exists $m \in \mathbb{N}$ such that $A^m = id$. Then A is diagonalisable (over C). TODO..

Start of

[lecture 16](https://notes.ggim.me/LA#lecturelink.16) Theorem (Simultaneous diagonalisation). \bullet dim_F $V < \infty$

• $\alpha, \beta \in \mathcal{L}(V)$ diagonalisable Then α, β are simultaneously diagonalisable ($\exists \beta$ basis of V in which both $[\alpha]_{\beta}$, $[\beta]$ _B are diagonal) if and only if α and β commute.

Proof. \Rightarrow Exists basis B of V in which

 $[\alpha]_{\mathcal{B}} = D_1$ $[\beta]_B = D_2$ D_1, D_2 both diagonal, then $D_1D_2 = D_2D_1$ so $\alpha\beta = \beta\alpha$. \Leftarrow Suppose α, β are both diagonalisable and $\alpha\beta = \beta\alpha$. Let $\lambda_1, \ldots, \lambda_k$ be the k distinct eigenvalues of α . We have shown:

$$
\alpha \text{ diagonalisable} \iff V = \bigoplus_{i=1}^{k} V_{\lambda_i}
$$

 V_{λ_i} is the eigenspace associated to λ_i .

Claim: V_{λ_I} stable by β : $\beta(V_{\lambda_i}) \leq V_{\lambda_i}$. Indeed, let $v \in V_{\lambda_i}$, then

$$
\alpha\beta(v) = \eta\alpha(v) = \beta(\lambda_i v) = \lambda_i\beta(v)
$$

so $\beta(v) \in V_{\lambda_i}$.

• We use criterion for diagonalisability: β is diagonalisable implies that there exists p with distinct linear factors such that $p(\beta) = 0$.

Now $B|_{V_{\lambda_j}}$ endomorphism $(\beta: V_{\lambda_j} \to V_{\lambda_j})$ and

$$
p(\beta|_{V_{\lambda_j}})=0
$$

p has distinct linear factors, so $\beta|V_{\lambda_j}$ is diagonalisable. So there exists B basis of V_{λ_j} in which $\beta|_{V_{\lambda_j}}$ is diagonal. Then

$$
V=\bigoplus_{i=1}^k V_{\lambda_i}
$$

so $(\mathcal{B}_1,\ldots,\mathcal{B}_k)=\mathcal{B}$ is a basis of V in which both α and β are in diagonal form. \Box

Minimal polynomial of an endormorphism

 Remainder: (Groups, Rings and Modules). Euclidean algorithm for polynomials: a, b polynomials over $F, b \neq 0$, then there exist polynomials q, r over F with:

$$
\deg r < \deg b
$$
\n
$$
a = qb + r
$$

Definition (Minimal polynomial). *V* vector space over F, $\dim_F V < \infty$. Let $\alpha \in$ $\mathcal{L}(V)$. The minimal polynomial m_{α} of α is the (unique up to a constant) non zero polynomial with smallest degree such that

$$
m_\alpha(\alpha)=0
$$

Existence and uniqueness follow from the following observations:

• dim_F $V = n$, $\alpha \in \mathcal{L}(V)$. We know:

$$
\dim_F \mathcal{L}(V) = n^2
$$

\n
$$
\implies \text{id}, \alpha, \dots, \alpha^{n^2} \text{ cannot be free}
$$

\n
$$
\implies a_{n^2} \alpha^{n^2} + \dots + a_1 \alpha + a_0 = 0
$$

\n
$$
\implies \exists p \in F[t] \mid p(\alpha) = 0, p \neq 0
$$

That is, there does exist a polynomial p that kills α .

• Lemma: $\alpha \in \mathcal{L}(V)$, $p \in F[t]$. Then $p(\alpha) = 0$ if and only if m_α is a factor of p. Proof: $p \in F[t]$, $p(\alpha) = 0$, m_α is minimum polynomial of α . So deg $m_\alpha \leq \deg p$. By Euclidean division:

$$
p = m_{\alpha}q + r
$$

$$
\deg r < \deg m_{\alpha}
$$

Then

$$
p(\alpha) = 0 = m_{\alpha}q(\alpha)r(\alpha)
$$

so $r(\alpha) = 0$. If $r \neq 0$, then this would contradict the definition of m_α . So $r \equiv 0$. So $p = m_{\alpha}q$, that is, m_{α} divides p.

If m_1, m_2 are both polynomial with smallest degree which kill α then by the above lemma, $m_1 | m_2, m_2 | m_1$ so $m_2 = cm_1, c \in F$. That is, the minimal polynomial is unique up to a constant.

Example. $V = \mathbb{R}^2$

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$

- Let $p(t) = (t-1)^2$, then $p(A) = p(B) = 0$. So minimal polynomial is either $t-1$ or $(t-1)^2$.
- Check: $m_A = t 1$, $m_B = (t 1)^2$. So A is diagonalisable but B is not.

1.18 Cayley Hamiton Theorem and multiplicity of eiganvalues

Theorem (Cayley Hamilton). Let V be an F vector space, $\dim_F V < \infty$. Let $\alpha \in \mathcal{L}(V)$ with characteristic polynomial $\chi_{\alpha}(t) = \det(\alpha - t\mathrm{id})$. Then $\chi_{\alpha}(\alpha) = 0$.

Corollary. $m_{\alpha} \mid \chi_{\alpha}$.

Proof. $F = \mathbb{C}$ (general proof is in the notes). $\alpha \in \mathcal{L}(V)$, $n = \dim_{\mathbb{C}} V$. Exists basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ such that

$$
[\alpha]_{\mathcal{B}} = \begin{pmatrix} a_1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n \end{pmatrix}
$$

(triangulable). Let $U_j = \langle v_1, \ldots, v_j \rangle$. Then because of the triangular form, $(\alpha$ a_j id) $U_j \leq U_{j-1}$.

$$
\chi_{\alpha}(t) = \prod_{i=1}^{n} (a_i - t)
$$

$$
(\alpha - a_1 \text{id}) \cdots (\alpha - a_{n-1} \text{id})(\alpha - a_n \text{id})V
$$

$$
\leq (\alpha - a_1 \text{id}) \cdots (\alpha - a_{n-1} \text{id})U_{n-1}
$$

$$
\vdots
$$

$$
\leq 0
$$

So $\chi_{\alpha}(\alpha) = 0$. For the general case, see the notes.

Definition (algebraic / geometric multiplicity). $\dim_F V < \infty$, $\alpha \in \mathcal{L}(V)$. Let λ eigenvalue of α . Then

$$
\chi_{\alpha}(t) = (t - \lambda)^{a_{\lambda}} q(t)
$$

$$
q \in F[t], \quad q(\lambda) \neq 0
$$

- a_{λ} is the algebraic multiplicity of λ .
- g_{λ} is the geometric multiplicity of λ , and $g_{\lambda} = \dim \ker(\alpha \lambda id)$.

Remark. λ eigenvalue $\iff \alpha - \lambda \iff \text{singular} \iff \det(\alpha - \lambda id) = \chi_{\alpha}(\lambda) = 0$

Lemma. λ eigenvalue of $\alpha \in \mathcal{L}(V)$, then $1 \leq g_{\lambda} \leq a_{\alpha}$.

Proof. $g_{\lambda} = \dim \ker(\alpha - \lambda \text{id}) \geq 1$ since λ is an eigenvalue.

• Let us show that $g_{\lambda} \leq a_{\lambda}$. Indeed, let $(v_1, \ldots, v_{g_{\lambda}})$ basis of $V_{\lambda} = \ker(\alpha - \lambda id)$, and compute $\mathcal{B} = (v_1, \ldots, v_{\lambda_g}, v_{g_{\lambda}+1}, \ldots, v_n)$ of V. Then

$$
[\alpha]_{\mathcal{B}} = \begin{pmatrix} \lambda \mathrm{id}_{g_{\lambda}} & * \\ 0 & A_1 \end{pmatrix}
$$

 \Box
$$
\implies \det[\alpha - t\mathrm{id}] = \det\begin{pmatrix} (\lambda - t)\mathrm{id}_{g_{\lambda}} & * \\ 0 & A_1 - t\mathrm{id} \end{pmatrix} = (\lambda - t)^{g_{\lambda}} \chi_{A_1}(t)
$$

$$
\implies g_{\lambda} \le a_{\lambda}
$$

 $\hfill \square$

Lemma.
$$
\lambda
$$
 eigenvalue of $\alpha \in \mathcal{L}(V)$. Let:

 $c_{\lambda} \equiv$ multiplicity of λ as a root of m_{α} (minimal polynomial)

Then $1 \leq c_{\lambda} \leq a_{\lambda}$.

Example.

Proof. • Cayley-Hamilton implies $m_{\alpha} \mid \chi_{\alpha}$. So $c_{\lambda} \le a_{\lambda}$.

• $c_{\lambda} \geq 1$. Indeed, there exists $b \neq 0$ such that $\alpha(v) = \lambda v$ so then for all $p \in F[t]$, $p(\alpha)(v) = (p(\lambda))v \ (\alpha^n(v) = \lambda^n v)$ so $m(\alpha)(v) = (m(\lambda))v$ so $m(\lambda) = 0$ so $c_{\lambda} \ge 1$. \Box

$$
A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}
$$

$$
m_A?
$$

$$
\chi_A(t) = (t-1)^2(t-2)
$$

• So m_{α} is either $(t-1)^2(t-2)$ or $(t-1)(t-2)$. Check $(A-I)(A-2I) = 0$, so $m_{\alpha} = (t-1)(t-2)$ so A is diagonalisable.

Start of

[lecture 17](https://notes.ggim.me/LA#lecturelink.17) **Example** (Jordan block).

$$
J_{\lambda} = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & \lambda \end{pmatrix} \in \mathcal{M}_n(F)
$$

Check $g_{\lambda} = 1, a_{\lambda} = n, c_{\lambda} = n$

Lemma (characterisation of diagonalisable endomorphisms over $F = \mathbb{C}$). $F = \mathbb{C}$, $\dim_{\mathbb{C}} V = n < \infty, \, \alpha \in \mathcal{L}(V)$. The following are equivalent:

- (i) α diagonalisable
- (ii) $\forall \lambda$ eigenvalue of α , $a_{\lambda} = g_{\lambda}$
- (iii) $\forall \lambda$ eigenvalue of α , $c_{\lambda} = 1$.

Proof. (i) \iff (iii) done. We need (i) \iff (ii). Indeed, let $(\lambda_1, \ldots, \lambda_k)$ be the *distinct* eigenvalues of α . We showed:

$$
\alpha
$$
 diagonalisable $\iff V = \bigoplus_{i=1}^{k} V_{\lambda_i}$

$$
\dim V = n \qquad \qquad = \deg \chi_{\alpha}
$$
\n
$$
= \sum_{i=1}^{k} a_{\lambda_{i}}
$$
\n
$$
(\chi_{\alpha}(t) = (-1)^{n} \prod_{i=1}^{k} (t - \lambda_{i})^{a_{i}})
$$

so

$$
\alpha
$$
 diagonalisable \iff $\sum_{i=1}^{k} a_{\lambda_i} = \sum_{i=1}^{k} g_{\lambda_i}$ (*)

 \Box We know: $\forall 1 \leq i \leq k$, $g_{\lambda_i} \leq a_{\lambda_i}$. Hence (*) holds $\iff \forall 1 \leq i \leq k$, $a_{\lambda_i} = g_{\lambda_i}$.

1.19 Jordan normal form

Note. In this subsection, $F = \mathbb{C}$.

Definition (Jordan normal form). Let $A \in \mathcal{M}_n(\mathbb{C})$, we say that A is in Jordan Normal Form (JNF) if it is a block diagonal matrix:

$$
A = \begin{pmatrix} J_{n_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{n_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{n_k}(\lambda_k) \end{pmatrix}
$$

where:

- $k \geq 1$, k integer
- n_1, \ldots, n_k integers
- $\sum_{i=1}^{k} n_i = n$
- $\lambda_i \in \mathbb{C}, 1 \leq i \leq k$: they need *not* be distinct
- $m \in \mathbb{N}, m \neq 0, \lambda \in \mathbb{C}, J_m(\lambda) = \lambda$ if $m = 1$,

Example. $n = 3$,

$$
A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} J_1(\lambda & 0 & 0 \\ 0 & J_1(\lambda) & 0 \\ 0 & 0 & J_1(\lambda) \end{pmatrix}
$$

so this is in Jordan Normal Form.

Theorem. Every matrix $A \in \mathcal{M}_n(\mathbb{C})$ is similar to a matrix in Jordan Normal Form, which is unique up to reordering the Jordan block.

Proof. Non examinable (in Groups, Rings and Modules class). (Proof is in lecturer's notes). \Box **Example.** $n = 2$, possible JNF in this case?

$$
\begin{pmatrix}\n\lambda_1 & 0 \\
0 & \lambda_2\n\end{pmatrix} \quad m = (t - \lambda_1)(t - \lambda_2), \quad \lambda_1 \neq \lambda_2
$$
\n
$$
\begin{pmatrix}\n\lambda & 0 \\
0 & \lambda\n\end{pmatrix} \quad m = (t - \lambda)
$$
\n
$$
\begin{pmatrix}\n\lambda & 1 \\
0 & \lambda\n\end{pmatrix} \quad m = (t - \lambda)^2
$$

Example. $n = 3$, $\sqrt{ }$ \mathcal{L} λ_1 0 0 $0 \lambda_2$ 0 $0 \quad 0 \quad \lambda_3$ \setminus $(t - \lambda_1)(t - \lambda_2)(t - \lambda_3)$ $\lambda_1, \lambda_2, \lambda_3$ distinct $\sqrt{ }$ $\overline{1}$ λ_1 0 0 $0 \lambda_2$ 0 $0 \quad 0 \quad \lambda_2$ \setminus $\int (t - \lambda_1)(t - \lambda_2)$ $\sqrt{ }$ $\overline{1}$ λ_1 0 0 $0 \lambda_2 1$ $0 \quad 0 \quad \lambda_2$ \setminus $\int (t - \lambda_1)(t - \lambda_2)^2$ $\sqrt{ }$ $\overline{1}$ λ 0 0 $0 \lambda 0$ $0 \quad 0 \quad \lambda$ \setminus $(t - \lambda)$ $\sqrt{ }$ \mathcal{L} λ 0 0 $0 \lambda 1$ $0 \quad 0 \quad \lambda$ \setminus $(t - \lambda)^2$ $\sqrt{ }$ \mathcal{L} λ 1 0 $0 \lambda 1$ $0 \quad 0 \quad \lambda$ \setminus $(t - \lambda)^3$

Useful observation: which explains why JNF is unique. \rightarrow we can directly compute in the JNF the quantities $a_{\lambda}, g_{\lambda}, c_{\lambda}$. Indeed, let $M \geq 2$ and let $J_m(\lambda)$. Then

By induction we can show:

$$
(\mathbb{I}_{m}\text{-}\lambda\mathbb{I}_{d})^{k}\text{=}\left(\begin{array}{cc} \text{O} & \mathbb{I}_{m\text{-}k} \\ \text{O} & \text{O}\end{array}\right)
$$

for $k \leq m$, and is 0 for $k = m$. We say that the matrix $(J_m - \lambda id)$ is nilpotent of order m. $(u^m = 0 \text{ and } u^{m-1} \neq 0)$. So

 $a_{\lambda} \equiv$ sum of sizes of blocks with eigenvalue $\lambda \equiv$ number of λ on the diagonal

 $g_{\lambda} = \dim \ker(A - \lambda id) = \text{number of blocks with eigenvalue } \lambda$

$$
c_{\lambda}J_m(\lambda) \to (t-\lambda)^m
$$
kills it

(because $(J_m - \lambda id)$ is nilpotent of order exactly m) so

 $c_{\lambda} \equiv$ size of the largest block with eigenvalue λ

Example.

$$
A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}
$$

Find a basis in which A is Jordan Normal Form?

 $\chi_A(t) = (t-1)^2$ eigenvalue $\lambda = 1$. $A - id \neq 0$ implies $m_A(t) = (t-1)^2$, and Jordan Normal Form

$$
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$

 (i) Eigenvectors:

$$
A - \mathrm{id} = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}
$$

 $\ker(A - id) = \langle v_1 \rangle, v_1 = (1, -1)^\top$. I look for a (non-unique!) v_2 such that

$$
(A - id)v_2 = v_1
$$

 $v_2 = (-1, 0)^{\top}$ works.

$$
[A]_{\mathcal{B}} = J_1(1)
$$

for $\mathcal{B} = (v_1, v_2)$.

$$
P^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}
$$

$$
A = \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}}_{P^{-1}} \underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{J} \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}}_{P^{-1}}
$$

Exercise:

$$
A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}
$$

Find a basis in which A is JNF.

Theorem (Generalised eigenspace decomposition). \bullet dim_C $V = n < \infty$

- $\bullet \ \alpha \in \mathcal{L}(V).$
- $m_\alpha(t) = (t \lambda_1)^{c_1} \cdots (t \lambda_k)^{c_k}$

• $\lambda_1, \ldots, \lambda_k$ distinct eigenvalues of α . Then

$$
V = \bigoplus_{j=1}^k V_j
$$

$$
V_j = \ker[(\alpha - \lambda \mathrm{id})^{c_j}]
$$

 $(V_j$ is generalised eigenspace)

Remark. α diagonalisable, $c_j = 1$. Then V_j eigenspace associated to λ_j .

Proof. projectors onto V_j are *explicit*. Indeed, let

$$
p_j(t) = \prod_{i \neq j} (t - \lambda_i)^{c_i}
$$

Then the p_j have no common factor, so by Euclid's algorithm, we can find q_1, \ldots, q_k polynomials such that

$$
\sum_{i=1}^{k} p_i q_i = 1 \tag{*}
$$

We define

$$
\pi_j = q_j p_j(\alpha)
$$

(i) By (∗),

$$
id = \sum_{j=1}^{k} q_j p_j(\alpha) = \sum_{j=1}^{k} \pi_j
$$

$$
\implies \forall v \in V, v = \sum_{j=1}^{k} \pi_j(v)
$$

(ii)
$$
m_{\alpha}(\alpha) = 0
$$
, $m_{\alpha} = \prod_{j=1}^{k} (t - \lambda_j)^{c_j}$
\n $\implies (\alpha - \lambda_j \text{id})^{c_j} \pi_j = (\alpha - \lambda_j \text{id})^{c_j} q_j p_j(\alpha) = 0$
\n $\implies \forall v \in V, \pi(v) \in V_j$
\n $V_j = \text{ker}(\alpha - \lambda_j \text{id})^{c_j}$

Hence $\forall v \in V$

$$
v = \sum_{j=1}^{k} \pi_j(v)
$$

$$
\implies V = \sum_{j=1}^{k} V_{\lambda_j}
$$

(iii) Show that:

$$
\sum_{j=1}^k V_{\lambda_j} = \bigoplus_{j=1}^k V_{\lambda_j}
$$

Indeed, $\pi_i \pi_j = 0$ if $i \neq j$ and so $\pi_i = \pi_i \left(\sum_{j=1}^k \pi_j \right) = \pi_i^2$. $\implies \pi_i|_{V_{\lambda_i}} = \text{id}$

$$
\implies
$$
 direct sum projection follows:

$$
v = V_{\lambda_i} \cap \left(\sum_{i \neq j} V_{\lambda_i}\right)
$$

$$
v = \sum_{i \neq j} v_j, \quad v_j \in V_{\lambda_j}
$$

If apply π_i and use:

$$
\pi_i|_{V_{\lambda_i}} = \text{id}
$$

$$
\pi_i|_{V_{\lambda_j}} = 0 \text{ for } j \neq i
$$

 \Box

so $v = 0$.

By definition

 $(\alpha - \lambda_i \mathrm{id})|_{V_{\lambda_i}}$

is nilpotent, since

$$
(\alpha - \lambda_i \mathrm{id})^{c_{\lambda_i}}|_{V_{\lambda_i}} = 0
$$

 \implies all I need to do is to find JNF nilpotent endomorphism.

• $\alpha \in \mathcal{L}(V)$, $\dim_{\mathbb{C}} V = n$, $a^k = 0$, $a^{k-1} \neq 0$. $\Rightarrow \text{JNF}$ with blocks $J_m(0)$. \rightarrow By induction on the dimension.

$$
\alpha^{k} = 0, \alpha^{k-1} \neq 0
$$

$$
\implies \exists x \in V, (x, \alpha(x), \dots, \alpha^{k-1}(x))
$$

free.

Question: $F = \text{span}\langle x, \alpha(x), \dots, \alpha^{k-1}(x) \rangle$. Can I find G such that:

 $V = F \oplus G$

G stable by α ? \rightarrow done.

Start of

[lecture 18](https://notes.ggim.me/LA#lecturelink.18) 1.20 Bilinear Forms

Bilinear form: $\varphi: V \times V \to F$.

- dim_F $V < \infty$, β basis of V.
- $[\varphi]_{\mathcal{B}} = [\varphi]_{\mathcal{B},\mathcal{B}} = (\varphi(e_i,e_j))_{1 \leq i,j \leq n}$. $\mathcal{B} = (e_i)_{1 \leq i \leq n}$.

Lemma. $\varphi: V \times V \to F$ bilinear, $\mathcal{B}, \mathcal{B}'$ two basis of $V, P = [\text{id}]_{\mathcal{B}',\mathcal{B}}$ then $[\varphi]_{\mathcal{B}'} = P^{\top}[\varphi]_{\mathcal{B}}P$

Proof. Special case of the general formula \rightarrow Lecture 10.

Definition (Congruent matrices). $A, B \in \mathcal{M}_n(F)$, we say that A and B are con $gruent$ if and only if there exists P invertible such that

 $A = P^{\top}BF$

Remark. This defines an equivalence relation.

Definition (Symmetric). A bilinear form φ on V is *symmetric* if:

 $\varphi(u, v) = \varphi(v, u) \quad \forall (u, v) \subset V \times V$

Remark. • $A \in \mathcal{M}_n(F)$, we say that A is symmetric if and only if $A = A^{\top}$

$$
\iff A = (a_{ij})_{1 \le i,j \le n}, a_{ij} = a_{ji}
$$

• φ symmetric $\iff [\varphi]_{\mathcal{B}}$ is symmetric in any basis \mathcal{B} of V .

Remark. To be able to represent φ by a diagonal matrix, then φ must be symmetric $P^{\top}AP = D \implies D^{\top}P^{\top}A^{\top}P$

$$
\implies A = A^{\top}
$$

Definition (Quadratic form). A map $Q: V \to F$ is a quadratic form if and only if there exists a bilinear form $\varphi: V \times V \to F$ such that $\forall u \in V$,

$$
Q(u) = \varphi(u, u)
$$

Remark.
$$
B = (e_i)_{1 \le i \le n}
$$
, $A = [\varphi]_B = (\underbrace{\varphi(e_i, e_j)}_{a_{ij}})_{1 \le i, j \le n}$. Then

$$
u = \sum_{i=1}^n x_i e_i, x = (x_1, \dots, x_n)^\top
$$

Then

$$
Q(u) = \varphi(u, u)
$$

= $\varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{i=1}^{n} x_i e_i\right)$
= $\sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \underbrace{\varphi(e_i, e_j)}_{a_{ij}}$
= $\sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j a_{ij}$
= $x^{\top} Ax$

so

$$
\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)
$$

 $Q(u) = x^\top A x$

Observation:

$$
x^{\top} Ax = \sum_{i,j=1}^{n} a_{ij} x_i x_j
$$

=
$$
\sum_{i,j=1}^{n} a_{ji} x_i x_j
$$

=
$$
\frac{1}{2} \sum_{i,j=1}^{n} (a_{ij} + a_{ji}) x_i x_j
$$

=
$$
\frac{1}{2} x^{\top} (A + A^{\top}) x
$$

and $\frac{1}{2}(A + A^{\top})$ is symmetric.

Proposition. If $Q: V \to F$ is a quadratic form, then there exists a *unique symmetric* bilinear form $\varphi: V \times V \to F$ such that:

$$
\forall u \in V, Q(u) = \varphi(u, u)
$$

Proof. Let ψ bilinear form on V such that

$$
\forall u, Q(u) = \psi(u, u)
$$

Let

$$
\varphi(u,v) = \frac{1}{2}(\psi(u,v) + \psi(v,u))
$$

- \bullet φ symmetric
- $\varphi(u, u) = \psi(u, u) = Q(u)$.

 \rightarrow existence of φ symmetric. Now uniqueness. Let φ be a symmetric bilinear form such that $\varphi(u, u) = Q(u) \forall u \in V$. Then

$$
Q(u + v) = \varphi(u + v, u + v)
$$

= $\varphi(u, u) + \varphi(v, u) + \varphi(v, u) + \varphi(v, v)$
= $Q(u) + 2\varphi(u, v) + Q(v)$

so

$$
\varphi(u, v) = \frac{1}{2}[Q(u + v) - Q(u) - Q(v)]
$$

 \equiv POLARIZATION IDENTITY.

Theorem (Diagonalisation of symmetric bilinear forms). Let $\varphi: V \times V \to F$ be a symmetric bilinear form $(\dim_F V < \infty)$. Then there exists a basis $\mathcal B$ of V such that:

 $[\varphi]_{\mathcal{B}}$ is diagonal

 \implies extensions to infinite dimensional cases.

Proof. \bullet dim_F $V < \infty$.

- Induction on the dimension n .
- $n = 0, 1$ are clear.
- Suppose that the theorem holds for all dimensions $\lt n$.
	- (1) Let $\varphi: V \times V \to F$ be a symmetric bilinear form. If $\varphi(u, u) = 0$, $\forall u \in V$, φ is identically zero. (polarization identity).

$$
\implies \exists u \in V \setminus \{0\} \mid \varphi(u, u) \neq 0
$$

(because $\varphi \neq 0$).

(2) Let us call $u = e_1$. $(e_1 \neq 0, \varpi(e_1, e_1) \neq 0)$. Let us define

$$
U = (\langle e_1 \rangle)^{\perp}
$$

= { $v \in V | \varphi(e_1, v) = 0$ }
= ker{ $\varphi(e_1, \bullet) : V \to F, v \mapsto \varphi(e_1, v)$ }

(linear because φ is bilinear). Now rank nullity:

 $\dim V = n = 1 + \dim U$

$$
(r(\varphi(e_1,\bullet))=1 \varphi(e_1,e_1)\neq 0) \text{ So dim } U=n-1.
$$

(3) Claim $U + \langle e_1 \rangle = U \oplus \langle e_1 \rangle$. Indeed, $v \in \langle e_1 \rangle \cap U$ then $v = \lambda e_1, \lambda \in F$.

 $\varphi(e_1, v) = 0 \quad (v \in U)$

so $0 = \varphi(e_1, \lambda e_1) = \lambda \varphi(e_1, e_1)$ so $\lambda = 0$, so $v = 0$.

- (4) Conclusion $V = \langle e_1 \rangle \oplus U$, by counting dimensions.
- (5) Complete (e_2, \ldots, e_n) basis of U. So $\mathcal{B} = (e_1, e_2, \ldots, e_n)$ basis of V. And:

$$
\begin{array}{c}\n\left(\begin{array}{c}\n\mathcal{L} \\
\mathcal{L} \\
\mathcal{L}\n\end{array}\right) & \mathcal{L} \\
\mathcal{L} \\
\mathcal{L} \\
\mathcal{L} \\
\mathcal{L}\n\end{array}\n\end{array}
$$

$$
(\varphi(e_j, e_1) = \varphi(e_1, e_j) = 0 \text{ for } 2 \le j \le n).
$$

$$
A' = (\varphi(e_i, e_k))_{2 \le i, j \le n}
$$

Then $(A')^{\top} = A'$ since φ symmetric.

$$
\implies \varphi|_U: U \times U \to F
$$

bilinear symmetric with matrix A' . By the induction hypotheses, I can find $\mathcal{B}' = (e'_2, \dots, e'_n)$ basis of U in which $[\varphi|_U]_{\mathcal{B}'}$ is diagonal. Then

$$
[\varphi]_{(e_1,e_2',\ldots,e_n')}
$$

diagonal form.

 \Box

Remark. $\varphi(e_1, e_1) \neq 0$ $\implies V = \langle e_1 \rangle \oplus U$ $U = \langle e_1 \rangle^{\perp}$

Example. $V = \mathbb{R}^3$

• $Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3 = x^\top Ax$ where

$$
A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}
$$

- Diagonalise: Two ways.
	- (1) Follow the proof of diagonalisation \rightarrow algorithm.
	- (2) "Complete the square"

$$
Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3
$$

$$
= (x_1 + x_2 + x_3)^2 + x_3^2 - 4x_2x_3
$$

$$
= \underbrace{(x_1 + x_2 + x_3)}_{x_1'} + \underbrace{(x_3 - 2x_2)}_{x_2'} - \underbrace{(2x_2)}_{x_3'}
$$

$$
- P,
$$

$$
P^{\top}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}
$$

– To find P , remember:

$$
\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & 0 \end{pmatrix} = P^{-1}
$$

Start of

[lecture 19](https://notes.ggim.me/LA#lecturelink.19) 1.21 Sylvester's law / Sesquilinear forms

Recall:

Theorem. dim_F $V < \infty$, $\varphi : V \times V \to F$ is a *symmetric* bilinear form \implies there exists B basis of V in which $[\varphi]_{\mathcal{B}}$ is diagonal.

Remark. We take $F = \mathbb{R}$ or \mathbb{C} in this subsection.

Corollary. $F = \mathbb{C}$, dim_{$\mathbb{C}V < \infty$, φ symmetric bilinear form on V. Then there} exists basis of V such that

$$
[\varphi]_{\mathcal{B}} = \left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right), \qquad r = \text{rank}(\varphi)
$$

Proof. Pick a basis $\mathcal{E} = (e_1, \ldots, e_n)$ such that

$$
[\varphi]_{\mathcal{E}} = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}
$$

Reorder e_i such that $a_i \neq 0$ for $1 \leq i \leq r$, $a_i = 0$ for $i > r$. For $i \leq r$, I let $\sqrt{a_i}$ be a choice of complex root of a_i , we define:

$$
v_i = \begin{cases} \frac{e_i}{\sqrt{a_i}} & \text{for } 1 \le i \le r \\ e_i & \text{for } i < r \end{cases}
$$

 $\mathcal{B} = (v_1, \ldots, v_r, e_{r+1}, \ldots, e_n), \mathcal{B}$ basis of V

$$
\implies [\varphi]_{\mathcal{B}} = \left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right) \qquad \qquad \Box
$$

Corollary. Every symmetric matrix of $\mathcal{M}_n(\mathbb{C})$ is congruent to a UNIQUE matrix of the form:

$$
\left(\begin{array}{c|c} I_r & 0 \\ \hline & 0 \\ \end{array}\right)
$$

We want to address the same problem with $F = \mathbb{R}$. \rightarrow we cannot take complex roots this time.

Corollary. $F = \mathbb{R}$, dim $\mathbb{R} V < \infty$, φ symmetric bilinear form on V. Then there exists $\mathcal{B} = (v_1, \ldots, v_n)$ basis of V such that

 $p, q \geq 0, p + q = r(\varphi).$

Proof. $\mathcal{E} = (e_1, \ldots, e_n)$ basis of V such that

$$
[\varphi]_{\mathcal{E}} = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix} \qquad a_i \in \mathbb{R}
$$

Reorder a_i so that:

- $a_i > 0$ for $1 \leq i \leq p$
- $a_i < 0$ for $p + 1 \leq i \leq q$
- $a_i = 0$ for $i \ge q + 1$

We define:

$$
v_i = \begin{cases} \frac{e_i}{\sqrt{a_i}} & 1 \leq i \leq p \\ \frac{e_i}{\sqrt{|a_i|}} & p+1 \leq i \leq q \\ e_i & i \geq q+1 \end{cases}
$$

Then let $\mathcal{B} = (v_1, \ldots, v_n)$ and then $[\varphi]_{\mathcal{B}}$ has the announced form.

 \Box

Definition (signature). We define (under the assumptions above)

$$
s(\varphi) = p - q \equiv
$$
 signature of φ

(we also speak of the signature of the associated quadratic form $Q(u) = \varphi(u, u)$)

This definition makes sense:

Theorem (Sylvester's law of inertia). $F = \mathbb{R}$, dim_R $V < \infty$, φ symmetric bilinear form on V. If φ is represented by:

with $\mathcal{B}, \mathcal{B}'$ bases of V. Then $p = p'$ and $q = q'$.

Definition. φ be a symmetric bilinear form on a real valued vector space $(F = \mathbb{R})$. We say that:

(i) φ is positive definite

$$
\iff \forall u \in V \setminus \{0\}, \quad \varphi(u, u) > 0
$$

(ii) φ is positive semi definite

$$
\iff \forall u \in V, \quad \varphi(u, u) \ge 0
$$

(iii) φ is negative definite

$$
\iff \forall u \in V \setminus \{0\}, \quad \varphi(u, u) < 0
$$

(iv) φ is negative semi definite

$$
\iff \forall u \in V, \quad \varphi(u, u) \le 0
$$

Example.

$$
\left(\begin{array}{c|c}I_p & 0 \\ \hline 0 & 0\end{array}\right)
$$

positive definite for $p = n$

• positive semi definite for $p \leq n$.

Proof. (Of Sylvester's law of inertia)

In order to prove that p is independent of the choice of the basis, we show that p has a geometric interpretation:

Claim: p is the largest dimension of subspace on which φ is positive definite. Proof:

Say $\mathcal{B} = (v_1, \ldots, v_n)$ in which:

(1) Let $X = \langle v_1, \ldots, v_p \rangle$. Then φ is positive definite on X. Indeed, $u = \sum_{i=1}^p \lambda_i v_i$,

$$
Q(u) = \varphi(u, u)
$$

= $\varphi\left(\sum_{i=1}^{p} \lambda_i v_i, \sum_{i=1}^{p} \lambda_i v_i\right)$
= $\sum_{i,j=1}^{n} \lambda_i \lambda_j \varphi(v_i, v_j)$
= $\sum_{i=1}^{p} \lambda_i^2$ > 0 for $u \neq 0$

dim $X = p$, $\varphi|_{X \times X}$ is positive definite.

(2) Suppose that φ is definite positive when restricted to another subspace X'. Let $X = \langle v_1, \ldots, v_p \rangle, Y = \langle v_{p+1}, \ldots, v_n \rangle, \mathcal{B} = (v_1, \ldots, v_n).$ Then

 \implies We know that φ is negative semi definite on Y. So $Y \cap X' = \{0\}$. Indeed, if $u \in Y \cap X'$ and $u \neq 0$, then $u \in Y$ so $\varphi(u, u) \leq 0$, but $u \in X'$ so $\varphi(u, u) > 0$. So $Y \cap X' = \{0\}$. So $Y + X' = Y \oplus X'$, so dim $Y + \dim X' \le n$, and dim $Y = n - p$ so $\dim X' \leq p.$

So now we know that p has a geometric interpretation $/$ is unique. Then by considering $-\varphi$, we find that q is unique too. \Box

Remark. Similarly, q is the largest dimension of a subset on which φ is negative definite.

Definition. $K = \text{kernel of a bilinear form } \varphi = \{v \in V \mid \forall u \in V, \varphi(u, v) = 0\}.$

Remark. dim $K + r(\varphi) = n$

Remark. $F = \mathbb{R}$. One notices that there is a subspace T of dimension $n - (p +$ q) + min{ p, q } such that $\varphi|_T = 0$. Indeed: $\mathcal{B} = (v_1, \ldots, v_n)$,

$$
\left[\begin{array}{c}\n\mathcal{C} \\
\mathcal{C}\n\end{array}\right]_{\mathcal{B}} \leq \left(\begin{array}{c}\n\mathcal{I}_{\phi} \\
\mathcal{I}_{\phi} \\
\mathcal{I}_{\phi}\n\end{array}\right)
$$
\n
$$
T = \langle v_1 + v_{p+1}, \dots, v_q + v_{p+q}, \underbrace{v_{p+q+1}, \dots, v_n}_{n-(p+q)} \text{ (if } p \geq q\text{). Check } \varphi|_T = 0 \text{ } (\forall (u, v) \in
$$
\n
$$
T \times T, \varphi(u, v) = 0\text{). Moreover, one can show that this is the largest dimension of a subspace } T' \text{ on which } \varphi|_{T' \times T'} = 0
$$

Sesquilinear Forms

- $F = \mathbb{C}$
- Standard *inner product* on \mathbb{C}^n is $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$. In particular,

$$
||x||^2 = \langle x, x \rangle = \underbrace{\sum_{i=1}^n |x_i|^2}_{\in \mathbb{R}^+}
$$

Warning. $\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$

$$
(x, y) \mapsto \langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}
$$

is *not* a bilinear form: $\lambda \in \mathbb{C}$,

$$
\langle \lambda x, y \rangle = \sum_{i=1}^{n} \lambda x_i \overline{y_i} = \lambda \langle x, y \rangle
$$

$$
\langle x, \lambda y \rangle = \sum_{i=1}^{n} x_i \overline{\lambda y_i} = \overline{\lambda} \langle x, y \rangle
$$

 \rightarrow antilinear with respect to the second coordinate.

Definition. $V, W \n\mathbb{C}$ vector spaces. A sesquilinear form φ is a function $\varphi: V \times W \rightarrow$ C such that:

- (i) $\varphi(\lambda_1v_1 + \lambda_2v_2, w) = \lambda_1\varphi(v_1, w) + \lambda_2\varphi(v_2, w)$ (linear with respect to the first coordinate)
- (ii) $\varphi(v, \lambda_1w_1 + \lambda_2w_2) = \overline{\lambda_1}\varphi(v, w_1) + \overline{\lambda_2}\varphi(v, w_2)$ (antilinear with respect to the second coordinate).

Start of [lecture 20](https://notes.ggim.me/LA#lecturelink.20)

- $\dim_{\mathbb{C}} W < \infty$, $\dim_{\mathbb{C}} V < \infty$, φ sesquilinear, $V \times W \to \mathbb{C}$
	- linear first variable: $\varphi(\lambda u, v) = \lambda \varphi(u, v)$
	- multilinear second variable $\varphi(u, \lambda v) = \overline{\lambda} \varphi(u, v)$

Definition. $\mathcal{B} = (v_1, \ldots, v_m)$ basis of $V, \mathcal{C} = (w_1, \ldots, w_n)$ basis of W .

$$
[\varphi]_{\mathcal{B},\mathcal{C}}=(\varphi(v_i,w_j))
$$

 $m \times n$ matrix.

Lemma. $\varphi(v,w) = [v]_B^{\top}[\varphi]_{\mathcal{B},\mathcal{C}} \overline{[w]_{\mathcal{B}}}$

Proof. Exercise.

Lemma. *B*, *B'* basis for *V*,
$$
P = [\text{id}]_{B',B}, C, C'
$$
 basis for *W*, $Q = [\text{id}]_{C',C}$. Then

$$
[\varphi]_{B',C'} = P^{\top}[\varphi]_{B,C}\overline{Q}
$$

Proof. Exercise.

1.22 Hermitian Forms / C, Skew Symmetric forms / R

Hermitian form

 $\dim_{\mathbb{C}} V < \infty, \varphi : V \times V \to \mathbb{C}$ sesquilinear $(W = V)$.

Definition (Hermitian form). A sesquilinear form $\varphi : V \times V \to \mathbb{C}$ is called *Hermi*tian if $\forall (u, v) \in V \times V, \quad \varphi(u, v) = \overline{\varphi(v, u)}$

 \Box

Remark. φ Hermitian

$$
\implies \varphi(u, u) = \overline{\varphi(u, u)}
$$

$$
\implies \forall u \in V, \varphi(u, u) \in \mathbb{R}
$$

Allows us to speak of positive / negative (semi) definite Hermitian form.

Lemma. A sesquilinear form $\varphi: V \times V \to \mathbb{C}$ is Hermitian if and only if $\forall \mathcal{B}$ basis of V ,

$$
[\varphi]_{\mathcal{B}} = [\varphi]_{\mathcal{B}}^{\top}
$$

Proof. $A = [\varphi]_B = (a_{ij})_{1 \le i,j \le n}$, $a_{ij} = \varphi(e_i, e_j)$. Then $a_{ij} = \varphi(e_i, e_j)$, $a_{ji} = \varphi(e_j, e_i)$ $\varphi(e_i, e_j) = \overline{a_{ij}}.$

$$
\implies [\varphi]_B^\top = \overline{[\varphi]}_B
$$

Conversely $[\varphi]_{\mathcal{B}} = A, A = \overline{A^{\top}}$

$$
u = \sum_{i=1}^{n} \lambda_i e_i
$$

$$
v = \sum_{i=1}^{n} \mu_i e_i
$$

 $\mathcal{B} = (e_1, \ldots, e_n)$

$$
\varphi(u, v) = \varphi\left(\sum_{i=1}^{n} \lambda_i e_i, \sum_{i=1}^{n} \mu_i e_i\right)
$$

$$
= \sum_{i,j=1}^{n} \lambda_i \overline{\mu_j} \varphi(e_i, e_j)
$$

$$
= \sum_{i,j=1}^{n} \lambda_i \overline{\mu_j} a_{ij}
$$

Then

$$
\overline{\varphi(v,u)} = \overline{\varphi\left(\sum_{i=1}^{n} \mu_i e_i, \sum_{i=1}^{n} \lambda_i e_i\right)}
$$

$$
= \sum_{i=1}^{n} \mu_i \overline{\lambda_j} \varphi(e_i, e_j)
$$

$$
= \sum_{i,j=1}^{n} \overline{\mu_i} \lambda_j \overline{a_{ij}}
$$

$$
= \sum_{i,j=1}^{n} \lambda_i \overline{\mu_j a_{ji}}
$$

$$
= \sum_{i,j=1}^{n} \lambda_i \overline{\mu_j} a_{ij}
$$

$$
= \varphi(u, v)
$$

Polarization identity

A Hermitian form φ on a complex vector space V is entirely determined by: $Q: V \to \mathbb{R}$, $u \mapsto \varphi(u, u)$ via the formula:

$$
\varphi(u, v) = \frac{1}{4}[Q(u + v) - Q(u - v) + iQ(u + iv) - iQ(u - iv)]
$$

= polarization identity for Hermitian forms

Proof. Exercise (just check).

Theorem (Sylvester's law of inertia for Hermitian forms). $\dim_{\mathbb{C}} V < \infty$, $\varphi : V \times$ $V \to \mathbb{C}$ a Hermitian form on V. Then $\exists \mathcal{B} = (v_1, \ldots, v_n)$ basis of V:

where P and q depend only on φ .

 $\hfill \square$

Proof. (Sketch: nearly identical to the real case of symmetric forms).

Existence: $\varphi \equiv 0$, done. Assume $\varphi \neq 0$, then the polarization identity ensures that there exists $e_1 \neq 0$ such that

$$
\varphi(e_1, e_1) \neq 0
$$

Rescale:

$$
v_1 = \frac{e_1}{\sqrt{|\varphi(e_1, e_1)|}}
$$

 $\implies \varphi(v_1, v_1) = \pm 1$. Then we consider the orthogonal:

$$
W = \{ w \in V \mid \varphi(v_1, w) = 0 \}
$$

and we check (verbatim like in the real case)

$$
V=\langle v_1\rangle \oplus W
$$

 $(\dim W = n - 1)$. Now argue by induction on the dimension on V by considering $\varphi|_W$ which is Hermitian on $W \times W$.

 \bullet Uniqueness of p : As in the real case,

 $p \equiv$ maximal dimension of a subspace on which φ is definite positive $(\varphi(u, u) \in \mathbb{R})$ Similarly for q.

Skew Symmetric Real Valued Forms

 $F = \mathbb{R}, V$ vector space over $\mathbb{R}.$

Definition (skew symmetric). A bilinear form $\varphi: V \times V \to \mathbb{R}$ is skew symmetric if: $\varphi(u, v) = -\varphi(v, u) \quad \forall (u, v) \in V \times V$

This is also often called antisymmetric.

Remark. (i) $\varphi(u, u) = -\varphi(u, u)$ so $\varphi(u, u) = 0$. $\forall u \in V$. (ii) $\forall \mathcal{B}$ basis of V, $[\varphi]_{\mathcal{B}} = -[\varphi]_{\mathcal{B}}^{\top}$. (iii) $A \in \mathcal{M}_n(\mathbb{R}),$ $A=\frac{1}{2}$ $\frac{1}{2}(A + A^{\top}) + \frac{1}{2}(A - A^{\top})$ i.e. decomposition into symmetric and antisymmetric / skew symmetric parts.

Theorem (Sylvester for skew symmetric form). \bullet V vector space over R, dim_R V < ∞

 $\bullet \varphi : V \times V \to \mathbb{R}$ skew symmetric bilinear form. Then there exists \mathcal{B} basis of V ,

$$
\mathcal{B} = (v_1, w_1, v_2, w_2, \dots, v_m, w_m, v_{2m+1}, v_{2m+2}, \dots, v_n)
$$

such that

Corollary. Skew symmetric matrices have an even rank.

Proof. (Sketch). Induction on the dimension of V.

- $\varphi \equiv 0$ then done.
- $\varphi \neq 0 \implies \exists (v_1, v_w) \in V \times V$ such that $\varphi(v_1, w_1) \neq 0$.
- $v_1 \neq 0$, $w_1 \neq 0$, after scaling:

$$
\varphi(v_1, w_1) = 1
$$

\n
$$
\Rightarrow \varphi(w_1, v_1) = -1
$$

since skew symmetric.

 \bullet (v_1, w_1) linearly independent.

$$
\varphi(v_1, \lambda v_1) = \lambda \varphi(v_1, v_1) = 0
$$

since skew symmetric.

• Define $U = \langle v_1, w_1 \rangle$.

$$
W = \{ v \in V \mid \varphi(v_1, v) = \varphi(w_1, v) = 0 \}
$$

Exercise: show that $V = U \oplus W$.

• Now apply the induction hypothesis to $\varphi|_{W\times W}$ skew symmetric.

Inner Product Spaces

- definite positive bilinear forms:
	- \rightarrow Scalar product
	- \rightarrow Norm (distance)

 \implies SPECTACULAR generalisation / application to infinite dimensional spaces:

Hilbert Spaces

 \rightarrow part II (linear analysis, analysis of functions).

Definition (Inner product). Let V be a vector space over \mathbb{R} (respectively \mathbb{C}). An inner product is a positive definite symmetric (respectively Hermitian) bilinear form φ on V .

Notation. $\varphi(u, v) = \langle u, v \rangle$.

If such a bilinear form exists, V is called a real (respectively complex) inner product space.

Example. (i)
$$
\mathbb{R}^n
$$
, $x = (x_1, ..., x_n)^\top$, $y = (y_1, ..., y_n)^\top$,
 $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$

 \rightarrow inner product.

(ii) \mathbb{C}^n , $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i} \to \text{inner product.}$ (iii) $V = \mathcal{C}([0,1],\mathbb{C})$ $\langle f, g \rangle = \int_0^1$ 0 $f(t)g(t)dt$ " L^2 scalar product"

One can check that (i), (ii), (iii) are inner products.

$$
\langle u, u \rangle = 0 \implies u = 0
$$

 \rightarrow *definite* positive assumption.

Start of [lecture 21](https://notes.ggim.me/LA#lecturelink.21)

1.23 Gram Schmidt and orthogonal complement

• *V* vector space over $\mathbb R$ (or $\mathbb C$). An inner product is a *positive definite* symmetric (or Hermitian) bilinear form on V .

Notation. $\varphi(u, v) = \langle u, v \rangle$.

• Norm: $||v|| = \sqrt{\langle v, v \rangle}$ (the norm). Then $||v|| \ge 0$ and $||v|| = 0 \iff v = 0$.

 \rightarrow associated notion of length.

Lemma (Cauchy-Schwartz).

 $|\langle v, v \rangle| \leq ||u|| ||v||$

More over, equality holds if and only if u and v are proportional.

Proof. $f = \mathbb{R}$ or \mathbb{C} . Let $t \in F$, then

$$
0 \le ||tu - v||^2
$$

= $\langle tu - v, tu - v \rangle$
= $t\bar{t}\langle u, u \rangle - t\langle v, v \rangle - \bar{t}\langle v, u \rangle + ||v||^2$
= $|t|^2 ||u||^2 - 2 \operatorname{Re}(t\langle v, u \rangle) + ||v||^2$

Explicitly: the minimum is taken at $t = \frac{\langle u, v \rangle}{\|u\|^2}$ ∥u∥ 2

$$
\implies 0 \le \frac{|\langle u, v \rangle|^2}{\|u\|^2} \|u\|^2 - 2 \operatorname{Re} \left(\frac{|\langle u, v \rangle|^2}{\|u\|^2} \right) + \|v\|^2
$$

$$
\implies 0 \le \|v\|^2 - \frac{|\langle u, v \rangle|^2}{\|u\|^2}
$$

$$
\implies |\langle u, v \rangle|^2 \le \|u\|^2 \|v\|^2
$$

Exercise: equality $\implies u$ and v are proportional.

 \Box

Corollary (Triangle inequality).

$$
||u + v|| \le ||u|| + ||v|| \tag{*}
$$

 \rightarrow key to show that \parallel • \parallel is a norm.

Proof.

$$
||u + v||2 = \langle u + v, u + v \rangle
$$

= ||u||² + 2 Re($\langle u, v \rangle$) + ||v||²
 $\le ||u||2 + 2||u||||v|| + ||v||2$
= (||u|| + ||v||)²

 \Box

Definition. A set (e_1, \ldots, e_k) of vectors of V is

- (i) Orthogonal: if $\langle e_i, e_j \rangle = 0$ if $i \neq j$.
- (ii) Orthonormal: if $\langle e_i, e_i \rangle = \delta_{ij}$ where

$$
\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}
$$

Lemma. If (e_1, \ldots, e_k) is orthogonal, then

- (i) The family is free
- (ii) $v = \sum_{j=1}^{k} \lambda_j e_j$, then

Proof. (i) $\sum_{j=1}^{k} \lambda_j e_j = 0$

$$
\implies 0 = \left\langle \sum_{j=1}^{k} \lambda_j e_j, e_i \right\rangle = \sum_{j=1}^{k} \lambda_j \langle e_j, e_i \rangle = \lambda_i
$$

 $\lambda_j = \frac{\langle v, e_j \rangle}{\frac{||v - v||^2}{2}}$ ∥ej∥ 2

so the family is free.

(ii)
$$
v = \sum_{i=1}^{k} \lambda_i e_i
$$
.
\n $\implies \langle v, e_j \rangle = \lambda_j \langle e_j, e_j \rangle = \lambda ||e_j||^2$
\n $\implies \lambda_j = \frac{1}{||e_j||^2} \langle v, e_j \rangle$

Lemma (Parseval's Identity). If V is a finite dimensional inner product space and (e_1, \ldots, e_n) is an *orthonormal* basis, then

$$
\langle u, v \rangle = \sum_{i=1}^{n} \langle u, e_i \rangle \overline{\langle v, e_i \rangle}
$$

In particular, in an orthonormal basis,

$$
||v||^2 = \langle v, v \rangle = \sum_{i=1}^n |\langle v, e_i \rangle|^2
$$

$$
v = \sum_{i=1}^n \langle v, e_i \rangle e_i
$$

 $(||e_i|| = 1)$

Proof. $u = \sum_{i=1}^{n} \langle e, e_i \rangle e_i, ||e_1|| = 1, v = \sum_{i=1}^{n} \langle v, e_i \rangle e_i$

$$
\implies \langle u, v \rangle \left\langle \sum_{i=1}^n \langle u, e_i \rangle e_i, \sum_{i=1}^n \langle v, e_i \rangle e_i \right\rangle = \sum_{i=1}^n \langle u, e_i \rangle \overline{\langle v, e_i \rangle} \qquad \qquad \Box
$$

Theorem (Gram-Schmidt orthogonalisation process). V inner product space let I countable (finite) est and $(v_i)_{i\in I}$ linearly independent. Then there exists a sequence $(e_i)_{i\in I}$ of *orthonormal* vectors such that

$$
\mathrm{span}\langle v_1,\ldots,v_k\rangle=\mathrm{span}\langle e_1,\ldots,e_k\rangle
$$

 $\forall k \geq 1.$

 \rightarrow if dim $V < \infty$, then we have existence of an *orthonormal* basis.

Proof. We construct the $(e_i)_{i \in I}$ family by induction on k.

- $k = 1, v_1 \neq 0 \implies e_1 = \frac{v_1}{\|v_1\|}$ $\frac{v_1}{\|v_1\|}$.
- Say we found (e_1, \ldots, e_k) , we look for e_{k+1} .

We define:

$$
e'_{k+1} = v_{k+1} - \sum_{i=1}^{k} \langle v_{k+1}, e_i \rangle e_i
$$

• $e'_{k+1} \neq 0$. Indeed, otherwise,

$$
v_{k+1} \in \langle e_1, \ldots, e_k \rangle = \langle v_1, \ldots, v_k \rangle
$$

which would contradict the fact that $(v_i)_{i\in I}$ is free.

• Pick $1 \leq j \leq k$:

$$
\langle e'_{k+1}, e_j \rangle = \left\langle v_{k+1} - \sum_{i=1}^k \langle v_{k+1}, e_i \rangle e_i, e_j \right\rangle
$$

$$
= \langle v_{k+1}, e_j \rangle - \langle v_{k+1}, e_j \rangle
$$

$$
= 0
$$

•
$$
\langle v_1, \ldots, v_{k+1} \rangle = \langle e_1, \ldots, e_k, e'_{k+1} \rangle.
$$

• We take $e_{k+1} = \frac{e'_{k+1}}{\|e'_{k+1}\|}$

 \Box

 \implies Gram Schmidt designs an algorithm to compute e_k for all k .

Corollary. *V finite dimensional* inner product space. Then any orthonormal set of vectors can be extended to an orthonormal basis of V .

Proof. Pick (e_1, \ldots, e_k) orthonormal. Then they are linearly independent, so we can extend $(e_1, \ldots, e_k, v_{k+1}, \ldots, v_n)$ basis of V. Apply Gram-Schmidt to this set noticing that there is no need to modify the first k vectors.

$$
\implies (e_1,\ldots,e_k,e_{k+1},\ldots,e_n)
$$

orthonormal basis of V .

Note. $A \in \mathcal{M}_n(\mathbb{R})$, then A has *orthonormal* column vectors if and only if

$$
A^{\top} A = \text{id} \qquad (\mathbb{R})
$$

 $A^{\top} \overline{A} = id$ (C)

Definition. (i) $A \in \mathcal{M}_n(\mathbb{R})$ is *orthogonal* if:

$$
A^{\top} A = \text{id} \qquad (\iff A^{-1} = A^{\top})
$$

(ii) $A \in \mathcal{M}_n(\mathbb{C})$ is unitary if:

$$
A^{\top} \overline{A} = id \qquad (\iff A^{-1} = \overline{A^{\top}})
$$

Proposition. $A \in \mathcal{M}_n(\mathbb{R})$ (respectively $\mathcal{M}_n(\mathbb{C})$), then A can be written $A = RT$ where:

- T is upper triangular
- R is orthogonal (respectively unitary)

Proof. Exercise: apply Gram Schmidt to the (c_1, \ldots, c_n) column vectors of A. \Box

Orthogonal complement and projection

Definition. \bullet *V* inner product space • $V_1, V_2 \leq V$. We say that V is the *orthogonal* direct sum of V_1 and V_2 if: (i) $V = V_1 \oplus V_2$ (ii) $\forall v_1, v_2 \in V_1 \times V_2, \langle v_1, v_2 \rangle = 0$

Notation. $V = V_1 \overset{\perp}{\oplus} V_2$ $(V = V_1 + V_2)$ TODO...

Remark. $v \in V_1 \cap V_2$, $||v||^2 = \langle v, v \rangle = 0 \implies v = 0$.

Definition (orthogonal). *V* inner product space, $W \leq V$.

$$
W^{\perp} = \{v \in V \mid \langle v, w \rangle = 0 \,\forall w \in W\} =
$$
orthogonal of W

Lemma. *V* inner product space, dim $V < \infty$, $W \leq V$. Then

$$
V = W \stackrel{\perp}{\oplus} W^{\perp} \tag{*}
$$

Start of

[lecture 22](https://notes.ggim.me/LA#lecturelink.22) 1.24 Orthogonal complement and adjoint map

Definition. Suppose $V = U \oplus W$ (*U* is a complement of *W* in *V*). We define $\pi: V \to W$, $v = u + w \mapsto w$. Then

- π is linear
- $\bullet \ \pi^2 = \pi$

We say that π is the *projector operator* onto W.

Remark. id $\pi \equiv$ projection onto $U \rightarrow V$ inner product space, W finite dimensional, then we can chose $U = W^{\perp}$ and π is explicit.

Lemma. \bullet Let V be an inner product space

• Let $W \leq V$, W finite dimensional. Let (e_1, \ldots, e_k) be an orthonormal basis of W (given by Gram-Schmidt). Then

(i)
$$
\pi(v) = \sum_{i=1}^{k} \langle v, e_i \rangle e_i \ \forall v \in V
$$
 and $V = W \oplus W^{\perp}$.

(ii) $\forall v \in V, \forall w \in W,$

$$
||v - \pi(v)|| \le ||v - w||
$$

with equality if and only if $w = \pi(v)$ (that is $\pi(v)$ is the point in W closest to v).

Remark. Infinite dimensional generalisation:

- *V* inner product space \rightarrow *V* Hilbert space
- W finite dimensional \rightarrow W closed (completeness)
- \rightarrow part II class "Linear Analysis".

Proof. (i) $W = \text{span}\langle e_1, \ldots, e_k \rangle$, $(e_i)_{1 \leq i \leq k}$ orthogonal. Let us define

$$
\pi(v) = \sum_{i=1}^{k} \langle v, e_i \rangle e_i
$$

Observation:

$$
v = \underbrace{\pi(v)}_{\in W} + \underbrace{v - \pi(v)}_{\text{claim: }\in W^{\perp}}
$$

Indeed

$$
v - \pi(v) \in W^{\perp} \iff \forall w \in W, \langle v - \pi(v)w \rangle = 0
$$

$$
\iff \forall 1 \le j \le k, \langle v - \pi(v), e_j \rangle = 0
$$

We compute:

$$
\langle v - \pi(v), e_j \rangle = \left\langle v - \sum_{i=1}^k \langle v, e_i \rangle e_i, e_j \right\rangle
$$

$$
= \langle v, e_j \rangle - \langle v, e_j \rangle
$$

$$
= 0
$$

We have shown $v-\pi(v)\in W^\perp$ Hence

$$
v = \underbrace{\pi(v)}_{\in W} + \underbrace{(v - \pi(v))}_{\in W^{\perp}}
$$

$$
\implies V = W + W^{\perp}
$$

And $v \in W \cap W^{\perp}$

$$
\implies ||v||^2 = \langle \underbrace{v}_{\in W}, \underbrace{v}_{\in W^{\perp}} \rangle = 0
$$

$$
\implies v = 0
$$

So

$$
V = W \stackrel{\perp}{\oplus} W^{\perp}
$$

(ii) Indeed, let $w \in W$, then

$$
||v - w||2 = ||\underbrace{v - \pi(v)}_{\in W^{\perp}} + \underbrace{\pi(v) - w}_{\in W}||2
$$

= $\langle v - \pi(v) + \pi(v) - w, v - \pi(v) + \pi(v) - w \rangle$
= $||v - \pi(v)||^{2} + ||\pi(v) - w||^{2}$
 $\ge ||v - \pi(v)||^{2}$

With equality if and only if $w = \pi(w)$. PYTHAGORAS.

Adjoint map

Definition. Let V, W be finite dimensional inner product spaces, let $\alpha \in \mathcal{L}(V, W)$. Then there exists a *unique* linear map

$$
\alpha^*:W\to W
$$

such that $\forall (v, w) \in V \times W$,

$$
\langle \alpha(v), w \rangle = \langle v, \alpha^*(w) \rangle
$$

Moreover, if β is an orthonormal basis of V and C is an orthonormal basis of W then

$$
[\alpha^*]_{\mathcal{C},\mathcal{B}} = [\alpha]_{\mathcal{B},\mathcal{C}}^{\top}
$$

Proof. Computation: $\mathcal{B} = (v_1, \ldots, v_n), \mathcal{C} = (w_1, \ldots, w_m), A = [\alpha]_{\mathcal{B},\mathcal{C}} = (a_{ij}).$ Existence ⊤

$$
[\alpha^*]_{\mathcal{C},\mathcal{B}} = \overline{A}^{\perp} = C = (c_{ij})
$$

 $c_{ij} = \overline{a_{ji}}$. We compute:

$$
\left\langle \alpha \left(\sum_{i} \lambda_{i} v_{i} \right), \sum_{j} \mu_{j} w_{j} \right\rangle = \left\langle \sum_{i,k} \lambda_{i} a_{ki} w_{k}, \sum_{j} \mu_{j} w_{j} \right\rangle
$$
\n
$$
= \sum_{i,j} \lambda_{i} a_{ji} \overline{\mu_{j}}
$$
 (orthonormal)

Then

$$
\left\langle \sum_{i} \lambda_i v_i, \alpha^* \left(\sum_{j} \mu_j w_j \right) \right\rangle = \left\langle \sum_{i} \lambda_i v_i, \sum_{j,k} \mu_j c_{kj} v_k \right\rangle
$$

$$
= \sum_{i,j} \lambda_i \overline{c_{ij} \mu_j}
$$

So the expressions are equal because $\overline{c_{ij}} = a_{ji}$. So this proves existence. Uniqueness follows by computing $\alpha^*(w_j) \to$ exercise. \Box

Remark. We are using the same notation α^* for the adjoint of α and the dual of α . *V*, *W* are real product spaces, $\alpha \in \mathcal{L}(V, W)$,

$$
\psi_{R,V}: V \xrightarrow{\simeq} V^*
$$

$$
v \mapsto \langle \bullet, v \rangle
$$

$$
\psi_{R,W}: W \xrightarrow{\simeq} W^*
$$

$$
w \mapsto \langle \bullet, w \rangle
$$

Then the adjoint map of α is given by:

$$
W \xrightarrow{\psi_{R,W}} W^* \xrightarrow{\text{dual of }\alpha} V^* \xrightarrow{\psi_{R,V}^{-1}} V
$$

Self adjoint maps and isometries

Definition. V inner product space finite dimensional $\alpha \in \mathcal{L}(V)$, $\alpha^* \in \mathcal{L}(V)$ the adjoint map. Then:

- $\langle \alpha v, w \rangle = \langle v, \alpha w \rangle \ \forall (v, w) \in V \times V \iff \alpha = \alpha^*$. We call such a map self adjoint. (\mathbb{R} α symmetric, \mathbb{C} α Hermitian).
- $\langle \alpha v, \alpha w \rangle = \langle v, w \rangle \ \forall (v, w) \in V \times V \iff \alpha^* = \alpha^{-1}$ we call an isometry. ($\mathbb{R} \alpha$ orthogonal, $\mathbb C$ α unitary).

Proof. Check the equivalence that preserving the scalar product

$$
(\langle \alpha v, \alpha w \rangle = \langle v, w \rangle \qquad \forall (v, w) \in V \times V)
$$

is equivalent to (α invertible and $\alpha^* = \alpha^{-1}$)

 $\Rightarrow \langle \alpha v, \alpha w \rangle = \langle v, w \rangle \ \forall (v, w) \in V \times V$. Use $v = w$:

$$
\|\alpha v\|^2 = \langle \alpha v, \alpha v \rangle = \langle v, v \rangle = \|v\|^2
$$

(α preserves the norm: isometry) So ker $\alpha = \{0\}$, so α bijective, α^{-1} well defined. (since finite dimensional). $\alpha \in \mathcal{L}(V)$, Then $\forall (v, w) \in V \times V$,

T ODO

$$
\implies \forall v \in V, \langle v, \alpha^* w \rangle = \langle v, \alpha^{-1} w \rangle
$$

$$
\implies \forall v \langle v, \alpha^* w - \alpha^{-1} w \rangle = 0
$$

I take $v = \alpha^* w - \alpha^{-1} \omega$

$$
\implies \alpha^* w = \alpha^{-1} w \,\forall w \in V
$$

$$
\implies \alpha^* = \alpha^{-1}
$$

1. $\alpha \in \mathcal{L}(V)$, $\alpha^* = \alpha^{-1}$, then

$$
\langle \alpha v, \alpha w \rangle = \langle v, \alpha^* \alpha w \rangle = \langle v, w \rangle \qquad \Box
$$

TODO

 α isometry $(\alpha = \alpha^{-1})$

$$
\iff \forall (v, w) \in V \times V \langle \alpha v, \alpha w \rangle = \langle v, w \rangle
$$

$$
\iff \forall v \in V, ||\alpha(v)|| = ||v||
$$

(preservation of scalar product \iff preservation of the norm)

Lemma. V finite dimensional real (complex) inner product space. Then $\alpha \in \mathcal{L}(V)$ is:

- (i) Self adjoint if and only if in any orthonormal basis of V, $[\alpha]_B$ is symmetric (Hermitian).
- (ii) An isometry if and only if in any orthonormal basis of V, $[\alpha]$ _B is orthogonal (unitary).

Proof. B orthonormal basis,

$$
[\alpha^*]_{\mathcal{B}} = \overline{[\alpha]_{\mathcal{B}}^{\top}}
$$

• Self adjoint
$$
\overline{[\alpha^*]^{\mathsf{T}}_{\mathcal{B}}} = [\alpha]_{\mathcal{B}}
$$

• Isometry
$$
\overline{[\alpha]_{\mathcal{B}}^{\top}} = [\alpha]_{\mathcal{B}}^{-1}
$$
.

Definition. V finite dimensional inner product space.

$$
\bullet \ \ F = \mathbb{R},
$$

 $\theta(V) = {\alpha \in \mathcal{L}(V), \alpha \text{ isometry}} \equiv \text{orthogonal group of } V$

$$
\bullet \ \ F=\mathbb{C},
$$

$$
U(V) = \{ \alpha \in L(V), \text{aisometry} \} \equiv \text{unitary group of } V
$$

Remark. *V* finite dimensional, $\{e_1, \ldots, e_n\}$ orthonormal basis.

- $F = \mathbb{R}, \theta(V) \leftrightarrow \{\text{orthonormal basis of } V\}, \alpha \mapsto (\alpha(e_1, \dots, \alpha(e_n)).$
- $F = \mathbb{C}, U(V) \leftrightarrow \{\text{orthonormal basis of } V\}, \alpha \mapsto (\alpha(e_1, \ldots, \alpha(e_n)).$
Start of

[lecture 23](https://notes.ggim.me/LA#lecturelink.23) 1.25 Spectral theory for self adjoint maps

- Spectral theory \equiv study of the spectrum of operators
	- \rightarrow mathematics
	- \rightarrow physics (QUANTUM MECHANICS)
	- \Rightarrow INFINITE DIMENSIONAL. Finite dimension \rightarrow infinite dimension. Linear maps \rightarrow Hilbert space / compact operator.
- Adjoint operator: V, W finite dimensional inner product spaces, $\alpha \in \mathcal{L}(V, W)$, then the adjoint $\alpha^* \in \mathcal{L}(W, V)$ such that $\forall (v, w) \in V \times W$,

$$
\langle \alpha(v), w \rangle_W = \langle v, \alpha^*(w) \rangle_V
$$

We defined:

- Self adjoint maps, $V = W$, $\alpha = \alpha^*$,

$$
\iff \forall (v, w) \in V \times V, \quad \langle \alpha v, w \rangle = \langle v, \alpha w \rangle
$$

- isometries $V = W$, $\alpha^* = \alpha^{-1}$

$$
\iff \forall (v, w) \in V \times V, \quad \langle \alpha v, \alpha w \rangle = \langle v, w \rangle
$$

- R: orthogonal group
- \mathbb{C} : unitary group.

Spectral theory for self adjoint operators

Lemma. Let V be a finite dimensional inner product space. Let $\alpha \in \mathcal{L}(V)$ be self adjoint: $(\alpha = \alpha^*)$. Then:

- (i) α has real eigenvalues
- (ii) eigenvectors of α with respect to *different* eigenvalues are orthogonal.

Proof. (i) $v \in V \setminus \{0\}, \lambda \in \mathbb{C}$ such that $\alpha v = \lambda v$. Then

$$
\lambda ||v||^2 = \langle \lambda v, v \rangle
$$

= $\langle \alpha v, v \rangle$
= $\langle v, \alpha^* v \rangle$
= $\langle v, \alpha v \rangle$
= $\langle v, \lambda v \rangle$
= $\overline{\lambda} ||v||^2$

So $(\lambda - \overline{\lambda}) \|v\|^2 = 0$. But $\|v\|^2 \neq 0$ since $v \neq 0$ so $\lambda = \overline{\lambda}$ so $\lambda \in \mathbb{R}$.

(ii) $\alpha v = \lambda v, \, \lambda \in \mathbb{R}, v \neq 0.$ $\alpha w = \mu w, \, \mu \in \mathbb{R}, w \neq 0.$ Also $\lambda \neq \mu$. Then

$$
\lambda \langle v, w \rangle = \langle \lambda v, w \rangle \n= \langle \alpha v, w \rangle \n= \langle v, \alpha^* w \rangle \n= \langle v, \alpha w \rangle \n= \langle v, \mu w \rangle \n= \overline{\mu} \langle v, w \rangle \n= \mu \langle v, w \rangle
$$

So $(\lambda - \mu)\langle v, w \rangle = 0$. But $\lambda \neq \mu$ so $\langle v, w \rangle = 0$.

 \Box

Theorem. Let V be a finite dimensional inner product space. Let $\alpha \in \mathcal{L}(V)$ be self adjoint $(\alpha = \alpha^*)$. Then V has an *orthonormal* basis made of eigenvectors of α .

 \rightarrow We also say: α can be diagonalised in an orthonormal basis for V.

Proof. $F = \mathbb{R}$ or \mathbb{C} . We argue by induction on the dimension of V, $\dim_F V = n$.

- $n = 1 \rightarrow$ trivial.
- $n-1 \rightarrow n$. B any orthonormal basis of V say $A = [\alpha]_B$. By the fundamental Theorem of Algebra, we know that $\chi_A(t)$ (\equiv characteristic polynomial of A) has a complex root. This root is an eigenvalue of α and $\alpha = \alpha^* \implies$ this root is real. Let us call $\lambda \in \mathbb{R}$ this eigenvalue, pick an eigenvector $v_1 \in V \setminus \{0\}$ such that $||v_1|| = 1, \, \alpha v_1 = \lambda v_1.$ Let $U = \langle v_1 \rangle^{\perp} \leq V.$ Then KEY OBSERVATION: U stable by α , i.e. $\alpha(U) \leq U$. Indeed, let $u \in U$, then:

$$
\langle \alpha u, v_1 \rangle = \langle u, \alpha v_1^* \rangle
$$

= $\langle u, \alpha v_1 \rangle$
= $\langle u, \lambda v_1 \rangle$
= $\lambda \langle u, v_1 \rangle$
= 0

So $\alpha(u) \in U$. This implies: we may consider $\alpha|_U \in \mathcal{L}(U)$ and self adjoint, and then $n = \dim V = \dim U + 1$, so $\dim U = n - 1$ so by induction hypothesis there exists (v_2, \ldots, v_n) orthonormal basis of eigenvectors for $\alpha|_U$. Then $V = \langle v_1 \rangle \stackrel{\perp}{\oplus} U$ so (v_1, \ldots, v_n) orthonormal basis of V made of eigenvectors of α .

 \Box

Remark. If you want to think in terms of matrices for the proof of (ii), then the choice of U means that $[A]$ is written as

$$
(A)^{\frac{1}{2}}\left(\begin{array}{c}\begin{matrix}\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{matrix}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}\end{array}&\begin{matrix}\begin{matrix}1\\1\end{matrix}\\0\end{matrix}&
$$

Corollary. V finite dimensional inner product space. If $\alpha \in \mathcal{L}(V)$ is self adjoint, then V is the *orthogonal direct sum* of all the eigenspaces of α .

Spectral theory for unitary maps

Lemma. *V* be a *complex* inner product space (Hermitian sesquilinear structure). Let $\alpha \in \mathcal{L}(V)$ be unitary $(\alpha^* = \alpha^{-1})$. Then

- (i) all the eigenvalues of α lie on the unit circle
- (ii) eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. (i) $\alpha v = \lambda v, v \neq 0, \lambda \in \mathbb{C}$.

- $\lambda \neq 0$: α unitary implies α invertible.
- \bullet

$$
\lambda ||v||^2 = \lambda \langle v, v \rangle
$$

\n
$$
\langle \lambda v, v \rangle
$$

\n
$$
= \langle \alpha v, v \rangle
$$

\n
$$
= \langle v, \alpha^* v \rangle
$$

\n
$$
= \langle v, \alpha^{-1} v \rangle
$$

\n
$$
= \langle v, \frac{1}{\lambda} v \rangle
$$

\n
$$
= \frac{1}{\lambda} ||v||^2
$$

So $\lambda \|v\|^2 = \frac{1}{2}$ $\frac{1}{\lambda}||v||^2$ so since $v \neq 0$, $\lambda \overline{\lambda} = 1$, i.e. $|\lambda| = 1$. $\alpha v = \lambda v, \, \alpha w = \mu w, \, \lambda, \mu \neq 0, \, \mu \neq \lambda.$ Then

$$
\lambda \langle v, w \rangle = \langle \lambda v, w \rangle \n= \langle \alpha v, w \rangle \n= \langle v, \alpha^* w \rangle \n= \langle v, \alpha^{-1} w \rangle \n= \left\langle v, \frac{1}{\mu} w \right\rangle \n= \frac{1}{\overline{\mu}} \langle v, w \rangle \n= \mu \langle v, w \rangle
$$

(by (i)). So $(\lambda - \mu)\langle v, w \rangle = 0$. But $\lambda \neq \mu$ so $\langle v, w \rangle = 0$.

Theorem (Spectral theory for unitary maps). Let V be a finite dimensional *complex* inner product space. Let $\alpha \in \mathcal{L}(V)$ be unitary $(\alpha^* = \alpha^{-1})$. Then V has an orthonormal basis made of eigenvectors of α .

 \rightarrow Equivalently, α unitary on V Hermitian can be diagonalised in an orthonormal basis.

Proof. Pick B any orthonormal basis of V. $A = [\alpha]_B$. Then $\chi_A(t)$ (= characteristic polynomial of A) has a *complex* root. So α has a *complex* eigenvalue. Fix $v_1 \in V \setminus \{0\}$ with $||v_1|| \neq 0$, $\alpha v_1 = \lambda v_1$. Let $U = \langle v_1 \rangle^{\perp}$. Then: KEY OBSERVATION: $\alpha(U) \leq U$. Indeed: $u \in U$, then

$$
\langle \alpha u, v_1 \rangle = \langle u, \alpha^* v_1 \rangle
$$

= $\langle u, \alpha^{-1} v_1 \rangle$
= $\langle u, \frac{1}{\lambda} v_1 \rangle$
= $\frac{1}{\overline{\lambda}} \langle u, v_1 \rangle$
= 0

 \implies $\alpha u \in U$, so $\alpha(U) \leq U$. We argue by induction on dim_C $V = n$. We consider $\alpha|_U \in \mathcal{L}(U)$ which is unitary, and by the induction hypothesis, $\alpha|_U$ is diagonalisable in an orthonormal basis (v_2, \ldots, v_n) of $U \implies (v_1, \ldots, v_n)$ is an orthonormal basis of V, made of eigenvectors of α . \Box

 \Box

Warning. We used the complex structure to make sure that there is an eigenvalue (which is a priori complex valued).

In general, a real valued orthonormal matrix $(AA^{\top} = id)$ cannot be diagonalised over R.

Example (Rotation map in \mathbb{R}^2).

$$
A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}
$$

$$
\chi_A(\lambda) = (\cos \alpha - \lambda)^2 + \sin^2 \alpha
$$

Then the eigenvalues are $\lambda = e^{\pm i\alpha}$ (\notin generally). (Hence diagonalisable in $\mathbb C$ but not \mathbb{R}).

Start of

[lecture 24](https://notes.ggim.me/LA#lecturelink.24) 1.26 Application to bilinear forms

Diagonalisation of self adjoint / unitary operators.

Theorem 1. Let V be a finite dimensional inner product space (over \mathbb{R} or \mathbb{C}). Let $\alpha \in \mathcal{L}(V)$ be self adjoint $(\alpha = \alpha^*)$. Then there exists an **orthonormal** basis of V made of *eigenvectors* of α .

Theorem. Let V be a finite dimensional *complex* inner product space. Let $\alpha \in \mathbb{R}$ $\mathcal{L}(V)$ be unitary $(\alpha^* = \alpha^{-1})$. Then there exists an *orthonormal* basis of V made of *eigenvectors* of α .

These theorems are so important we stated them twice!

Translate these statements for bilinear forms.

Corollary. let $A \in \mathcal{M}_n(\mathbb{R})$ (respectively \mathbb{C}) be a symmetric (respectively Hermitian) matrix. Then there is an orthogonal (respectively unitary) matrix such that P^TAP (respectively $P^{\dagger}AP$) is diagonal with real valued entries.

Remark. $P^{\dagger} = \overline{P}^{\top}$

Proof. $F = \mathbb{R}(\mathbb{C})$. Let \langle, \rangle be the standard inner product over \mathbb{R}^n . Then $A \in \mathcal{L}(F^n)$ is self adjoint, hence we can find an orthonormal (for the standard inner product) basis of $Fⁿ$ such that A is diagonal in this basis, say (v_1, \ldots, v_n) . Let $P = (v_1 \mid \cdots \mid v_n)$

$$
(v_1, \ldots, v_n)
$$
 orthonormal basis \iff P orthogonal (unitary)
 \iff $P^{\top}P = \text{id}(P^{\dagger}P = \text{id})$

So $P^{-1}AP = P^{T}AP = D$, and we know λ_i are real, they are the eigenvalues of a symmetric operator. \Box

Corollary. Let V be a finite dimensional real (complex) inner product space. Let $\varphi: V \times V \to F$ be a symmetric (Hermitian) bilinear form. Then there is an orthonormal basis of V such that φ in this basis is represented by a diagonal matrix.

Proof. Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be any orthonormal basis of V. Let $A = [\varphi]_{\mathcal{B}}$. Then since φ is symmetric (Hermitian), $A^{\top} = A$ ($\dagger = A$), hence there is an orthogonal (unitary) matrix P such that $P^{\top}AP$ ($P^{\dagger}AP$) is diagonal, say D. Let v_i be the *i*-th row of P^{\top} (P^{\dagger}) , then $\{v_1, \ldots, v_n\}$ is an orthonormal basis say \mathcal{B}' of V and $[\varphi]_{\mathcal{B}'} = D$. (We are using the change of basis for bilinear forms). \Box

Remark. Diagonal entries of $P^{\top}AP$ ($P^{\dagger}AP$) are exactly the eigenvalues of A. Moreover:

 $\Delta(\varphi) = \#(\text{positive eigenvalues of } A) - \#(\text{negative eigenvalues of } A)$

 $(\text{recall } \Delta \text{ is the signature of a bilinear form})$

Important corollary

Corollary (Simultaneous diagonalisation of Hermitian forms). Let V be a finite dimensional real (complex) vector space. Let:

$$
\varphi, \psi: V \times V \to F
$$

 φ, ψ are bilinear symmetric (Hermitian) forms. And suppose φ is positive definite. Then there exists (v_1, \ldots, v_n) basis of V with respect to which both bilinear forms are represented by a diagonal matrix.

Proof. φ is positive definite so φ induces a scalar product on V, V equipped with φ is a finite dimensional inner product space:

 $\langle u, v \rangle = \varphi(u, v)$

Hence there exists an *orthonormal* (for the φ induced scalar product) basis of V in which ψ is represented by a diagonal matrix. Observe that φ in this basis is represented by the Identity matrix (because the basis orthonormal for φ : $\mathcal{B} = (v_1, \ldots, v_n), \langle v_i, v_j \rangle = \delta_{ij}$ \Box $\varphi(v_i, v_j)$ So both matrices of φ and ψ in $\mathcal B$ are diagonal.

Corollary (Matrix reformulation of simultaneous diagonalisation). Let $A, B \in$ $\mathcal{M}_n(\mathbb{R})$ (respectively $\mathcal{M}_n(\mathbb{C})$), both symmetric (respectively Hermitian). Assume $\forall x \neq 0, \overline{x}^{\top}Ax > 0$. Then there exists $Q \in M_n(\mathbb{R})$ (respectively $M_n(\mathbb{C})$) invertible such that both $Q^{\top}AQ$ (respectively $Q^{\dagger}AQ$) and $Q^{\top}BQ$ (respectively $Q^{\dagger}BQ$) are diagonal.

Proof. Direct consequence of the simultaneous diagonalisation Theorem.

 \Box