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Start of
lecture 1 1 Vector spaces and subspaces

Let F be an arbitrary field (eg R or C).

Definition (F vector space). An F vector space (a vector space over F ) is an
abelian group (V,+) equipped with a function

F × V → V

(λ, v) 7→ λv

such that:

� λ(v1 + v2) = λv1 + λv2

� (λ1 + λ2)v = λ1v + λ2v

� λ(µv) = (λµ)v

� 1v = v

We know how to

� sum two vectors

� multiply a vector v ∈ V by a scalar λ ∈ F .

Examples

(i) n ∈ N, Fn: column vectors of length n with entries in F :

v ∈ Fn, v =

∣∣∣∣∣∣∣
x1
...
xn

, xi ∈ F, 1 ≤ i ≤ n

v + w =

∣∣∣∣∣∣∣
v1
...
vn

+

∣∣∣∣∣∣∣
w1
...
wn

=

∣∣∣∣∣∣∣
v1 + w1

...
vn + wn

λv =

∣∣∣∣∣∣∣
λv1
...

λvn

λ ∈ F

check: Fn is an F vector space.
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(ii) Any set X,
RX = {f : X → R}

(set of real valued functions on X) Then RX is an R vector space

(f1 + f2)(x) = f1(x) + f2(x)

(λf)(x) = λf(x), λ ∈ R

(iii) Mn,m(F ) ≡ n×m F valued matrices. Sum is sum of entries, λM = (λmij).

Remark. The axiom of scalar multiplication imply that:

∀ v ∈ V, 0F v = 0V

Definition (Subspace). Let V be a vector space over F . A subset U of V is a
vector subspace of V (denoted U ≤ V ) if:

� 0V ∈ U

� (u1, u2) ∈ U × U =⇒ u1 + u2 ∈ U

� ∀ (λ, u) ∈ F × U, λu ∈ U .

The last two properties can be combined into a single property:

� ∀(λ1, λ2, u1, u2) ∈ F × F × U × U, λ1u1 + λ2u2 ∈ U (∗)

Property (∗) means that U is stable by

� scalar multiplication

� vector addition

Example. V is an F vector space, and U ≤ V . Then U is an F vector space.

Examples

(1) V = RR space of functions f : R → R.
� Let C(R) be the space of continuous functions f : R → R. Then C(R) ≤ V .

� Let P(R) be the space of polynomials of one variable. Then P(R) ≤ V .
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(2) Let

V =


∣∣∣∣∣∣
x1
x2
x3

∈ R3 : x1 + x2 + x3 = t


check: that this is a subspace of R3 for t = 0 only.

Warning. The union of two subspaces is generally not a subspace. (It is typically
not stable by addition).

Example. V = R2, with U1 = {(x, 0) : x ∈ R}, U2 = {(0, y) : y ∈ R}. Both
subspaces, but the union isn’t since

(1, 0)︸ ︷︷ ︸
∈U1

+(0, 1)︸ ︷︷ ︸
∈U2

= (1, 1) ̸∈ U ∪ V

Proposition. Let V be an F vector space. Let U,W ≤ V . Then

U ∩W ≤ V

Proof. � 0 ∈ U, 0 ∈W =⇒ 0 ∈ U ∩W .

� Stability: let (λ1, λ2, v1, v2) ∈ F × F × (U ∩W )× (U ∩W ). Then

λ1v1︸︷︷︸
∈U

+λ2v2︸︷︷︸
∈U

∈ U

and similarly for W , hence

λ1v1 + λ2v2 ∈ U ∩W

Definition (Sum of subspaces). Let V be an F vector space. Let U ≤ V , W ≤ V .
Then the sum of U and V is the set:

U +W = {u+ w : (u,w) ∈ U ×W}

Example. Use V = R2 and U1, U2 from the previous example. Then U1 +U2 = V .
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Proposition. Let V be an F vector space, with U,W ≤ V . Then

U +W ≤ V

Proof. � 0 = 0︸︷︷︸
∈U

+ 0︸︷︷︸
∈W

∈ U +W

� Consider λ1f + λ2g for λ1, λ2 ∈ F and f, g ∈ U +W . Then let:

f = f1︸︷︷︸
∈U

+ f2︸︷︷︸
∈W

g = g1︸︷︷︸
∈U

+ g2︸︷︷︸
∈W

so

λ1f + λ2g = λ1(f1 + f2) + λ2(g1 + g2)

= (λ1 f1︸︷︷︸
∈U

+λ2 g1︸︷︷︸
∈U

)

︸ ︷︷ ︸
∈U

+(λ1 f2︸︷︷︸
∈W

+λ2 g2︸︷︷︸
∈W

)

︸ ︷︷ ︸
∈W

∈ U +W

Exercise: Show that U +W is the smallest subspace of V which contains both U and
W .

1.1 Subspaces and Quotient

Definition (Quotient). Let V be an F vector space. Let U ≤ V . The quotient
space V/U is the abelian group V/u equipped with the scalar product multiplication:

F × V/U → V/U

(λ, v + U) 7→ λv + U (∗)

Proposition. V/U is an F vector space.
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Remark. The multiplication is well defined:

v1 + U = v2 + U

=⇒ v1 − v2 ∈ U

=⇒ λ(v1 − v2) ∈ U

=⇒ λv1 + U = λv2 + U ∈ V/U

Exercise: Prove that V/U is an F vector space.
Start of
lecture 2 1.2 Spans, linear independence and the Steinitz exchange lemma

Definition (Spand of a family of vectors). Let V be an F vector space. Let S ⊂ V
be a subset (S = collection of vectors). We define:

⟨S⟩︸︷︷︸
“span of S”

= {finite linear combination of elements of S}

=

{∑
s∈J

λsvs, vs ∈ S, λs ∈ F, J is finite

}

Convention: ⟨∅⟩ = {0}.

Remark. ⟨S⟩ is the smallest vector subspace which contains S.

Examples

(1) V = R3

S =


∣∣∣∣∣∣
1
0
0
,

∣∣∣∣∣∣
0
1
2
,

∣∣∣∣∣∣
2
−2
−4


=⇒ ⟨S⟩ =


∣∣∣∣∣∣
a
b
2b
, (a, b) ∈ R2


(2)

V = Rn =


∣∣∣∣∣∣∣
x1
...
xn

, xi ∈ R, 1 ≤ i ≤ n
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Define:

ei =

∣∣∣∣∣∣∣∣∣∣∣∣

0
...

1 (in position i)
...
0

=⇒ V = ⟨e1, . . . , en⟩

(3) X is a set, V = RX = {f : X → R}.

Sx : X → R

y 7→

{
1 if x = y

0 otherwise

⟨(Sx)x∈X⟩ = span((Sx)x∈X)

= {f ∈ RX : f has finite support}

(Support of f is {x ∈ X : f(x) ̸= 0})

Definition. Let V be an F vector space. Let S be a subset of V . We say that S
spans V if:

⟨S⟩ = V.

Example. V = R2

v1

v2

{v1, v2} spans V .

Definition (Finite dimension). Let V be an F vector space. We say that V is finite
dimensional if it is spanned by a finite set.

8



Example. Let V1 = P [x] be the set of polynomials over R, and let V = Pn[x] be
the set of polynomials over R with degree ≤ n. Then {1, x, . . . , xn} spans Pn[x], so
Pn[x] = ⟨1, x, . . . , xn⟩. So Pn[x] is finite dimensional.
On the other hand, P [x] is not finite dimensional: it is infinite dimensional, because
there is no family of V with finitely many elements which spans V .

Question: If V is finite dimensional, is there a minimal number of vectors in the family
so that they span V .

Definition (Independence). We say that (v1, . . . , vn) elements of V are linearly
independent if:

n∑
i=1

λivi = 0, λi ∈ F =⇒ λi = 0 ∀i

Remark. (1) We also say that the family (v1, . . . , vn) is free.

(2) Equivalently, (v1, . . . , vn) are not linearly independent if one of these vectors is
a linear combination of the remaining (n − 1) ones. Indeed, ∃(λ1, . . . , λn) not
all zero (that is, there exists j such that λj ̸= 0), such that

n∑
i=1

λivi = 0 =⇒ vj = − 1

λj

n∑
i=1
i ̸=j

λivi

Example. V = R3. If (v1, v2) free, and v3 is coplanar with both, then (v1, v2, v3 is
not free.

Remark. (vi)1≤i≤n free family (linearly independent) then ∀1 ≤ i ≤ n, vi ̸= 0.

Definition (Basis). A sub set S of V is a basis of V if and only if:

� ⟨S⟩ = V (generating family)

� S linearly independent / free

Remark. When S spans V , we say that S is a generating family. So a basis is a
free generating family.
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Examples

(1)

V = Rn =


∣∣∣∣∣∣∣
x1
...
xn

, xi ∈ R, 1 ≤ i ≤ n



ei =

∣∣∣∣∣∣∣∣∣∣∣∣

0
...

1 (in position i)
...
0

Then (ei)1≤i≤n is a basis of V .

(2) V = C. If F = C then {1} is a basis of V . If F = R then {1, i} is a basis of V .

(3) V = P [x] = {polynomials over R}, S = {xn : n ≥ 0}. Then S is a basis for V .

Lemma. Let V be an F vector space. Then (v1, . . . , vn) is a basis of V if and only
if any vector v ∈ V has a unique decomposition:

v =
n∑
i=1

λivi, λi ∈ F

Notation. (λ1, . . . , λn) are the coordinates of v in the basis (v1, . . . , vn).

Proof. By assumption, ⟨v1, . . . , vn⟩ = V so

∀v ∈ V,∃(λ1, . . . , λn) ∈ Fn v =
n∑
i=1

λivi

Uniqueness: let

v =

n∑
i=1

λivi =

n∑
i=1

λ′ivi

=⇒
n∑
i=1

(λi − λ′i)vi = 0

=⇒ ∀1 ≤ i ≤ n, λi = λ′i
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Lemma. If (v1, . . . , vn) spans V , then some subset of this family is a basis of V .

Proof. If (v1, . . . , vn) are linearly independent then done. Let’s assume they are not
independent. Then by possible reordering the vectors,

vn ∈ ⟨v1, . . . , vn−1⟩

(vn is a linear combination of v1, . . . , vn−1) so

V = ⟨v1, . . . , vn⟩ = ⟨v1, . . . , vn−1⟩

Now we can iterate until the resulting set is a basis of V . (We only have to iterate
finitely many times since n is finite).

Theorem (Steinitz exchange lemma). Let V be a finite dimensional vector space
over F . Take:

(i) (v1, . . . , vm) free

(ii) (w1, . . . , wn) generating (⟨w1, . . . , wn⟩ = V ).

Then m ≤ n, and up to reordering,

(v1, . . . , vm, wm+1, . . . , wn)

spans V .

Start of
lecture 3 Proof. Induction. Suppose that we have replaced l (≥ 0) of the wi. Reordering if

necessary:
⟨v1, . . . , vl, wl+1, . . . , wn⟩ = V

If m = l then we are done. So assume l < m. Then take vl+1 ∈ V , and we must have

vl+1 =
∑
i≤l

aivi +
∑
i>l

βiwi

Since the family (v1, . . . , vl+1) is free, we must have that one of the βi is non zero. So
up to reordering, βl+1 ̸= 0

=⇒ wl+1 =
1

βl+1

vl+1 −
∑
i≤l

αivi −
∑
i>l+1

βiwi


So

wl+1 ∈ ⟨v1, . . . , vl+1, wl+2, . . . , wn⟩
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hence we have that

V = ⟨v1, . . . , vl, wl+1, . . . , wn⟩
= ⟨v1, . . . , vl+1, wl+2, . . . , wn⟩

so we can induct up on l. The base case l = 0 is trivial, so we deduce the last part of
the lemma (which also trivially proves that m ≤ n).

1.3 Basis, dimension, direct sums

Corollary (of Steinitz). Let V be a finite dimensional vector space over F . Then
any two basis of V have the same number of vectors called the dimension of V ,
denoted dimF V (∈ N).

Proof. (v1, . . . , vn), (w1, . . . , wm) basis of V over F . Then since (vi)1≤i≤n free, (wi)1≤i≤m
generating, by Steinitz exchange lemma, n ≤ m. Similarly m ≤ n, so n = m.

Corollary. Let V be a vector space over F with dimension n ∈ N.

(i) any set of independent vectors has at most n elements, with equality if and
only if it is a basis

(ii) any spanning (generating) set of vectors has at least n elements with equality
if and only if it is a basis.

Proof. Exercise.

Proposition. Let U,W be subspaces of V . If U andW are finite dimensional, then
so is (U +W ) and:

dim(U +W ) = dimU + dimW − dim(U ∩W )

Proof. Pick (v1, . . . , vn) basis of U ∩W . Extend to bases:

⟨v1, . . . , vl, u1, . . . , um⟩ = U

⟨v1, . . . , vl, w1, . . . , wn⟩ =W

Claim. (v1, . . . , vl, u1, . . . , um, w1, . . . , wn) is a basis of U +W .
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Proving it is a generating family is an exercise. Proving it is a free family:

l∑
i=1

αivi +

m∑
i=1

βiui︸ ︷︷ ︸
∈U

+

n∑
i=1

γiwi︸ ︷︷ ︸
∈W

= 0 (∗)

=⇒
n∑
i=1

γiwi ∈ U ∩W

=⇒
l∑

i=1

Sivi =

n∑
i=1

γiwi

(∗)
=⇒

l∑
i=1

(αi − Si)vi +

m∑
i=1

βiui = 0

U basis
=⇒ βi = 0, αi = Si

(∗)
=⇒

l∑
i=1

αivi +

n∑
i=1

γiwi = 0

W basis
=⇒ αi = γi = 0

so the set is free, so it’s a basis.

Proposition. Let V be a finite dimensional vector space over F . Let U ≤ V . Then
U and V/U are both finite dimensional and:

dimV = dimU + dim(V/U)

Proof. Let (u1, . . . , ul) be a basis of U . Complete it to a basis (u1, . . . , ul, wl+1, . . . , wn)
of V .

Claim. (wl+1 + U, . . . , wn + U) is a basis of V/U .

Exercise.

Remark. V vector space over F with U ≤ V . We say that U is proper if U ̸= V .
U proper implies dimU < dimV , since V/U ̸= {∅}.
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Definition (Direct sum). Let V be a vector space, and U,W ≤ V . We say

V = U ⊕W

We say “V is the direct sum of U and W” if and only if any element v ∈ V can be
uniquely decomposed:

v = u+ w, u ∈ U, w ∈W

Equivalently,

V = U ⊕W ⇐⇒ ∀v ∈ V,∃!(u,w) ∈ U ×W v = u+ w

Warning 1. If V = U ⊕W , we say that W is a complement of U in V . There is
no uniqueness of such a complement.

Example. V = R2 = ⟨(1, 0)⟩ ⊕ ⟨(0, 1)⟩ = ⟨(1, 0)⟩ ⊕ ⟨(1, 1)⟩.

Notation. We will in the sequel systematically use the following notation. Let two
collections of vectors:

B1 = {v1, . . . , vl}

B2 = {w1, . . . , wm}

then
B1 ∪ B2 = {u1, . . . , ul, wl, . . . , wm}

not a set, because we care about the order. (it is more like a list) With this notation:

{u1} ∪ {u1} = {u1, u1}

so the collection {u1} ∪ {u1} is never a free family.

Lemma. U,W ≤ V . Then the following are equivalent (TFAE):

(i) V = U ⊕W

(ii) V = U +W and U ∩W = {0}

(iii) For any basis B1 of U , B2 of W , the union B = B1 + B2 is a basis of V .

Proof.(ii) =⇒ (i) V = U +W implies that ∀v ∈ V , there exists (u,w) ∈ U ×W such that

14



v = u+w. So it is generating. To show it is free, let u1 +w1 = u2 +w2 = v. Then

u1 − u2︸ ︷︷ ︸
∈U

= w2 − w1︸ ︷︷ ︸
∈W

=⇒ u1 − u2, w1 − w2 ∈ U ∩W = {0}

=⇒ u1 = u2, w1 = w2

(i) =⇒ (iii) B1 basis of U , B2 basis of W . Let B = B1 + B2. It is clearly a generating family of
U +W = V It is a free family because∑

λivi = 0

must be decomposed as 0U + 0W since V = U ⊕W . So∑
u1∈B1

λiui = 0

∑
w1∈B2

λiwi = 0

so λi = 0 for all i.

(iii) =⇒ (ii) We need to show
V = U +W, U ∩W = {0}

This is obvious.

Start of
lecture 4 Definition. Let V be a vector space over F . Let V1, . . . , Vl ≤ V (subspaces).

(i) Notation:
∑l

i=1 Vi = {x1 + · · ·+ vl, vj ∈ Vj , 1 ≤ j ≤ l}

(ii) The sum is direct, denoted by:

l∑
i=1

Vi =

l⊕
i=1

Vi

if and only if

v1 + · · ·+ vl = v′1 + · · ·+ v′l =⇒ v1 = v′1, . . . , vl = v′l

Equivalently:

V =

l⊕
i=1

Vi ⇐⇒ ∀v ∈ V ∃!vi v =
∑
i

vi

15
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Exercise: the following are equivalent:

(i)
∑l

i=1 =
⊕l

i=1 Vi (sum is direct)

(ii) ∀i, Vi ∩
(∑

j ̸=i Vj

)
= {0}.

(iii) For any basis of Vi,

B =
l⋃

i=1

Bi

is a basis of
∑l

i=1 Vi.

1.4 Linear maps, isomorphism and the rank-nullity Theorem

Definition (Linear map). Let V,W be vector spaces of F . A map α : V → W is
linear if and only if:

∀(λ1, λ2) ∈ F 2, ∀(v1, v2) ∈ V × V

α(λ1v1 + λ2v2) = λ1α(v1) + λ2α(v2)

Examples

(i) Matrices are linear maps.

(ii) α : C([0, 1]) → C([0, 1]) defined by

f 7→ α(f)(x) =

∫ x

0
f(t)dt

is a linear map

(iii) Fix x ∈ [a, b]. C([a, b]) → R defined by f 7→ f(λ) is a linear map.

Remark. Let U, V,W be F vector spaces.

(i) idV : V → V defined by x 7→ x is a linear map.

(ii) If β : U → V and α : V → W are linear, then α ◦ β : U → W is linear.
(linearity is stable by composition)

Lemma. Let V,W be F vector spaces, and B a basis of V . Let α0 : B →W be any
map, then there is a unique linear map α : V → W extending α0 (a map such that
∀v ∈ B, α(v) = α0(v)).
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Proof. For all v ∈ V , v =
∑n

i=1 λivi. Denote B = (v1, . . . , vn). By linearity: α : V →W
linear, so

α(v) = α

(
n∑
i=1

λivi

)

=

n∑
i=1

λiα(vi)

=

n∑
i=1

λiα0(vi)

Remark. This is true in the infinite dimensional case as well (and the proof is the
same).

� Often, to define a linear map, we define its value on a basis and “extend by linear-
ity”.

� If α1, α2 : V →W are linear and agree on a basis of V , they are equal.

Definition (Isomorphism). Let V,W be vector spaces over F . A map

α : V →W

is called an isomorphism if and only if:

(i) α is linear;

(ii) and α is bijective.

If such an α exists, we write V ≃W (V isomorphic to W ).

17



Remark. If α : V → W is an isomorphism then α−1 : W → V is linear. Take
w1 = α(v1), w2 = α(v2). Then

α−1(w1 + w2) = α−1(α(v1) + α(v2))

= α−1(α(v1 + v2))

= v1 + v2

= α−1(w1) + α−1(w2)

Similarly, ∀λ ∈ F , ∀v ∈ V ,
α−1(λV ) = λα−1(v)

Lemma. ≃ is an equivalence relation on the class of all vector spaces of F .

(i) idV : V → V is an isomorphism.

(ii) α : V →W isomorphism then α−1 :W → V is an isomorphism.

(iii) Let β : U → V and α : V →W be isomorphisms. Then α◦β is an isomorphism.

Theorem. If V is a vector space over F of dimension n, then:

V ≃ Fn

Proof. Let B = (v1, . . . , vn) be a basis of V . Then α : V → fn defined by

v =

n∑
i=1

λivi 7→

λ1...
λn


is an isomorphism (exercise).

Remark. Choosing a basis of V is like choosing an isomorphism from V to Fn.

Theorem. Let V,W be vector spaces over F with finite dimension. Then:

V ≃W ⇐⇒ dimF V = dimF W

Proof. ⇐ dimF V = dimF W = n implies that V ≃ Fn, W ≃ Fn so V ≃W .
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⇒ Let α : V → W be an isomorphism. Let B be a basis of V . Then we claim that
α(B) is a basis of W :

� α(B) spans V follows from surjectivity of α.

� α(B) free family follows from the injectivity of α.

so V and W have the same size basis so dimF V = dimF W .

Definition (Kernel and Image of a linear map). Let V,W be vector spaces over F .
Let α : V →W be a linear map. We define:

(i) N(α) = kerα = {v ∈ V : α(v) = 0}

(ii) im(α) = {w ∈W : ∃v ∈ V,w = α(v)}.

Lemma. kerα is a vector subspace of V , and imα is a vector subspace of W .

Proof. � λ1, λ2 ∈ F , v1, v2 ∈ kerα implies

α(λ1v1 + λ2v2) = λ1α(v1) + λ2α(v2) = 0

hence λ1v1 + λ2v2 ∈ kerα.

� λ1, λ2 ∈ F , w1, w2 ∈ imα. Let w1 = α(v1), w2 = α(v2). Then

λ1w1 + λ2w2 = λ1α(v1) + λ2α(v2) = α(λ1v1 + λ2v2)

hence λ1w1 + λ2w2 ∈ imα

Example. α : C∞(R) → C∞(R), f 7→ α(f) = f ′′ − f . Then

� α is linear

� kerα = {f ∈ C∞(R) : f ′′ − f = 0} = spanR⟨et, e−t⟩

� imα? Exercise.

Remark. α : V → W linear map. Then α injective is equivalent to kerα = {0}.
α(v1) = α(v2) ⇐⇒ α(v1 − v2) = 0.
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Theorem. Let V,W be vector spaces over F . Let α : V → W be a linear map.
Then

α : V/ kerα→ imα

v + kerα 7→ α(v)

is an isomorphism.

Proof. This follows from linearity.

� α is well defined:

v + kerα = v′ + kerα

=⇒ v − v′ ∈ kerα

=⇒ α(v − v′) = 0

=⇒ α(v) = α(v′)

so α is well-defined.

� α linear follows from the linearity of α.

� α is a bijection:

– injectivity α(v + kerα) = 0 implies that α(v) = 0 hence v ∈ kerα. So
v + kerα = 0 + kerα.

– surjectivity: follows form the definition of the image: w ∈ imα, ∃v ∈ V such
that w = α(v) = α(v).

Start of
lecture 5 Definition (Rank and nullity). � r(α) = dim imα (rank)

� n(α) = dimkerα (nullity)

Theorem (Rank nullity theorem). � Let U, V be vector spaces over F , dimF U <
+∞.

� Let α : U → V be a linea map, then

dimU = r(α) + n(α

Proof. We have proved that U/ kerα ≃ imα. So dim(U/ kerα) = dim imα. But
dim(U/ kerα) = dimU −dimkerα. So dimU = dimkerα+dim imα = r(α)+n(α).

20
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Lemma. Let V , W be vector spaces over F of equal finite dimension. Let α : V →
W be a linear map. Then the following are equivalent:

� α is injective

� α is surjective

� α is an isomorphism

Proof. Follows immediately from the rank-nullity theorem. (Exercise)

Example. Let V = {(x, y, z) ∈ R3 : x + y + z = 0}. Then consider α : R3 → R
defined by (x, y, z) 7→ x + y + z. Then kerα = V and imα = R, hence by rank
nullity 3 = n(α) + 1 hence dimV = 2.

1.5 Linear maps from V to W and matrices

The space of linear maps from V to W . Let V , W be vector spaces over F .

L(V,W ) = {α : V →W linear}

Proposition. L(V,W ) is a vector space over F with:

(α1 + α2)(v) = α1(v) + α2(v)

(λα)(v) = λα(v)

Moreover if V and W are finite dimensional over F , then so is L(V,W ) and:

dimF L(V,W ) = (dimF V )(dimF W )

Proof. Proof that it is a vector space is an exercise.
We will prove the statement about dimensions soon.

Matrices and linear maps

Definition (Matrix). Am×n matrix over F is an array withm rows and n columns
with entries in F .

Notation. Mm,n(F ) is the set of m× n matrices over F .
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Proposition. Mm,n(F ) is an F vector space under operations:

� (aij) + (bij) = (aij + bij)

� λ(aij) = (λaij)

Proof. Exercise.

Proposition. dimF Mm,n(F ) = m× n.

Proof. We exhibit a basis using elementary matrices. Pick 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then
we define Eij to be the matrix which is 0 everywhere, except it is 1 in the entry that
is in the i-th row and j-th column. Then (Eij) is a basis of Mm,n(F ). Clearly spans
Mm,n(F ). Family is free is an exercise.

Representation of linear maps

� V,W vector spaces over F , α : V →W linear map.

� Basis B(v1, . . . , vn) basis of V , C = (w1, . . . , wm) basis of W .

� Let v ∈ V , then we can write

v =
n∑
j=1

λjvj

so we can consider the coordinates of v in the basis B (λ1, . . . , λn ∈ Fn). We may
write this as [v]B.

� Similarly for w ∈W , we note [w]C in a similar way.

Definition (Matrix of α in B, C basis).

[α]B,C ≡ matrix of α with respect to B, C

We define it as:

[α]B,C =


...

...
...

[α(v1)]C [α(v2)]C · · · [α(vn)]C
...

...
...


Observation:

α(vj) =
m∑
i=1

aijwi
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Lemma. For any v ∈ V ,
[α(v)]C = [α]B,C · [v]B

where

(Av)i =
n∑
j=1

aijλj

Proof. Let v ∈ V , with

v =
n∑
j=1

λjvj

Then

α(v) = α

 n∑
j=1

λjvj


=

n∑
j=1

λjα(vj)

=

n∑
j=1

λj

m∑
i=1

aijwi

=
m∑
i=1

 n∑
j=1

aijλj

wi

Lemma. Let β : U → V , α : V → W linear, and hence α ◦ β : U → W linear. Let
A be a basis of U , B be a basis of V , and C a basis of W . Then

[α ◦ β]A,C = [α]B,C [β]A,B
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Proof. A = [α]B,C , B = [β]A,B. Pick ul ∈ A. Then

(α ◦ β)(ul) = α(β(ul))

= α

∑
j

bjlvj


=
∑
j

bjlα(vj)

=
∑
j

bjl
∑
i

aijwi

=
∑
i

∑
j

aijbjl

wi

Proposition. If V and Ware vector spaces over F and dimF V = n and dimF W =
m. Then L(V,W ) ≃ Mm,n(F ), and in particular, dimL(V,W ) = m× n.

Proof. Fix B, C basis of V , W .

Claim. θ : L(V,W ) → Mm,n(F ) defined by α 7→ [α]B,C is an isomorphism.

� θ is linear:
[λ1α1 + λ2α2]B,C = λ1[α1]B,C + λ2[α2]B,C

� θ is surjective: let
A = (aij)

Consider the map:

α : vj 7→
m∑
i=1

aijwi

and extend by linearity. Then [α]B,C = A.

� θ is injective because
[α]B,C = 0 =⇒ α ≡ 0

Hence, using θ, L(V,W ) ≃ Mm,n(F ).

24



Remark. Let B, C be bases of V,W . Let εB : V → Fn be defined such that
v 7→ [α]B, and similarly define εC : W → Fm such that w 7→ [w]C . Then the
following diagram commutes:

Start of
lecture 6 1.6 Change of basis and equivalent matrices

Let β : U → V , α : V →W and A,B, C bases of U, V,W .

=⇒ [α ◦ β]A,C = [α]B,C [β]A,B

Change basis

Let α : V →W and let B,B′ and C, C′ be bases for V and W .

Definition. The “change of basis matrix” from B′ to B is

P = (pij)

given by
P = ([v′1]B · · · [v′n]B) = [id]B′,B

Lemma. [v]B = P [v]B′

Proof. � [α(v)]C = [α]B,C [v]B

� P = [id]B′,B
=⇒ [id(v)]B = [id]B′,B[v]B′

=⇒ [v]B = P [v]B′

25
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Remark. P is a n × n invertible matrix, and P−1 is the change of basis matrix
from B to B′.

Indeed
[α ◦ β]A,C = [α]B,C [β]A,B

=⇒ [id]B,B′ [id]B,B′ = [id]B′,B′ ≡ In

=⇒ [id]B′,B[id]B,B′ = [id]B,B ≡ In

We changed B to B′ in V . We can also change basis to C to C′ in W .

Proposition. A = [α]B,C , A
′ = [α]B′,C′ , P = [id]B′,B, Q = [id]C′,C . Then

A′ = Q−1AP

Proof.
[α(v)]C = [α]B,C [v]B

[α ◦ β]A,C = [α]B,C [β]A,B

[v]B = P [v]B′

�

[α(v)]C = Q[α(v)]C = Q[α]B′,C′ = QA′[v]B′

� [α(v)]C = [α]B,C [v]B = AP [v]B′ .

So for all v ∈ V ,
QA′[v]B′ = AP [v]B′

hence
QA′ = AP =⇒ A′ = Q−1AP

Definition (Equivalent matrices). Two matrices A,A′ ∈ Mm,n(F ) are equivalent
if:

A′ = Q−1AP

with Q ∈ Mm,m, P ∈ Mn,n, with both invertible.
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Remark. This defines an equivalence relation on Mm,n(F ).

� A = I−1
m AIn

� A′ = Q−1AP =⇒ A = (Q−1)−1A′P−1

� A′ = Q−1AP , A′′ = (Q′)−1A′P ′. Then

A′′ = (QQ′)−1A(PP ′)

Proposition. Let V , W be vector spaces over F , with dimF V = n, dimF W = m.
Let α : V → W be a linear map. Then there exists B basis of V and C basis of W
such that

[α]B,C =

(
Ir 0

0 0

)

Proof. Choose B and C wisely.

� Fix r ∈ N such that dimkerα = n− r.

� N(α) = ker(α) = {x ∈ V, α(x) = 0}

� Fix a basis of N(α): vr+1, . . . , vn. Extend it to a basis of V , so

B = (v1, . . . , vr, vr+1, . . . , vn︸ ︷︷ ︸
kerα

)

� Claim: (α(v1), . . . , α(vr)) is a basis of imα.

– Span:

v =
n∑
i=1

λivi

=⇒ α(v) =
n∑
i=1

λiα(vi) =
r∑
i=1

λiα(vi)

Let y ∈ imα then exists v ∈ V such that y = α(v) then

y =

r∑
i=1

λiα(vi)

=⇒ y ∈ ⟨α(v1), . . . , α(vr)⟩
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– Free:
r∑
i=1

λiα(vi) = 0

=⇒ α

(
r∑
i=1

λivi

)
= 0

=⇒
r∑
i=1

λivi ∈ kerα

=⇒
r∑
i=1

λivi =
n∑

i=r+1

µivi

=⇒
r∑
i=1

λivi −
n∑

i=r+1

µIvi = 0

but since B is free, we must have λi = 0, µi = 0 so it’s free.

Conclusion: (α(v1), . . . , α(vr)) basis of imα, (vr+1, . . . , vn) basis of kerα. Let

B = (v1, . . . , vr, vr+1, . . . , vn)

C = (α(v1, . . . , α(vr), wr+1, . . . , wm)

Then
[α]B,C = (α(v1), . . . , α(vr), α(vr+1), . . . , α(vn))

Remark. This provides another proof of the rank nullity theorem:

r(α) +N(α) = n

Corollary. Any m× n matrix is equivalent to:(
Ir 0

0 0

)
where r = r(α).

Start of
lecture 7
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Definition. A ∈ Mm,n(F )

� The column rank of A, r(A) is the dimension of the span of the column vectors
of A in Fm, i.e. if A = (c1, . . . , cn) then r(A) = dimF span{c1, . . . , cn}.

� Similarly, the row rank is the column rank of A⊤.

Remark. If α is a linear map represented by A with respect to some basis, then

r(A) = r(α) = dim imα

Proposition. Two matrices are equivalent if and only if r(A) = r(A′).

Proof. ⇒ If A and A′ are equivalent, then they correspond to the same linear map α
written in two different bases

r(A) = r(α) = r(A′)

⇐ r(A) = r(A′) = r, then both A and A′ are equivalent to:(
Ir 0

0 0

)
so A and A′ are equivalent.

Theorem. r(A) = r(A⊤) (column rank is the same as row rank)

Proof. Exercise.

1.7 Elementary operations and elementary matrices

Special case of the change of basis formula.
Let α : V →W be a linear map, (B,B′) bases of V , (C, C′) bases of W .

[α]B,C → [α]B′,C′

If V =W , α : V → V linear then we call it an endomorphism.

� B = C, B′ = C′

� P is change of matrix from B′ to B.

then
[α]B′,B′ = P−1[α]B,BP
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Definition. A, A′ are n × n (square) matrices, we say that A and A′ are similar
(or conjugate) if and only if:

� A′ = P−1AP

� P is n× n square invertible.

Central concept when we will study diagonalisation of matrices. (Spectral theory)

1.8 Elementary operations and elementary matrices

Definition. Elementary column operation on an m× n matrix A:

(i) swap columns i and j (i ̸= j)

(ii) replace column i by λ times column i (λ ̸= 0, λ ∈ F )

(iii) add λ times column i to column j (with i ̸= j)

� Elementary row operations: analogous way

� Elementary operations are invertible

� These operations can be realised through the action of elementary matrices.

(i) i, j, i ̸= j.

(ii) i

(iii) i, j, λ, i ̸= j
Ci,j,λ = id + Ei,j
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Link between elementary operations / matrices:
an elementary column (row) operation can be performed by multiplying A by the cor-
responding elementary matrix from the right (left) → Exercise.

Now a constructive proof that any m× n matrix is equivalent to(
Ir 0

0 0

)
� Start with A. If all entries are zero, done.

� Pick aij = λ ̸= 0. Swap rows i and 1 and swap columns j and 1. Then λ is in
position (1, 1)

� Multiply column 1 by 1
λ to get 1 in position (1, 1).

� Now clean out row 1 and column 1 using elementary operations of type (iii).

� Iterate with Ã (the (m− 1)× (n− 1) sub matrix)

� Then at the end of the process we will have shown that(
Ir 0

0 0

)
≡ Q−1AP = E′

p · · ·E′
1︸ ︷︷ ︸

row operations

A E1 · · ·Ec︸ ︷︷ ︸
column operations

Variation

� Gauss’ pivot algorithm. If you use only row operations, we can reach the so called
”row echelon form” of the matrix
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� Assume that ai1 ̸= 0 for some i

� Swap rows i and 1

� Divide first row by λ = ai1, to get 1 in (1, 1)

� Use 1 to clean the rest of the first column

� Move to second column

� Iterate.

This procedure is exactly what you do when solving a linear system of equations: Gauss’
pivot algorithm

Representation of square invertible matrices

Lemma. If A is n × n square invertible matrix, then we can obtain In using row
elementary operations only (or column operations only).

Proof. � We do the proof for column operations. We argue by induction on the
number of rows

� Suppose that we could reach a form where the upper left corner is Ik. We want to
obtain the same structure with k → k + 1.

� Claim: there exists j > k such that λ = ak+1,j ̸= 0. Otherwise the vector δi(k+1)

is not in the span of the column vectors of A (exercise) which contradicts the
assumption that A is invertible.

� Swap column k + 1 and j

� Divide column k + 1 by λ = ak+1,j ̸= 0

� Use 1 to clear the rest of the k+1-th row using elementary operation of type (iii).

� This completes the inductive step.

� Continue until k = n.

Outcome:
AE1 · · ·Ec = In

=⇒ A−1 = E1 · · ·Ec
so this gives an algorithm for computing A−1. (useful for solving AX = F , linear system
of equations).
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Proposition. Any invertible square matrix is a product of elementary matrices.

Start of
lecture 8 1.9 Dual spaces and dual maps

Definition. Let V be a vector space. The we define

V ∗ = dual of V

= L(V, F )

= {α : V → F linear}

Notation. α : V → F linear. Then α is a linear form.

Examples

(i)
Tr : Mn,n(F ) → F

A = (aij) 7→
n∑
i=1

aii

=⇒ Tr ∈ M∗
n,n(F )

(ii) f : [0, 1] → R
Tf : C∞([0, 1],R)

φ 7→
∫ 1

0
f(x)φ(x)dx

then Tf is a linear form on C∞([0, 1],R) (R vector space). Quantum mechanics. A
function defines a linear form.

Lemma (Dual basis). Let V be a vector space over F with a finite basis

B = {e1, . . . , en}

Then there exists a basis for V ∗ given by

B∗ = {ε1, . . . , εn}

with

εj

(
n∑
i=1

aiei

)
= aj , 1 ≤ j ≤ n

We call B∗ the dual basis of B.
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Remark. Kronecker symbol

δij =

{
1 if i = j

0 otherwise

εj

(
n∑
i=1

aiei

)
= aj ⇐⇒ εj(ai) = δij

Proof. Let {ε1, . . . , εn} be defined as above.

(1) Check that it is free: indeed,
∑n

j=1 λjεj = 0

=⇒
n∑
j=1

λjεj(ei) = 0

=⇒
n∑
j=1

λi = 0 ∀1 ≤ i ≤ n

=⇒ family is free

(2) Check that it is generating: Pick α ∈ V ∗, then x ∈ V :

α(x) = α

 n∑
j=1

λjej

 =
n∑
j=1

λja(ej)

On the other hand, let the linear form:

n∑
j=1

α(ej)εj ∈ V ∗

Then:

n∑
j=1

α(ej)εj(x) =
n∑
j=1

α(ej)εj

(
n∑
k=1

λkek

)

=

n∑
j=1

α(ej)

n∑
k=1

λkεk(ek)

=

n∑
j=1

α(ej)λj

= α(x)

=⇒ α =

n∑
j=1

α(ej)εj
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Corollary. V finite dimensional,

=⇒ dimV ∗ = dimV

Warning. These results about V ∗ are not relevant / very different when talking
about infinite dimensional vector spaces instead.

Remark. It is sometimes convenient to think of V ∗ as the space of row vectors of
length n over F , i.e. let (e1, . . . , en) be a basis of V , x =

∑n
i=1 xiei ∈ V , and let

(ε1, . . . , εn) be a basis of V with α =
∑n

i=1 αiεi ∈ V ∗. Then

α(x) =
n∑
i=1

αεi

 n∑
j=1

xjej


=

n∑
i=1

ai

n∑
j=1

xjεi(ej)

=
n∑
i=1

aixi

= (α1, . . . , αn)

(scalar product structure)

Definition. If U ≤ V (vector subspace), we define the annihilator of U by:

U0 = {α ∈ V ∗ : ∀u ∈ U,α(u) = 0}

Lemma. (i) U0 ≤ V ∗ (vector subspace)

(ii) If U ≤ V and dimV <∞ then dimV = dimU + dimU0.

Proof. (i) 0 ∈ U0. If α, α′ ∈ U0, then, for all u ∈ U ,

(α+ α′)(u) = α(u) + α′(u) = 0

and for all λ ∈ F ,
(λα)(u) = λα(u) = 0

so U0 ≤ V ∗.
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(ii) Let U ≤ V , dimV = n. Let (e1, . . . , ek) be a basis of U , complete it to a basis

B = (e1, . . . , ek, ek+1, . . . , en)

of V . Let (ε1, . . . , εn) be the dual basis of B. We claim that U0 = ⟨εk+1, . . . , εn⟩.
� Pick i > k, then:

εi(ek) = δik = 0

so εi ∈ U0, since U = ⟨e1, . . . , ek⟩. So

⟨εk+1, . . . , εn⟩ ≤ U0

� Let α ∈ U0, then let α ∈ V ∗, with

α =
n∑
i=1

αiεi

Now for i ≤ k:
α ∈ U0 =⇒ α(ei) = 0 ∀1 ≤ i ≤ k

=⇒
n∑
j=1

αjεj(ei) = 0

=⇒ αi = 0 ∀1 ≤ i ≤ k

=⇒ α =
n∑
i=1

αiεi =
n∑

i=k+1

αiεi

=⇒ α ∈ ⟨εk+1, . . . , εn⟩

=⇒ U0 ≤ ⟨εk+1, . . . , εn⟩

Lemma. Let V,W be vector spaces over F . Let α ∈ L(V,W ). Then the map:

α∗ :W ∗ → V ∗

ε 7→ ε ◦ α

is an element of L(W ∗, V ∗). It is called the dual map of α.

Proof. � ε ◦ α : V → F linear follows by linearity of ε and α, so ε ◦ α ∈ V ∗.
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� α∗ linear: let θ1, θ2 ∈W ∗, then

α∗(θ1 + θ2) = (θ1 + θ2)(α)

= θ1 ◦ α+ θ2 ◦ α
= α∗(θ1) + α∗(θ2)

and similarly for all λ ∈ F ,
α∗(λθ) = λα∗(θ)

so α∗ is linear, i.e. α∗ ∈ L(V ∗,W ∗).

Proposition (Dual map matrix). Let V,W be finite dimensional spaces over F
with basis respectively B and C. Let B∗, C∗ be the dual basis of B and C. Then:

[α∗]C∗,B∗ = [α]⊤B,C

Proof. B = (b1, . . . , bn), C = (c1, . . . , cm), B∗ = (β1, . . . , βn), C∗ = (γ1, . . . , γm). Say

[α]B,C = A = (aij)1≤i≤m,1≤j≤n

Recall: α∗ :W ∗ → V ∗. Let us compute:

α∗(γr)(bs) = γr ◦ α(bs)
= γr(α(bs))

= γr

(∑
t

atsct

)
=
∑
t

atsγr(ct)

= ars

Say

[α∗]C∗,B∗ = (α∗(γ1), . . . , α
∗(γm))

β1...
βn


= (mij)1≤i≤n,1≤j≤m

=⇒ α∗(γr) =
n∑
i=1

mirβi

=⇒ α∗(γr)(bs) =

n∑
i=1

mirβi(bs)

= msr

Conclusion α∗(γr)(bs) = ars = msr so [α∗]C∗,B∗ = [α]⊤B,C .
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Let V,W be vector spaces over F , α ∈ L(V,W ).

E = (e1, . . . , en)

basis of V
F = (f1, . . . , fn)

another basis of V . Let
P = [id]F ,E

(change of basis matrix from F to E)

E∗ = (ε1, . . . , εn)

F∗ = (η1, . . . , ηn)

Lemma. Let P be the change of basis matrix from F to E . Then the change of
basis matrix from F∗to E∗ is:

(P−1)⊤

Proof.
[id]F∗,E∗ = [id]⊤E,F = ([id]−1

F ,E)
⊤ = (P−1)⊤

Properties of the dual map

Lemma. Let V,W be vector spaces over F . Let α ∈ L(V,W ) and α∗ ∈ L(W ∗, V ∗)
be the dual map. Then:

(i) N(α∗) = (imα)0 (so α∗ injective ⇐⇒ α surjective)

(ii) imα∗ ≤ (N(α))0 with equality if V,W are finite dimensional (hence in this
case, α∗ surjective ⇐⇒ α injective).

Dual method: there are many problems (controllability) where the understanding of α∗

is simpler than the understanding of α.

Proof. (i) Let ε ∈W ∗. Then:

ε ∈ N(α∗) ⇐⇒ α∗(ε) = 0

⇐⇒ α∗(ε) = ε(α) = 0

⇐⇒ ∀x ∈ V, ε(α)(x) = ε(α(x)) = 0

⇐⇒ ε ∈ (imα)
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(ii) Let us first show that:
im(α∗) ≤ (N(α))0

Indeed, let ε ∈ im(α∗)
=⇒ ε = α∗(φ), φ ∈W ∗

=⇒ ∀u ∈ N(α) | ε(u) = α∗(φ)(u) = φ ◦ α(u)φ(α(u)) = 0

=⇒ ε ∈ (N(α))0

In finite dimension, we can compute the dimensions of im(α∗) and (N(α))0.

dim(im(α∗)) = r(α∗)

r(α∗) = r([α∗]C∗,B∗) = r([α]⊤B,C) = r([α]B,C) = r(α)

=⇒ r(α) = r(α∗)

so

dim(imα∗) = r(α∗)

+ r(α)

= dimV − dimN(α)

= dim[(N(α))0]

so im(α∗) ≤ (N(α))0 and dim(im(α∗)) = dim[(N(α))0] so im(α∗) = [N(α)]0.

Double dual

� V vector space over F

� V ∗ = L(V, f) dual of V . We define the bidual:

V ∗∗ = (V ∗)∗ = L(V ∗, F )

Very important space in infinite dimension: in general, there is no obvious connection
between V and V ∗ (unless Hilbertian structure). However, there is a large class of
function spaces wuch that V ≃ V ∗∗.

Example. p > 2,

Lp(R) =
{
f : R → R

∣∣∣∣∫
R
|f(x)|pdx <∞

}
Is a reflexive space.
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In general, there is a canonical embedding of V into V ∗∗. Indeed, pick v ∈ V , we define:

v̂ : V ∗ → F

ε 7→ ε(v)

linear:

� ε ∈ V ∗ implies ε(v) ∈ F .

� linearity: λ1, λ2 ∈ F, ε1, ε2 ∈ V ∗

v̂ = (λ1ε1 + λ2ε2) = (λ1ε1 + λ2ε2)(v)

= λ1ε1(v) + λ2ε2(v)

= λ1v̂(ε1) + λ2v̂(ε2)

so v̂ ∈ L(V ∗, F ).

Theorem. If V is a finite dimensional vector space over F , then:

ˆ: V → V ∗∗

v 7→ v̂

is an isomorphism.

(in infinite dimension we can show under canonical assumptions (Banach space) that: ˆ
is injective)

Proof. � V finite dimensional. Given v ∈ V , v̂ ∈ V ∗∗ ∈ L(V ∗, F ).

� ˆlinear: let v1, v2 ∈ V , λ1, λ2F , ε ∈ V ∗:

̂(λ1v1 + λ2v2)(ε) = ε(λ1v1 + λ2v2)

= λ1ε(v1) + λ2ε(v2)

= λ1v̂1(ε) + λ2v̂2(ε)

=⇒ ̂(λ1v1 + λ2v2) = λ1v̂1 + λ2v̂2

� ˆ injective: indeed, let e ∈ V \ {0}. I extend (e, e2, . . . , en) basis of V . Let
(ε, ε2, . . . , εn) the dual basis of (of V ∗), then

ê(ε) = ε(e) = 1

=⇒ ê ̸= {0}

=⇒ N (̂) = {0}

soˆis injective.
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� ˆisomorphism. We can compute dimensions:

dimV = dimV ∗ = dim[(V ∗)∗] = dim(V ∗∗)

As a conclusion: ˆ: V → V ∗∗ is injective, dimV = dimV ∗∗, soˆis surjective, soˆis
an isomorphism.

Lemma. Let V be a finite dimensional vector space over F , let U ≤ V . Then

Û = U00

so after identification of V and V ∗∗, we have

U ≃ U00

Proof. Let us show that: U ≤ U00.

� Indeed, let u ∈ U :
∀ε ∈ U0, ε(u) = 0

=⇒ ∀ε ∈ U0, ε(u) = û(ε) = 0

=⇒ û ∈ U00

=⇒ Û ⊂ U00

� Commute dimensions

dimU00 = dimV − dimU0 = dimU

Remark. T ≤ V ∗

T 0 = {v ∈ V | θ(v) = 0, ∀θ ∈ T}

Start of
lecture 10 Remark. T ≤ V +, we can define

T 0 = {v ∈ V | θ(v) = 0, θ ∈ T}

41

https://notes.ggim.me/LA#lecturelink.10


Lemma. Let V be a finite dimensional vector space over F . Let U1, U2 ≤ V . Then

(i) (U1 + U2)
0 = U0

1 ∩ U0
2

(ii) (U1 ∩ U2)
0 = U0

1 + U0
2

Proof. (i) Exercise.

(ii) Take 0 of (i) and use U00 = U .

1.11 Bilinear Forms

=⇒ Quadratic algebra.

Definition. U, V vector spaces over F . Then:

φ : U × V → F

is a bilinear form if it “linear in both components”:

� φ(u, •) : V → F is linear for all u ∈ U (v 7→ φ(u, v)).

� φ(•, v) : U → F is linear for all v ∈ V (u 7→ φ(u, v))

Examples

(i) V × V ∗ → F
(v, θ) 7→ θ(v)

(ii) Scalar product / dot product on U = V = Rn

(iii) U = V = C([0, 1],R)

φ(f, g) =

∫ 1

0
f(t)g(t)dt

(“infinite dimensional scalar product)

Definition (matrix of a bilinear form in a basis). B = (e1, . . . , em) basis of U ,
C = (f1, . . . , fn) basis of V . φ : U × V → F bilinear form.
The matrix of φ with respect to B and C is:

[φ]B,C = (φ(ei, fj)︸ ︷︷ ︸
∈F

)1≤i≤m
1≤j≤n
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Lemma. φ(u, v) = [u]⊤B [φ]B,C [v]C . (∗)

Link between the bilinear form and its matrix in given basis.

Proof. u =
∑m

i=1 λiei, v =
∑n

j=1 µjfj . Then by linearity:

φ(u, v) = φ

 m∑
i=1

λiei,

n∑
j=1

µjej


=

m∑
i=1

n∑
j=1

λiµjφ(ei, ej)

= [u]⊤B [φ]B,C [v]C

Remark. [φ]B,C is the only matrix such that (∗) holds.

Notation. φ : U × V → F bilinear form, then it determines two linear maps:

φL : U → V ∗

φL(u) : V → F

v 7→ φ(u, v)

define φR similarly.

Lemma. B = (e1, . . . , em) basis of U , B∗ = (ε1, . . . , εm) dual basis of U∗. C =
(f1, . . . , fn) basis of V , C∗ = (η1, . . . , ηn) dual basis of V

∗. Let A = [φ]B,C then:

[φR]C,B∗ = A

[φ]B,C∗ = A⊤

Proof.

φL(ei)(fj) = φ(ei, fj) = Aij

=⇒ φL(ei) =
∑

Aijηj

similarly for φR.
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Definition (Degenerate / non degenerate bilinear form). kerφL: “left kernel of φ”,
kerφR: “right kernel of φ”. We say that φ is non-degenerate if

kerφL = {0} and kerφR = {0}

Otherwise, we say that φ is degenerate.

Lemma. U , V finite dimensional. B basis of U , C basis of V . φ : U × V → F
bilinear form, A = [φ]B,C . Then φ non degenerate ⇐⇒ A invertible.

Corollary. φ non degenerate

=⇒ dimU = dimV

Proof.

φ non degenerate ⇐⇒ kerφL = {0} and kerφR = {0}
⇐⇒ n(A⊤) = 0 and n(A) = 0

⇐⇒ r(A⊤) = dimU and r(A) = dimV

⇐⇒ A invertible and then: dimU = dimV

Remark. φ : Rn × Rn → R scalar product, then φ is non degenerate, and if we
take the usual bases, then [φ]B,B = In.

Corollary. When U and V are finite dimensional, then choosing a non degenerate
bilinear form φ : U → V → F is equivalent to choosing an isomorphism φL : U →
V ∗.

Definition. T ⊂ U , we define:

T⊥ = {v ∈ V | φ(t, v) = 0,∀t ∈ T}

Similarly define for S ⊂ V

⊥S = {u ∈ U,φ(u, s) = 0, ∀s ∈ S}
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Change basis for bilinear forms

Proposition. � B, B′ basis of U , P = [id]B′,B

� C, C′ basis of V , Q = [id]C′,C .
Let φ : U × V → F bilinear form, then

[φ]B′,C′ = P⊤[φ]B,CQ

change of basis formula for bilinear forms.

Proof.

φ(u, v) = [u]⊤B [φ]B,C [v]C

= (P [u]B′)⊤[φ]B,C(Q[v]C′)

= [u]⊤B′(P⊤[φ]B,CQ)[v]C′

Definition. The rank of φ (r(φ)) is the rank of any matrix representing φ.

Indeed, r(P⊤AQ) = r(A) for any invertible P,Q.

Remark. r(φ) = r(φR) = r(φL). (we computed matrices in a basis and r(A) =
r(A⊤))

More applications later: scalar product.

1.12 Determinant and Traces

Definition. A ∈ Mn(F ) = Mn×n(F ) We define the trace of A

TrA =

n∑
i=1

Aii

A = (Aij)1≤i,j≤n

Remark. Mn(F ) → F linear form (A 7→ TrA).

45



Lemma. Tr(AB) = Tr(BA).

Proof.

Tr(AB) =
n∑
i=1

 n∑
j=1

aijbji


= · · ·
= Tr(BA)

Start of
lecture 11 Corollary. Similar matrices have the same trace

Proof.

Tr(P−1AP ) = Tr(APP−1)

= Tr(A)

Definition. If α : V → V linear (endomorphism) we can define:

Trα = Tr([α]B)

in any basis B (does not depend on the choice B).

Lemma. α : V → V , α∗ : V ∗ → V ∗ dual map, then

Trα = Trα∗

Proof.

Trα = Tr([α]B)

= Tr([α]⊤B )

= Tr([α∗]B∗) (because [α]⊤B = [α∗]B∗)
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1.13 Determinants

Permutations and transpositions

� permutation: Sn = group of permutations of {1, . . . , n}

σ : {1, . . . , n} → {1, . . . , n}

is a bijection. Then σ is a permutation.

� Transposition k ̸= l, τkl ∈ Sn just swaps k and l.

� Decomposition: any permutation of σ can be decomposed as a product of trans-
positions

σ =
nσ∏
i=1

τi

τi transposition.

� Signature: ε : Sn → {−1, 1},

σ 7→

{
1 if nσ even

−1 if nσ odd

ε(σ) = signature of σ. and ε is a group homomorphism.

Definition (Determinant). A ∈ Mn(F ) (square matrix),

A = (aij)1≤i≤n
1≤j≤n

We define the determinant of A as:

detA =
∑
σ∈Sn

ε(σ)aσ(1)1aσ(2)2 · · · aσ(n)n

Example.

det

(
a11 a12
a21 a22

)
a11a22 − a12a21

Lemma. If A = (aij) is an upper (lower) triangular matrix with 0 on the diagonal:

aij = 0for i ≥ j (resp i ≤ j)

then detA = 0.
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Proof. For aσ(1)1 · · · aσ(n)n not to be zero, I need σ(j) < j for all j ∈ {1, . . . , n} which is
impossible for σ ∈ Sn. So all the terms are 0, so detA = 0.

Exercise: Show similarly that if instead we allow the diagonal elements to be nonzero,
then the determinant is the product of the diagonal elements.

Lemma. detA = det(A⊤)

Proof.

detA =
∑
σ∈Sn

ε(σ)aσ(1)1 · · · aσ(n)n

=
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i)i

=
∑
σ∈Sn

ε(σ)
n∏
j=1

ajσ−1(j)

Now remember ε(σσ−1) = ε(σ)ε(σ−1) so since ε(σ) ∈ {−1, 1},

=⇒ ε(σ−1) = ε(σ)

detA =
∑
σ∈Sn

ε(σ)

n∏
i=1

aiσ−1(i)

=
∑
σ∈Sn

ε(σ−1)
n∏
i=1

aiσ−1(i)

=
∑
σ∈Sn

ε(σ)
n∏
i=1

aiσ(i)

= det(A⊤)

Why this formula for detA?
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Definition. A volume form d on Fn is a function

Fn × · · · × Fn︸ ︷︷ ︸
n times

→ F

such that

(i) d is multilinear: for any 1 ≤ i ≤ n, for all v1, . . . , vi−1, vi+1, . . . , vn ∈ Fn,

v 7→ d(v1, . . . , vi−1, v, vi+1, . . . , vn)

is linear (i.e. an element of (Fn)∗) (linear with respect to all coordinate)

(ii) d alternate: if vi = vj for some i ̸= j, then

d(v1, . . . , vn) = 0

We want to show that there is in fact only one (up to a multiplicative constant) volume
form on Fn × · · · × Fn which is given by the determinant:

A = (aij) = (A(1) | · · · | A(n))

(column vectors)
detA = det(A(1), . . . , A(n))

Lemma. Fn × · · · × Fn → F

(A(1), . . . , A(n)) 7→ detA

is a volume form.

Proof. (i) multilinear σ ∈ Sn, then
∏n
i=1 aσ(i)i is multilinear: there is only one term

from each column appearing in the expression. The sum of multilinear maps is
multilinear, so det is multilinear.

(ii) Alternate: Assume k ̸= l, A(k) = A(l). I want to show detA = 0. Indeed: let τ be
the transposition which swaps k and l. Then since A(k) = A(l) then aij = aiτj for
all i, j. We can decompose:

Sn = An ⊔ τAn
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then

detA =
∑
σ∈Sn

ε(σ)
n∏
i=1

aiσ(i)

=
∑
σ∈An

n∏
i=1

aiσ(i) +
∑

σ∈τAn

ε(σ)

n∏
i=1

aiτσ(i)

=
∑
σ∈An

n∏
i=1

aiσ(i) −
∑
σ∈An

aiτσ(i)

=
∑
σ∈An

n∏
i=1

aiσ(i) −
∑
σ∈An

n∏
i=1

aiσ(i)

= 0

Lemma. Let d be a volume form. Then swapping two entries changes the sign.

Proof. Equivalent definition of “alternate”.

0 = d(v1, . . . , vi + vj , . . . , vi + vj , . . . , vn)

= d(v1, . . . , vi, . . . , vi, . . . , vn) + d(v1, . . . , vi, . . . , vj , . . . , vn)

+ d(v1, . . . vj , . . . , vi, . . . , vn) + d(v1, . . . , vj , . . . , vj , . . . , vn)

= 0 + d(v1, . . . , vi, . . . , vj , . . . , vn) + d(v1, . . . , vj , . . . , vi, . . . , vn)

Start of
lecture 12 Corollary. σ ∈ Sn, d volume form, then:

d(vσ(1), . . . , vσ(n)) = ε(σ)d(v1, . . . , vn)

Proof. σ =
∏nσ
i=1 τi.

Theorem. Let d be a volume form on Fn. Let A = (A(1)| · · · |A(n)). Then

d(A(1)| · · · |A(n))d(e1, . . . , en) detA

Up to a constant, det is the only volume form on Fn.
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Proof.

d(A(1), . . . , A(n)) = d

(
n∑
i=1

ai1ei, . . . , A
(n)

)

=
n∑
i=1

ai1d(ei, A
(2), . . . , A(n))

=
n∑
i=1

ai1d

ei, n∑
j=1

aj2ej , . . . , A
(n)


=

n∑
i=1

n∑
j=1

ai1aj2d(ei, ej , . . . , A
(n))

=
∑

1≤i1≤n
1≤i2≤n

...
1≤in≤n

(
n∏
k=1

aikkd(ei1 , ei2 , . . . , ein)

)

The last d term is nonzero only if all the ik are different, so we can write the ik as a
permutation. This means we can continue and get

d(A(1), . . . , A(n)) =
∑
σ∈Sn

n∏
k=1

aσ(k)kd(eσ(1), . . . , eσ(n))

=
∑
σ∈Sn

[
n∏
k=1

aσ(k)k

]
ε(σ)d(e1, . . . , en)

= d(e1, . . . , en)

[∑
σ∈Sn

ε(σ)

n∏
k=1

aσ(k)k

]
= d(e1, . . . , en) detA

Corollary. det is the only volume form such that

d(e1, . . . , en) = 1

1.14 Some properties of determinants

Lemma. A,B ∈ Mn(F ), then:

det(AB) = (detA)(detB)
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Proof. Indeed, pick A. Consider the map:

dA : Fn × · · · × Fn︸ ︷︷ ︸
n

→ F

defined by
(v1, . . . , vn) 7→ det(Av1, . . . , Avn)

Then:

� dA is multilinear: vi 7→ Avi is linear.

� dA is alternate: if vi = vj then Avi = Avj .

so dA is a volume form. In particular,

dA(v1, . . . , vn) = C det(v1, . . . , vn)

Now we compute C. Aei = (A) so

dA(e1, . . . , en) = det(Ae1, . . . , Aen) = det(a1, . . . , An) = detA

So
C = detA

We have proved:

dA(v1, . . . , vn) = d(Av1, . . . , Avn)

= (detA) det(v1, . . . , vn)

Now observe:
AB = ((AB)1, . . . , (AB)n)

(AB)i = ABi

so

det(AB) = det(AB1, . . . , ABn)

= det(A) det(B1, . . . , Bn)

= det(A) det(B)

Definition. A ∈ Mn(F ), we say that:

(i) A is singular if detA = 0

(ii) A is non singular if detA ̸= 0.
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Lemma. A is invertible implies A is non singular.

Proof. A is invertible.
=⇒ ∃A−1, AA−1 = A−1A = In

=⇒ det(AA−1) = det(A−1A) = det In = 1

=⇒ (detA)(detA−1) = 1

=⇒ detA ̸= 0

Remark. We have proved that

det(A−1) =
1

detA

Theorem. Let A ∈ Mn(F ). Then the following are equivalent:

(i) A is invertible

(ii) A is non singular

(iii) r(A) = n

Proof. (i) ⇐⇒ (iii) done (rank nullity Theorem). (i) =⇒ (iii) is lemma above. We
need to show (ii) =⇒ (iii). Indeed, assume r(A) < n. Then

⇐⇒ dim span{c1, . . . , cn} < n

=⇒ ∃(λ1, . . . , λn) ̸= (0, . . . , 0)
n∑
i=1

λici = 0

I pick j such that λj ̸= 0

=⇒ cj = − 1

λj

∑
i ̸=j

λici

=⇒ detA = det(c1, . . . , cj , . . . , cn)

= det

c1, . . . ,− 1

λj

∑
i ̸=j

λici, . . . , cn


=
∑
i ̸=j

− 1

λj
det(c1, . . . , ci, . . . , cn)

= 0
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Remark. This gives us the sharp criterion for invertibility of a linear system of n
equations with n unknowns:

Y ∈ Fn

A ∈ Mn(F )

AX = Y,X ∈ Fn

exists a unique solution if and only if A is invertible, which happens if and only if
detA ̸= 0.

Determinant of linear maps

Lemma. Conjugate matrices have the same determinant.

Proof.

det(P−1AP ) = det(P−1) detAdetP

=
1

detP
detAdetP

= detA

(P invertible implies detP ̸= 0).

Definition. α : V → V linear (endomorphism). We define

detα = det([α]B)

B is any basis of V . This number does not depend on the choice of the basis!

Theorem. det : L(V, V ) → F satisfies:

(i) det id = 1

(ii) det(α ◦ β) = det(α) det(β)

(iii) det(α) ̸= 0 if and only if α is invertible and then

det(α−1) = (detα)−1

Proof. Pick a basis and express in terms of [α]B and [β]B.
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Determinant of block matrices

Lemma. A ∈ Mk(F ), B ∈ Ml(F ) and C ∈ Mk,l(F ). Let

M =

(
A C
0 B

)
∈ Mn(F )

(n = k + l) then
detM = (detA)(detB)

Proof.

detM =
∑
σ∈Sn

ε(σ)
n∏
i=1

mσ(i)i (∗)

Observation:
mσ(i)i = 0

if i ≤ k, σ(i) > k. So In (∗), we need only sum over σ ∈ Sn such that:

(i) ∀j ∈ [1, k], σ(j) ∈ [1, k]

(ii) and hence ∀j ∈ [k + 1, n], σ(j) ∈ [k + 1, n].

In other words, we restrict to σ of the form:

σ1 : {1, . . . , k} → {1, . . . , k}

σ2 : {k + 1, . . . , n} → {k + 1, . . . , n}

(i) mσ(j)j with 1 ≤ j ≤ k, then σ(j) ∈ {1, . . . , k}, can be rewritten as

mσ(j)j = aσ(j)j = aσ1(j)j

(ii) Similarly, for k + 1 ≤ j ≤ n, k + 1 ≤ σ(j) ≤ n,

mσ(j)j = bσ(j)j = bσ1(j)j

Note that
ε(σ) = ε(σ1)ε(σ2)
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so then

detM =
∑
σSn

ε(σ)
n∏
i=1

mσ(i)i

=
∑
σ1∈Sk
σ2∈Sl

ε(σ1 ◦ σ2)
k∏
i=1

aσ1(i)i

n∏
j=k+1

bσ2(j)j

=
∑
σ1∈Sk
σ2∈Sl

ε(σ1)ε(σ2)
k∏
i=1

aσ1(i)i

n∏
j=k+1

bσ2(j)j

=

 ∑
σ1∈Sk

ε(σ1)

k∏
i=1

aσ1(i)i

∑
σ2∈Sl

ε(σ2)

n∏
j=k+1

aσ2(j)j


= (detA)(detB)

Start of
lecture 13 Corollary. A1, . . . , Ak are square matrices, then

det


A1 ∗ ∗ · · · ∗
0 A2 ∗ · · · ∗
0 0 A3 · · · ∗
...

...
...

. . .
...

0 0 0 · · · Ak

 = (detA1) · · · (detAk)

Proof. By induction on k.

In particular, if A is filled with zeros below the diagonal, then detA is the product of the
entries on the diagonal. (But this is also quite easy to show directly from the definition
of detA).

Warning. In general:

det

(
A B
C D

)
̸= detAdetD − detB detC

Remark. In R3, we have that (a × b) · c is a volume form (and represents the
volume of a parallelepiped), and in fact, det(a,b, c) = (a× b) · c.
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1.15 Adjugate matrix

Observation: We know that swapping two column vectors flips the sign of the determi-
nant, and we also know that detA = detA⊤. So we find that swapping two rows changes
the determinant by a factor of -1.

Remark. We could prove properties of determinant using the decomposition of A
into elementary matrices.

Column (line) expansion and adjugate matrix

Column expansion is to reduce the computation of n×n determinants to (n−1)×(n−1)
determinants. Very useful to compute determinants.

Definition. A ∈ Mn(F ). Pick i, j ≤ n. We define:

Aîj ∈ Mn−1(F )

obtained by removing the i-th row and the j-th column from A.

Example.

A =

 1 2 −7
2 1 0
−3 6 1


A3̂2 =

(
1 −7
2 0

)

Lemma (Expansion of the determinant). Let A ∈ Mn(F ).

(i) Expansion with respect to the j-th column: pick 1 ≤ j ≤ n, then:

detA =
n∑
i=1

(−1)i+jaij detAîj (∗)

(ii) Expansion with respect to the i-th row: pick 1 ≤ i ≤ n, then

detA =
n∑
j=1

(−1)i+j detAîj

Powerful tool to compute determinants.
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Example.

A =

1 2 −1
3 −1 1
4 2 −7


detA = −(2)

∣∣∣∣3 1
4 −7

∣∣∣∣+ (−1)

∣∣∣∣1 −1
4 −7

∣∣∣∣− 2

∣∣∣∣1 −1
3 1

∣∣∣∣
Proof. Expansion with respect to the j-th column (row expansion formula follows by
taking transpose). Pick 1 ≤ j ≤ n.

� A = (A(1) | A(2) | · · · | A(j) | · · · | A(n))

A(j) =
n∑
i=1

aijei, A = (aij)1≤i,j≤n

�

detA = det

(
A(1), . . . ,

n∑
i=1

aijei, . . . , A
(n)

)

=

n∑
i=1

aij det(A
(1), . . . , ei, . . . , A

(n))

det(A(1) | · · · | ei | · · · | A(n)) = (−1)j−1 det(ei | A(1) | A(j−1) | A(j+1) | · · · | A(n))

= (−1)i−1(−1)j−1 det(Aîj)

= (−1)i+j det(Aîj)

so

detA =

n∑
i=1

aij det(A
(1), . . . , a(j−1), ei, . . . , A

(n))

=

n∑
i=1

aij(−1)i+j detAîj

Definition (Adjugate matrix). Let A ∈ Mn(F ). The adjugate matrix adj(A) is
the n× n matrix with (i, j) entry given by

(−1)i+j det(Aĵi)
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Theorem. Let A ∈ Mn(F ), then

adj(A)A = (detA)In

In particular, when A is invertible,

A−1 =
1

detA
adj(A)

Proof. We just proved: (∗)

�

detA =

n∑
i=1

(−1)i+j(detAîj)aij

=

n∑
i=1

(adj(A))jiaij

= (adj(A)A)jj

� For j ̸= k we have

0 = det(A(1), . . . , A(k), . . . , A(k), . . . , A(n))

= det

(
a(1), . . . ,

n∑
i=1

aikei, . . . , A
(k), . . . , A(n)

)

=

n∑
i=1

aik det(A
(1), . . . , ei, . . . , A

(n))

=

n∑
i=1

(adj(A))jiaik

= (adj(A)A)jk

= 0

for j ̸= k.

So done.

Cramer rule

Proposition. Let A ∈ Mn(F ) be invertible. Let b ∈ Fn. Then the unique solution
to Ax = b is given by:

xo =
1

detA
det(Aîb)

1 ≤ i ≤ n where Aîb is obtained by replacing the i-th column of A by b.
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Algorithmically, this avoids computing A−1.
TODO: CHECK WHETHER NEEDS EDITING.

Start of
lecture 14 1.16 Eigenvectors, eigenvalues and trigonal matrices

First step towards the diagonalisation of endomorphisms.

� V vector space over F , dimF V = n < ∞. α : V → V linear (endomorphism of
V ). General problem: Can we find a basis B of V such that in this basis,

[α]B = [α]B,B

has a “nice” form.

Reminder: B′ another basis of V , P = change of basis matrix,

[α]B′ = P−1[α]BP

Equivalently: given a matrix A ∈ Mn(F ), is it conjugated to a matrix with a “simple”
form?

Definition. (i) α ∈ L(V ) (α : V → V linear) is diagonalisable if there exists a
basis B of V such that [α]B in B is diagonal:

[α]B =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


(ii) α ∈ L(V ) is triangulable if there exists B basis of V such that [α]B is triangular:

[α]B =


λ1 ∗ · · · ∗
0 λ2 · · · ∗
...

...
. . .

...
0 0 · · · λn



Remark. A matrix is diagonalisable (respectively triangulable) if and only if it is
conjugated to a diagonal (respectively triangular) matrix.
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Definition (eigenvalue, eigenvector, eigenspace). (i) λ ∈ F is an eigenvalue of
α ∈ L(V ) if and only if there exists v ∈ V \ {0} such that α(v) = λv.

(ii) v ∈ V is an eigenvector of α ∈ L(v) if and only if v ̸= 0 and there exists λ ∈ F
such that α(v) = λv.

(iii) Vλ = {v ∈ V | α(v) = λv} ≤ V is the eigenspace associated to λ ∈ F .

Remark. Once can write evalue, evectors, espace.

Lemma. α ∈ L(v), λ ∈ F , then

λ eigenvalue ⇐⇒ det(α− λid) = 0

Proof.

λ eigenvalue ⇐⇒ ∃v ∈ V \ {0} | α(v) = λv

⇐⇒ ∃v ∈ V \ {0} | (α− λid)(v) = 0

= ker(α− λid) ̸= {0}
= α− λid not injective

⇐⇒ α− λid not surjective

⇐⇒ α− λid not bijective

⇐⇒ det(α− λid) = 0

Remark. If α(vj) = λvj , vj ̸= 0. I can complete it to a basis (v1, . . . , vj−1, vj , . . . , vn)
of V . Then

[α]B = (| · · · | (λ in j-th entry) | · · · )

Elementary facts about polynomials

We will study P (α), P polynomial. α ∈ L(V ).

� F field,
f(t) = ant

n + an−1t
n−1 + · · ·+ a1t+ a0

ai ∈ F . n ≡ the largest exponent such that an ̸= 0, n = deg f .

� deg(f + g) ≤ max{deg f,deg g}, deg(fg) = deg f + deg g
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� F [t] = {polynomials with coefficients in F}

� λ root of f(t) ⇐⇒ f(λ) = 0.

Lemma. λ is a root of f , then t− λ divides f :

f(t) = (t− λ)g(t), g(t) ∈ F (t)

Proof. f(t) = ant
n + · · ·+ a1t+ a0, f(λ) = anλ

n + · · ·+ a1λ+ a0 = 0.

f(t) = f(t)− f(λ)

= an(t
n − λn) + · · ·+ a1(t− λ)

= an(t− λ)(tn−1 + λtn−2 + · · ·λn−2t+ λn−1) + · · ·

Corollary. A nonzero polynomial of degree n (≥ 0) has at most n roots (counted
with multiplicity).

Proof. Induction on the degree. (Exercise)

Corollary. f1, f2 polynomials of degree < n such that f1(ti) = f2(ti), (ti)1≤i≤n n
distinct values. Then f1 ≡ f2.

Proof. f1 − f2 has degree < n and at least n roots so f1 − f2 ≡ 0.

Theorem. Any f ∈ C[t] of positive degree has a (complex) root (hence exactly
deg f roots when counted with multiplicity).

So f ∈ C[t],

f(t) = c
r∏
i=1

(t− λi)
α
i c, λi ∈ C, αi ∈ N

→ complex analysis.

Definition (characteristic polynomial). Let α ∈ L(V ), the characteristic polyno-
mial of α is

χα(t) = det(A− tid)
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Remark. The fact that det(A − λid) is a polynomial in λ follows from the very
definition of det.

Remark. Conjugate matrices have the same characteristic polynomial.

det(P−1AP − λid) = det(P−1(A− λid)P )

= det(A− λid)

So we can define
χα(t) = det(A− λid)

where A = [α]B, and the polynomial does not depend on the choice of basis.

Theorem. α ∈ L(V ) is triangulable if and only χα can be written as a product of
linear factors over F :

χα(t) = c

n∏
i=1

(t− λi)

→ If F = C, any matrix is triangulable.

Proof. ⇒ Suppose α triangulable, then

[α]B =


a1 ∗ · · · ∗
0 a2 · · · ∗
...

...
. . .

...
0 0 · · · an


so

χα(t) = det


a1 ∗ · · · ∗
0 a2 · · · ∗
...

...
. . .

...
0 0 · · · an

 =
n∏
i=1

(ai − t)

⇐ We argue by induction on n = dimV .

� n = 1 easy.

� n > 1. By assumption, let χα(t) which has a root λ. Then χα(λ) = 0 if and
only if λ is an eigenvalue of α. Let U = Vλ be associated eigenspace. Let
(v1, . . . , vk) be a basis of U . We complete to (vk+1, . . . , vn) of V

span(vk+1, . . . , vn) =W

V = U ⊕W
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� [α]B =

α induces an endormorphism α : V/U → V/U ,

C = [α]B,B = (vk+1 + U, . . . , vn + U)

Then: (block product)
det(α− id) =

= (λ− t)k det(C − tid) = c
n∏
i=1

(t− ai)

=⇒ det(C − tid) = c̃
n∏

i=k+1

(t− ãi)

so use the induction because dimV/U = dimV − dimU < dimV . So B̃ =
(ṽk+1, . . . , ṽn) basis of W where:

[C]W =


ã1 ∗ · · · ∗
0 ã2 · · · ∗
...

...
. . .

...
0 0 · · · ãn


implies V = U ⊕W ,

B̂ = (v1, . . . , vk, ṽk+1, . . . , ṽn)

basis of V in which
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→ triangular form.

Start of
lecture 15 Lemma. V n dimensional over F = R,C, α ∈ L(V ). Then χα(t) = (−1)ntn +

cn−1t
n−1 + · · ·+ c0, c0 = detA = detα, cn−1 = (−1)n−1TrA.

Proof. � χα(t) = det(α− tid)

=⇒ χα(0) = detα = c0

� Say that F = R or C (if F = R, we can think of is as having complex entries as
well). We know that α is triangulable over C, so:

χα(t) = det

a1 − t · · · ∗
...

. . .
...

0 · · · an − t


=

n∏
i=1

)ai − 1)

= (−1)ntn + cn−1t
n−1 + · · ·+ c0

cn−1 = (−1)n−1
∑

i = 1nai = Trα

1.17 Diagonalisation criterion and minimal polynomial
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Notation (polynomial of an endomorphism). Pick p(t) polynomial over F

p(t) = ant
n + · · ·+ a1t+ a0, ai ∈ F

A ∈ Mn(F ), for all n, A
n ∈ Mn(F ). We define:

p(A) = anA
n + · · ·+ a1A+ aiid ∈ Mn(F )

If α ∈ L(V ), we define

p(α) = anα
n + · · ·+ a1α+ a0id

where α = α ◦ · · · ◦ α ∈ L(V ).

→ very useful.

Theorem (Sharp criterion of diagonalisability). � V vector space over F , dimF V <
∞

� α ∈ L(V )
Then α is diagonalisable if and only if there exists a polynomial p which is the

product of distinct linear factors such that p(α) = 0.

α diagonalisable ⇐⇒ ∃(λ1, . . . , λn) distinct , λi ∈ F such that:

p(t) =
k∏
i=1

(t− λi)

and p(α) = 0

Proof. ⇒ Suppose α is diagonalisable, with λ1, . . . , λk the distinct eigenvalues. Let
p(t) =

∏k
i=1(t − λi). Let B be the basis of V made of eigenvectors of α (it is

precisely the basis in which [α]B is diagonal). Then v ∈ B, then α(v) = λi(v) for
some i ∈ {1, . . . , k}, implies (a− λiid)(v) = 0, implies

p(α) =

 k∏
j=1

(α− λj id)

 (v) = 0

but the terms in the product commute, i.e.

(α− λj id)(α− λkid) = (α− λkid)(α− λj id)

so for all v ∈ B, p(α)(v) = 0, so p(α)(v) = 0 for all v ∈ V (since B is a basis for
V ). So p(α) = 0.
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⇐ (Kernel lemma, Bezout’s theorem for prime polynomials)

� Suppose p(α) = 0 for:

p(t) =
k∏
i=1

(t− λi)

λi ̸= λj , i ̸= j.

� Let Vλi = ker(α− λiid), we claim:

V =
k⊕
i=1

Vλi

Indeed let:

qj(t) =

k∏
i=1
i ̸=j

(
t− λi
λj − λi

)
, 1 ≤ j ≤ k

Then

qj(λi) =

{
1 if i = j

0 if i ̸= j

Hence let us consider:

q(t) =

k∑
j=1

qj(t)

Then deg qj ≤ k − 1, so deg q ≤ k − 1. Also q(λj) = 1 for all 1 ≤ j ≤ k. So
the polynomial q(t) − 1 has degree ≤ k − 1 and at least k roots, so for all t,
q(t) = 1. So for all t,

q1(t) + · · ·+ qk(t) = 1

� Let us define the projector
ıjqj(α) ∈ L(V )

Then

k∑
j=1

πj =
k∑
j=1

qj(α)

=

 k∑
j=1

qj

 (α)

= id

This means for all v ∈ V ,

v = q(α)(v) =

k∑
j=1

πj(v) =

k∑
j=1

qj(α)(v)
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Observe: pick j ∈ {1 . . . , k},

(α− λj id)qj(α)(v) =
1∏

i ̸=j(λi − λj)
p(α)(v) = 0

so
∀j ∈ {1, . . . , k}, (α− λj id)πj(v) = 0

=⇒ ∀j ∈ {1, . . . , k}πj(v) ∈ Vλj

(πj is a projector on Vλj ) Now for all v ∈ V ,

v =

k∑
j=1

πj(v)

hence

V =
k∑
j=1

Vλj

We need to prove that the sum is direct. Indeed, let v ∈ Vλj ∩
(∑

i ̸=j Vλi

)
.

– v ∈ Vλj . Then

πj(v) = qj(α)(v)

=

k∏
i=1,i ̸=j

(α− λiid)

λi − λj
(v)

=

 k∏
i=1,i ̸=j

(λi − λj)

λi − λj

 (v)

= v

so πj |Vλj= id.

– By assumption v ∈
∑

i ̸=j Vλi . Now, i0 ̸= j, v ∈ Vλi0 , α(v) = λi0v,

=⇒ πj(v) = qj(α)(v)

=

∏
i ̸=j

(α− λiid)

λi − λj

 (v)

=

∏
i ̸=j

λi0 − λj
λi − λj


= 0

so πj |Vλi= 0 for i ̸= j.
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As a conclusion: v ∈ Vλj ∩
(∑

i ̸=j Vλi

)
(1) v ∈ Vλi , implies πj(v) = v

(2) v ∈
∑

i ̸=j Vλi implies πj(v) = 0

so v = 0. We have proved:

V =
k⊕
j=1

Vλj

πj |Vλj= id

πi |Vλj= 0

for i ̸= j.

Remark. We have proved the following: if λ1, . . . , λk are k distinct eigenval-
ues of α, then

k∑
i=1

Vλi =
k⊕
i=1

Vλi

(always true) (and we know the projectors)

This means that the only way diagonalisation fails is if:

k⊕
i=1

Vλi =
k∑
j=1

Vλj ̸= V

Example. A ∈ Mn(F ), F = C. A has finite order. (there exists m ∈ N such that
Am = id). Then A is diagonalisable (over C). TODO..

Start of
lecture 16 Theorem (Simultaneous diagonalisation). � dimF V <∞

� α, β ∈ L(V ) diagonalisable
Then α, β are simultaneously diagonalisable (∃B basis of V in which both [α]B,

[β]B are diagonal) if and only if α and β commute.

Proof. ⇒ Exists basis B of V in which

[α]B = D1

[β]B = D2

D1, D2 both diagonal, then D1D2 = D2D1 so αβ = βα.
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⇐ Suppose α, β are both diagonalisable and αβ = βα. Let λ1, . . . , λk be the k distinct
eigenvalues of α. We have shown:

α diagonalisable ⇐⇒ V =
k⊕
i=1

Vλi

Vλi is the eigenspace associated to λi.

Claim: VλI stable by β: β(Vλi) ≤ Vλi .
Indeed, let v ∈ Vλi , then

αβ(v) = ηα(v) = β(λiv) = λiβ(v)

so β(v) ∈ Vλi .

� We use criterion for diagonalisability: β is diagonalisable implies that there
exists p with distinct linear factors such that p(β) = 0.

Now B|Vλj endomorphism (β : Vλj → Vλj ) and

p(β|Vλj ) = 0

p has distinct linear factors, so β|Vλj is diagonalisable. So there exists B basis of
Vλj in which β|Vλj is diagonal. Then

V =
k⊕
i=1

Vλi

so (B1, . . . ,Bk) = B is a basis of V in which both α and β are in diagonal form.

Minimal polynomial of an endormorphism

� Remainder: (Groups, Rings and Modules).
Euclidean algorithm for polynomials: a, b polynomials over F , b ̸= 0, then there
exist polynomials q, r over F with:

deg r < deg b

a = qb+ r

Definition (Minimal polynomial). V vector space over F , dimF V < ∞. Let α ∈
L(V ). The minimal polynomial mα of α is the (unique up to a constant) non zero
polynomial with smallest degree such that

mα(α) = 0
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Existence and uniqueness follow from the following observations:

� dimF V = n, α ∈ L(V ). We know:

dimF L(V ) = n2

=⇒ id, α, . . . , αn
2
cannot be free

=⇒ an2αn
2
+ · · ·+ a1α+ a0 = 0

=⇒ ∃p ∈ F [t] | p(α) = 0, p ̸= 0

That is, there does exist a polynomial p that kills α.

� Lemma: α ∈ L(V ), p ∈ F [t]. Then p(α) = 0 if and only if mα is a factor of p.
Proof: p ∈ F [t], p(α) = 0, mα is minimum polynomial of α. So degmα ≤ deg p.
By Euclidean division:

p = mαq + r

deg r < degmα

Then
p(α) = 0 = mαq(α)r(α)

so r(α) = 0. If r ̸= 0, then this would contradict the definition of mα. So r ≡ 0.
So p = mαq, that is, mα divides p.

� If m1,m2 are both polynomial with smallest degree which kill α then by the above
lemma, m1 | m2, m2 | m1 so m2 = cm1, c ∈ F . That is, the minimal polynomial
is unique up to a constant.

Example. V = R2

A =

(
1 0
0 1

)
B =

(
1 1
0 1

)
� Let p(t) = (t − 1)2, then p(A) = p(B) = 0. So minimal polynomial is either
t− 1 or (t− 1)2.

� Check: mA = t− 1, mB = (t− 1)2. So A is diagonalisable but B is not.

1.18 Cayley Hamiton Theorem and multiplicity of eiganvalues

Theorem (Cayley Hamilton). Let V be an F vector space, dimF V < ∞. Let
α ∈ L(V ) with characteristic polynomial χα(t) = det(α− tid). Then χα(α) = 0.
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Corollary. mα | χα.

Proof. F = C (general proof is in the notes). α ∈ L(V ), n = dimC V . Exists basis
B = {v1, . . . , vn} such that

[α]B =

a1 · · · ∗
...

. . .
...

0 · · · an


(triangulable). Let Uj = ⟨v1, . . . , vj⟩. Then because of the triangular form, (α −
aj id)Uj ≤ Uj−1.

χα(t) =
n∏
i=1

(ai − t)

(α− a1id) · · · (α− an−1id)(α− anid)V

≤ (α− a1id) · · · (α− an−1id)Un−1

...

≤ 0

So χα(α) = 0. For the general case, see the notes.

Definition (algebraic / geometric multiplicity). dimF V < ∞, α ∈ L(V ). Let λ
eigenvalue of α. Then

χα(t) = (t− λ)aλq(t)

q ∈ F [t], q(λ) ̸= 0

� aλ is the algebraic multiplicity of λ.

� gλ is the geometric multiplicity of λ, and gλ = dimker(α− λid).

Remark. λ eigenvalue ⇐⇒ α− λ ⇐⇒ singular ⇐⇒ det(α− λid) = χα(λ) = 0

Lemma. λ eigenvalue of α ∈ L(V ), then 1 ≤ gλ ≤ aα.

Proof. � gλ = dimker(α− λid) ≥ 1 since λ is an eigenvalue.

� Let us show that gλ ≤ aλ. Indeed, let (v1, . . . , vgλ) basis of Vλ = ker(α− λid), and
compute B = (v1, . . . , vλg , vgλ+1, . . . , vn) of V . Then

[α]B =

(
λidgλ ∗
0 A1

)
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=⇒ det[α− tid] = det

(
(λ− t)idgλ ∗

0 A1 − tid

)
= (λ− t)gλχA1(t)

=⇒ gλ ≤ aλ

Lemma. λ eigenvalue of α ∈ L(V ). Let:

cλ ≡ multiplicity of λ as a root of mα (minimal polynomial)

Then 1 ≤ cλ ≤ aλ.

Proof. � Cayley-Hamilton implies mα | χα. So cλ ≤ aλ.

� cλ ≥ 1. Indeed, there exists b ̸= 0 such that α(v) = λv so then for all p ∈ F [t],
p(α)(v) = (p(λ))v (αn(v) = λnv) so m(α)(v) = (m(λ))v so m(λ) = 0 so cλ ≥ 1.

Example.

A =

1 0 −2
0 1 1
0 0 2


mA?

χA(t) = (t− 1)2(t− 2)

�� So mα is either (t − 1)2(t − 2) or (t − 1)(t − 2). Check (A − I)(A − 2I) = 0,
so mα = (t− 1)(t− 2) so A is diagonalisable.

Start of
lecture 17 Example (Jordan block).

Jλ =


λ 1 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · λ

 ∈ Mn(F )

Check gλ = 1, aλ = n, cλ = n
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Lemma (characterisation of diagonalisable endomorphisms over F = C). F = C,
dimC V = n <∞, α ∈ L(V ). The following are equivalent:

(i) α diagonalisable

(ii) ∀λ eigenvalue of α, aλ = gλ

(iii) ∀λ eigenvalue of α, cλ = 1.

Proof. (i) ⇐⇒ (iii) done. We need (i) ⇐⇒ (ii). Indeed, let (λ1, . . . , λk) be the distinct
eigenvalues of α. We showed:

α diagonalisable ⇐⇒ V =

k⊕
i=1

Vλi

dimV = n = degχα

=
k∑
i=1

aλi

(χα(t) = (−1)n
k∏
i=1

(t− λi)
ai)

so

α diagonalisable ⇐⇒
k∑
i=1

aλi =
k∑
i=1

gλi (∗)

We know: ∀1 ≤ i ≤ k, gλi ≤ aλi . Hence (∗) holds ⇐⇒ ∀1 ≤ i ≤ k, aλi = gλi .

1.19 Jordan normal form

Note. In this subsection, F = C.
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Definition (Jordan normal form). Let A ∈ Mn(C), we say that A is in Jordan
Normal Form (JNF) if it is a block diagonal matrix:

A =


Jn1(λ1) 0 · · · 0

0 Jn2(λ2) · · · 0
...

...
. . .

...
0 0 · · · Jnk

(λk)


where:

� k ≥ 1, k integer

� n1, . . . , nk integers

�

∑k
i=1 ni = n

� λi ∈ C, 1 ≤ i ≤ k: they need not be distinct

� m ∈ N, m ̸= 0, λ ∈ C, Jm(λ) = λ) if m = 1,

Example. n = 3,

A =

λ 0 0
0 λ 0
0 0 λ

 =

J1(λ 0 0
0 J1(λ) 0
0 0 J1(λ)


so this is in Jordan Normal Form.

Theorem. Every matrix A ∈ Mn(C) is similar to a matrix in Jordan Normal Form,
which is unique up to reordering the Jordan block.

Proof. Non examinable (in Groups, Rings and Modules class). (Proof is in lecturer’s
notes).
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Example. n = 2, possible JNF in this case?(
λ1 0
0 λ2

)
m = (t− λ1)(t− λ2), λ1 ̸= λ2

(
λ 0
0 λ

)
m = (t− λ)(

λ 1
0 λ

)
m = (t− λ)2

Example. n = 3,λ1 0 0
0 λ2 0
0 0 λ3

 (t− λ1)(t− λ2)(t− λ3) λ1, λ2, λ3 distinct

λ1 0 0
0 λ2 0
0 0 λ2

 (t− λ1)(t− λ2)

λ1 0 0
0 λ2 1
0 0 λ2

 (t− λ1)(t− λ2)
2

λ 0 0
0 λ 0
0 0 λ

 (t− λ)

λ 0 0
0 λ 1
0 0 λ

 (t− λ)2

λ 1 0
0 λ 1
0 0 λ

 (t− λ)3

Useful observation: which explains why JNF is unique. → we can directly compute in
the JNF the quantities aλ, gλ, cλ. Indeed, let M ≥ 2 and let Jm(λ). Then

76



By induction we can show:

for k ≤ m, and is 0 for k = m. We say that the matrix (Jm − λid) is nilpotent of order
m. (um = 0 and um−1 ̸= 0). So

aλ ≡ sum of sizes of blocks with eigenvalue λ ≡ number of λ on the diagonal

gλ = dimker(A− λid) = number of blocks with eigenvalue λ

cλJm(λ) → (t− λ)mkills it

(because (Jm − λid) is nilpotent of order exactly m) so

cλ ≡ size of the largest block with eigenvalue λ
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Example.

A =

(
0 −1
1 2

)
Find a basis in which A is Jordan Normal Form?

χA(t) = (t − 1)2 eigenvalue λ = 1. A − id ̸= 0 implies mA(t) = (t − 1)2, and
Jordan Normal Form (

1 1
0 1

)
(i)(ii) Eigenvectors:

A− id =

(
−1 −1
1 1

)
ker(A− id) = ⟨v1⟩, v1 = (1,−1)⊤. I look for a (non-unique!) v2 such that

(A− id)v2 = v1

v2 = (−1, 0)⊤ works.
[A]B = J1(1)

for B = (v1, v2).

P−1 =

(
1 −1
−1 0

)

A =

(
1 −1
−1 0

)
︸ ︷︷ ︸

P−1

(
1 1
0 1

)
︸ ︷︷ ︸

J

(
1 −1
−1 0

)−1

︸ ︷︷ ︸
P

Exercise:

A =

3 −2 0
1 0 0
1 0 1


Find a basis in which A is JNF.
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Theorem (Generalised eigenspace decomposition). � dimC V = n <∞

� α ∈ L(V ).

� mα(t) = (t− λ1)
c1 · · · (t− λk)

ck

� λ1, . . . , λk distinct eigenvalues of α.
Then

V =
k⊕
j=1

Vj

Vj = ker[(α− λid)cj ]

(Vj is generalised eigenspace)

Remark. α diagonalisable, cj = 1. THen Vj eigenspace associated to λj .

Proof. projectors onto Vj are explicit. Indeed, let

pj(t) =
∏
i ̸=j

(t− λi)
ci

Then the pj have no common factor, so by Euclid’s algorithm, we can find q1, . . . , qk
polynomials such that

k∑
i=1

piqi = 1 (∗)

We define
πj = qjpj(α)

(i) By (∗),

id =

k∑
j=1

qjpj(α) =

k∑
j=1

πj

=⇒ ∀v ∈ V, v =

k∑
j=1

πj(v)

(ii) mα(α) = 0, mα =
∏k
j=1(t− λj)

cj

=⇒ (α− λj id)
cjπj = (α− λj id)

cjqjpj(α) = 0

=⇒ ∀v ∈ V, π(v) ∈ Vj

Vj = ker(α− λj id)
cj
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Hence ∀v ∈ V

v =
k∑
j=1

πj(v)

=⇒ V =

k∑
j=1

Vλj

(iii) Show that:
k∑
j=1

Vλj =
k⊕
j=1

Vλj

Indeed, πiπj = 0 if i ̸= j and so πi = πi

(∑k
j=1 πj

)
= π2i .

=⇒ πi|Vλi = id

=⇒ direct sum projection follows:

v = Vλi ∩

∑
i ̸=j

Vλi


v =

∑
i ̸=j

vj , vj ∈ Vλj

If apply πi and use:
πi|Vλi = id

πi|Vλj = 0 for j ̸= i

so v = 0.

V =
k⊕
i=1

Vλi

Vλi = ker(α− λiid)
cλi

By definition
(α− λiid)|Vλi

is nilpotent, since
(α− λiid)

cλi |Vλi = 0

=⇒ all I need to do is to find JNF nilpotent endomorphism.
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� α ∈ L(V ), dimC V = n, ak = 0, ak−1 ̸= 0.
?

=⇒ JNF with blocks Jm(0). → By
induction on the dimension.

αk = 0, αk−1 ̸= 0

=⇒ ∃x ∈ V, (x, α(x), . . . , αk−1(x))

free.

Question: F = span⟨x, α(x), . . . , αk−1(x)⟩. Can I find G such that:

V = F ⊕G

G stable by α?
→ done.

Start of
lecture 18 1.20 Bilinear Forms

Bilinear form: φ : V × V → F .

� dimF V <∞, B basis of V .

� [φ]B = [φ]B,B = (φ(ei, ej))1≤i,j≤n. B = (ei)1≤i≤n.

Lemma. φ : V × V → F bilinear, B,B′ two basis of V , P = [id]B′,B then

[φ]B′ = P⊤[φ]BP

Proof. Special case of the general formula → Lecture 10.

Definition (Congruent matrices). A,B ∈ Mn(F ), we say that A and B are con-
gruent if and only if there exists P invertible such that

A = P⊤BP

Remark. This defines an equivalence relation.

Definition (Symmetric). A bilinear form φ on V is symmetric if:

φ(u, v) = φ(v, u) ∀(u, v) ⊂ V × V
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Remark. � A ∈ Mn(F ), we say that A is symmetric if and only if A = A⊤

⇐⇒ A = (aij)1≤i,j≤n, aij = aji

� φ symmetric ⇐⇒ [φ]B is symmetric in any basis B of V .

Remark. To be able to represent φ by a diagonal matrix, then φmust be symmetric

P⊤AP = D =⇒ D⊤P⊤A⊤P

=⇒ A = A⊤

Definition (Quadratic form). A map Q : V → F is a quadratic form if and only if
there exists a bilinear form φ : V × V → F such that ∀u ∈ V ,

Q(u) = φ(u, u)

Remark. B = (ei)1≤i≤n, A = [φ]B = (φ(ei, ej)︸ ︷︷ ︸
aij

)1≤i,j≤n. Then

u =
n∑
i=1

xiei, x = (x1, . . . , xn)
⊤

Then

Q(u) = φ(u, u)

= φ

(
n∑
i=1

xiei,

n∑
i=1

xiei

)

=
n∑
i=1

n∑
j=1

xixj φ(ei, ej)︸ ︷︷ ︸
aij

=
n∑
i=1

n∑
j=1

xixjaij

= x⊤Ax

so
Q(u) = x⊤Ax
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Observation:

x⊤Ax =
n∑

i,j=1

aijxixj

=

n∑
i,j=1

ajixixj

=
1

2

n∑
i,j=1

(aij + aji)xixj

=
1

2
x⊤(A+A⊤)x

and 1
2(A+A⊤) is symmetric.

Proposition. If Q : V → F is a quadratic form, then there exists a unique sym-
metric bilinear form φ : V × V → F such that:

∀u ∈ V,Q(u) = φ(u, u)

Proof. Let ψ bilinear form on V such that

∀u,Q(u) = ψ(u, u)

Let

φ(u, v) =
1

2
(ψ(u, v) + ψ(v, u))

� φ symmetric

� φ(u, u) = ψ(u, u) = Q(u).

→ existence of φ symmetric. Now uniqueness. Let φ be a symmetric bilinear form such
that φ(u, u) = Q(u)∀u ∈ V . Then

Q(u+ v) = φ(u+ v, u+ v)

= φ(u, u) + φ(v, u) + φ(v, u) + φ(v, v)

= Q(u) + 2φ(u, v) +Q(v)

so

φ(u, v) =
1

2
[Q(u+ v)−Q(u)−Q(v)]

≡ POLARIZATION IDENTITY.
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Theorem (Diagonalisation of symmetric bilinear forms). Let φ : V × V → F be a
symmetric bilinear form (dimF V <∞). Then there exists a basis B of V such that:

[φ]B is diagonal

=⇒ extensions to infinite dimensional cases.

Proof. � dimF V <∞.

� Induction on the dimension n.

� n = 0, 1 are clear.

� Suppose that the theorem holds for all dimensions < n.

(1) Let φ : V × V → F be a symmetric bilinear form. If φ(u, u) = 0, ∀u ∈ V , φ
is identically zero. (polarization identity).

=⇒ ∃u ∈ V \ {0} | φ(u, u) ̸= 0

(because φ ̸= 0).

(2) Let us call u = e1. (e1 ̸= 0, ϖ(e1, e1) ̸= 0). Let us define

U = (⟨e1⟩)⊥

= {v ∈ V | φ(e1, v) = 0}
= ker{φ(e1, •) : V → F, v 7→ φ(e1, v)}

(linear because φ is bilinear). Now rank nullity:

dimV = n = 1 + dimU

(r(φ(e1, •)) = 1 φ(e1, e1) ̸= 0) So dimU = n− 1.

(3) Claim U + ⟨e1⟩ = U ⊕ ⟨e1⟩. Indeed, v ∈ ⟨e1⟩ ∩ U then v = λe1, λ ∈ F .

φ(e1, v) = 0 (v ∈ U)

so 0 = φ(e1, λe1) = λφ(e1, e1) so λ = 0, so v = 0.

(4) Conclusion V = ⟨e1⟩ ⊕ U , by counting dimensions.

(5) Complete (e2, . . . , en) basis of U . So B = (e1, e2, . . . , en) basis of V . And:

84



(φ(ej , e1) = φ(e1, ej) = 0 for 2 ≤ j ≤ n).

A′ = (φ(ei, ek))2≤i,j≤n

Then (A′)⊤ = A′ since φ symmetric.

=⇒ φ|U : U × U → F

bilinear symmetric with matrix A′. By the induction hypotheses, I can find
B′ = (e′2, . . . , e

′
n) basis of U in which [φ|U ]B′ is diagonal. Then

[φ](e1,e′2,...,e′n)

diagonal form.

Remark. φ(e1, e1) ̸= 0
=⇒ V = ⟨e1⟩ ⊕ U

U = ⟨e1⟩⊥
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Example. V = R3

� Q(x1, x2, x3) = x21 + x22 + 2x23 + 2x1x2 + 2x1x3 − 2x2x3 = x⊤Ax where

A =

1 1 1
1 1 −1
1 −1 2


� Diagonalise: Two ways.

(1) Follow the proof of diagonalisation → algorithm.

(2) “Complete the square”

Q(x1, x2, x3) = x21 + x22 + 2x23 + 2x1x2 + 2x1x3 − 2x2x3

= (x1 + x2 + x3)
2 + x23 − 4x2x3

=
2

(x1 + x2 + x3)︸ ︷︷ ︸
x′1

+
2

(x3 − 2x2)︸ ︷︷ ︸
x′2

−
2

(2x2)︸ ︷︷ ︸
x′3

– P ,

P⊤AP =

1 0 0
0 1 0
0 0 −1


– To find P , remember:x′1x′2

x′3

 =

1 1 1
0 −2 1
0 2 0

 = P−1

Start of
lecture 19 1.21 Sylvester’s law / Sesquilinear forms

Recall:

Theorem. dimF V < ∞, φ : V × V → F is a symmetric bilinear form =⇒ there
exists B basis of V in which [φ]B is diagonal.

Remark. We take F = R or C in this subsection.
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Corollary. F = C, dimC V < ∞, φ symmetric bilinear form on V . Then there
exists basis of V such that

[φ]B =

(
Ir 0

0 0

)
, r = rank(φ)

Proof. Pick a basis E = (e1, . . . , en) such that

[φ]E =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


Reorder ei such that ai ̸= 0 for 1 ≤ i ≤ r, ai = 0 for i > r. For i ≤ r, I let

√
ai be a

choice of complex root of ai, we define:

vi =

{
ei√
ai

for 1 ≤ i ≤ r

ei for i < r

B = (v1, . . . , vr, er+1, . . . , en), B basis of V

=⇒ [φ]B =

(
Ir 0

0 0

)

Corollary. Every symmetric matrix of Mn(C) is congruent to a UNIQUE matrix
of the form:  Ir 0

0 0



We want to address the same problem with F = R. → we cannot take complex roots
this time.
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Corollary. F = R, dimR V < ∞, φ symmetric bilinear form on V . Then there
exists B = (v1, . . . , vn) basis of V such that

p, q ≥ 0, p+ q = r(φ).

Proof. E = (e1, . . . , en) basis of V such that

[φ]E =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

 ai ∈ R

Reorder ai so that:

� ai > 0 for 1 ≤ i ≤ p

� ai < 0 for p+ 1 ≤ i ≤ q

� ai = 0 for i ≥ q + 1

We define:

vi =


ei√
ai

1 ≤ i ≤ p
ei√
|ai|

p+ 1 ≤ i ≤ q

ei i ≥ q + 1

Then let B = (v1, . . . , vn) and then [φ]B has the announced form.

Definition (signature). We define (under the assumptions above)

s(φ) = p− q ≡ signature of φ

(we also speak of the signature of the associated quadratic form Q(u) = φ(u, u))

This definition makes sense:
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Theorem (Sylvester’s law of inertia). F = R, dimR V < ∞, φ symmetric bilinear
form on V . If φ is represented by:

with B,B′ bases of V . Then p = p′ and q = q′.

Definition. φ be a symmetric bilinear form on a real valued vector space (F = R).
We say that:

(i) φ is positive definite

⇐⇒ ∀u ∈ V \ {0}, φ(u, u) > 0

(ii) φ is positive semi definite

⇐⇒ ∀u ∈ V, φ(u, u) ≥ 0

(iii) φ is negative definite

⇐⇒ ∀u ∈ V \ {0}, φ(u, u) < 0

(iv) φ is negative semi definite

⇐⇒ ∀u ∈ V, φ(u, u) ≤ 0
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Example. (
Ip 0

0 0

)
positive definite for p = n

�� positive semi definite for p ≤ n.

Proof. (Of Sylvester’s law of inertia)
In order to prove that p is independent of the choice of the basis, we show that p has a
geometric interpretation:
Claim: p is the largest dimension of subspace on which φ is positive definite.
Proof:
Say B = (v1, . . . , vn) in which:

(1) Let X = ⟨v1, . . . , vp⟩. Then φ is positive definite on X. Indeed, u =
∑p

i=1 λivi,

Q(u) = φ(u, u)

= φ

(
p∑
i=1

λivi,

p∑
i=1

λivi

)

=
n∑

i,j=1

λiλjφ(vi, vj)

=

p∑
i=1

λ2i > 0 for u ̸= 0

dimX = p, φ|X×X is positive definite.

(2) Suppose that φ is definite positive when restricted to another subspace X ′. Let
X = ⟨v1, . . . , vp⟩, Y = ⟨vp+1, . . . , vn⟩, B = (v1, . . . , vn). Then
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=⇒ We know that φ is negative semi definite on Y . So Y ∩X ′ = {0}. Indeed, if
u ∈ Y ∩X ′ and u ̸= 0, then u ∈ Y so φ(u, u) ≤ 0, but u ∈ X ′ so φ(u, u) > 0. So
Y ∩X ′ = {0}. So Y +X ′ = Y ⊕X ′, so dimY + dimX ′ ≤ n, and dimY = n− p so
dimX ′ ≤ p.

So now we know that p has a geometric interpretation / is unique. Then by considering
−φ, we find that q is unique too.

Remark. Similarly, q is the largest dimension of a subset on which φ is negative
definite.

Definition. K = kernel of a bilinear form φ = {v ∈ V | ∀u ∈ V, φ(u, v) = 0}.

Remark. dimK + r(φ) = n
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Remark. F = R. One notices that there is a subspace T of dimension n − (p +
q) + min{p, q} such that φ|T = 0. Indeed: B = (v1, . . . , vn),

T = ⟨v1 + vp+1, . . . , vq + vp+q︸ ︷︷ ︸
q

, vp+q+1, . . . , vn︸ ︷︷ ︸
n−(p+q)

⟩ (if p ≥ q). Check φ|T = 0 (∀(u, v) ∈

T × T, φ(u, v) = 0). Moreover, one can show that this is the largest dimension of a
subspace T ′ on which φ|T ′×T ′ = 0

Sesquilinear Forms

� F = C

� Standard inner product on Cn is ⟨x, y⟩ =
∑n

i=1 xiyi. In particular,

∥x∥2 = ⟨x, x⟩ =
n∑
i=1

|xi|2︸ ︷︷ ︸
∈R+

Warning. Cn × Cn → C

(x, y) 7→ ⟨x, y⟩ =
n∑
i=1

xiyi

is not a bilinear form: λ ∈ C,

⟨λx, y⟩ =
n∑
i=1

λxiyi = λ⟨x, y⟩

⟨x, λy⟩ =
n∑
i=1

xiλyi = λ⟨x, y⟩

→ antilinear with respect to the second coordinate.
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Definition. V,W C vector spaces. A sesquilinear form φ is a function φ : V ×W →
C such that:

(i) φ(λ1v1 + λ2v2, w) = λ1φ(v1, w) + λ2φ(v2, w) (linear with respect to the first
coordinate)

(ii) φ(v, λ1w1 + λ2w2) = λ1φ(v, w1) + λ2φ(v, w2) (antilinear with respect to the
second coordinate).

Start of
lecture 20

dimCW <∞, dimC V <∞, φ sesquilinear, V ×W → C

� linear first variable: φ(λu, v) = λφ(u, v)

� multilinear second variable φ(u, λv) = λφ(u, v)

Definition. B = (v1, . . . , vm) basis of V , C = (w1, . . . , wn) basis of W .

[φ]B,C = (φ(vi, wj))

m× n matrix.

Lemma. φ(v, w) = [v]⊤B [φ]B,C [w]B

Proof. Exercise.

Lemma. B, B′ basis for V , P = [id]B′,B, C, C′ basis for W , Q = [id]C′,C . Then

[φ]B′,C′ = P⊤[φ]B,CQ

Proof. Exercise.

1.22 Hermitian Forms / C, Skew Symmetric forms / R

Hermitian form

dimC V <∞, φ : V × V → C sesquilinear (W = V ).

Definition (Hermitian form). A sesquilinear form φ : V × V → C is called Hermi-
tian if

∀(u, v) ∈ V × V, φ(u, v) = φ(v, u)

93

https://notes.ggim.me/LA#lecturelink.20


Remark. φ Hermitian
=⇒ φ(u, u) = φ(u, u)

=⇒ ∀u ∈ V, φ(u, u) ∈ R

Allows us to speak of positive / negative (semi) definite Hermitian form.

Lemma. A sesquilinear form φ : V × V → C is Hermitian if and only if ∀B basis
of V ,

[φ]B = [φ]⊤B

Proof. A = [φ]B = (aij)1≤i,j≤n, aij = φ(ei, ej). Then aij = φ(ei, ej), aji = φ(ej , ei) =

φ(ei, ej) = aij .

=⇒ [φ]⊤B = [φ]B

Conversely [φ]B = A, A = A⊤

u =
n∑
i=1

λiei

v =
n∑
i=1

µiei

B = (e1, . . . , en)

φ(u, v) = φ

(
n∑
i=1

λiei,
n∑
i=1

µiei

)

=
n∑

i,j=1

λiµjφ(ei, ej)

=

n∑
i,j=1

λiµjaij
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Then

φ(v, u) = φ

(
n∑
i=1

µiei,
n∑
i=1

λiei

)

=

n∑
i=1

µiλjφ(ei, ej)

=

n∑
i,j=1

µiλjaij

=

n∑
i,j=1

λiµjaji

=
n∑

i,j=1

λiµjaij

= φ(u, v)

Polarization identity

A Hermitian form φ on a complex vector space V is entirely determined by: Q : V → R,
u 7→ φ(u, u) via the formula:

φ(u, v) =
1

4
[Q(u+ v)−Q(u− v) + iQ(u+ iv)− iQ(u− iv)]

= polarization identity for Hermitian forms

Proof. Exercise (just check).

Theorem (Sylvester’s law of inertia for Hermitian forms). dimC V < ∞, φ : V ×
V → C a Hermitian form on V . Then ∃B = (v1, . . . , vn) basis of V :

where P and q depend only on φ.
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Proof. (Sketch: nearly identical to the real case of symmetric forms).

� Existence: φ ≡ 0, done. Assume φ ̸= 0, then the polarization identity ensures that
there exists e1 ̸= 0 such that

φ(e1, e1) ̸= 0

Rescale:
v1 =

e1√
|φ(e1, e1)|

=⇒ φ(v1, v1) = ±1. Then we consider the orthogonal:

W = {w ∈ V | φ(v1, w) = 0}

and we check (verbatim like in the real case)

V = ⟨v1⟩ ⊕W

(dimW = n− 1). Now argue by induction on the dimension on V by considering
φ |W which is Hermitian on W ×W .

� Uniqueness of p: As in the real case,

p ≡ maximal dimension of a subspace on which φ is definite positive (φ(u, u) ∈ R)

Similarly for q.

Skew Symmetric Real Valued Forms

F = R, V vector space over R.

Definition (skew symmetric). A bilinear form φ : V × V → R is skew symmetric
if:

φ(u, v) = −φ(v, u) ∀(u, v) ∈ V × V

This is also often called antisymmetric.

Remark. (i) φ(u, u) = −φ(u, u) so φ(u, u) = 0. ∀u ∈ V .

(ii) ∀B basis of V , [φ]B = −[φ]⊤B .

(iii) A ∈ Mn(R),
A =

1

2
(A+A⊤) +

1

2
(A−A⊤)

i.e. decomposition into symmetric and antisymmetric / skew symmetric parts.
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Theorem (Sylvester for skew symmetric form). � V vector space over R, dimR V <
∞

� φ : V × V → R skew symmetric bilinear form.
Then there exists B basis of V ,

B = (v1, w1, v2, w2, . . . , vm, wm, v2m+1, v2m+2, . . . , vn)

such that

Corollary. Skew symmetric matrices have an even rank.

Proof. (Sketch). Induction on the dimension of V .

� φ ≡ 0 then done.

� φ ̸= 0 =⇒ ∃(v1, vw) ∈ V × V such that φ(v1, w1) ̸= 0.

� v1 ̸= 0, w1 ̸= 0, after scaling:
φ(v1, w1) = 1

=⇒ φ(w1, v1) = −1

since skew symmetric.

� (v1, w1) linearly independent.

φ(v1, λv1) = λφ(v1, v1) = 0

since skew symmetric.

� Define U = ⟨v1, w1⟩.

W = {v ∈ V | φ(v1, v) = φ(w1, v) = 0}

Exercise: show that V = U ⊕W .

� Now apply the induction hypothesis to φ|W×W skew symmetric.
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Inner Product Spaces

� definite positive bilinear forms:

→ Scalar product

→ Norm (distance)

=⇒ SPECTACULAR generalisation / application to infinite dimensional spaces:

Hilbert Spaces

→ part II (linear analysis, analysis of functions).

Definition (Inner product). Let V be a vector space over R (respectively C). An
inner product is a positive definite symmetric (respectively Hermitian) bilinear form
φ on V .

Notation. φ(u, v) = ⟨u, v⟩.

If such a bilinear form exists, V is called a real (respectively complex) inner product
space.

Example. (i) Rn, x = (x1, . . . , xn)
⊤, y = (y1, . . . , yn)

⊤,

⟨x, y⟩ =
n∑
i=1

xiyi

→ inner product.

(ii) Cn, ⟨x, y⟩ =
∑n

i=1 xiyi → inner product.

(iii) V = C([0, 1],C)

⟨f, g⟩ =
∫ 1

0
f(t)g(t)dt

“L2 scalar product”

One can check that (i), (ii), (iii) are inner products.

⟨u, u⟩ = 0 =⇒ u = 0

→ definite positive assumption.
Start of
lecture 21
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1.23 Gram Schmidt and orthogonal complement

� V vector space over R (or C). An inner product is a positive definite symmetric
(or Hermitian) bilinear form on V .

Notation. φ(u, v) = ⟨u, v⟩.

� Norm: ∥v∥ =
√
⟨v, v⟩ (the norm). Then ∥v∥ ≥ 0 and ∥v∥ = 0 ⇐⇒ v = 0.

→ associated notion of length.

Lemma (Cauchy-Schwartz).

|⟨v, v⟩| ≤ ∥u∥∥v∥

More over, equality holds if and only if u and v are proportional.

Proof. f = R or C. Let t ∈ F , then

0 ≤ ∥tu− v∥2

= ⟨tu− v, tu− v⟩
= tt⟨u, u⟩ − t⟨v, v⟩ − t⟨v, u⟩+ ∥v∥2

= |t|2∥u∥2 − 2Re(t⟨v, u⟩) + ∥v∥2

Explicitly: the minimum is taken at t = ⟨u,v⟩
∥u∥2

=⇒ 0 ≤ |⟨u, v⟩|2

∥u∥2
∥u∥2 − 2Re

(
|⟨u, v⟩|2

∥u∥2

)
+ ∥v∥2

=⇒ 0 ≤ ∥v∥2 − |⟨u, v⟩|2

∥u∥2

=⇒ |⟨u, v⟩|2 ≤ ∥u∥2∥v∥2

Exercise: equality =⇒ u and v are proportional.

Corollary (Triangle inequality).

∥u+ v∥ ≤ ∥u∥+ ∥v∥ (∗)

→ key to show that ∥ • ∥ is a norm.

99



Proof.

∥u+ v∥2 = ⟨u+ v, u+ v⟩
= ∥u∥2 + 2Re(⟨u, v⟩) + ∥v∥2

≤ ∥u∥2 + 2∥u∥∥v∥+ ∥v∥2

= (∥u∥+ ∥v∥)2

Definition. A set (e1, . . . , ek) of vectors of V is

(i) Orthogonal: if ⟨ei, ej⟩ = 0 if i ̸= j.

(ii) Orthonormal: if ⟨ei, ei⟩ = δij where

δij =

{
1 i = j

0 i ̸= j

Lemma. If (e1, . . . , ek) is orthogonal, then

(i) The family is free

(ii) v =
∑k

j=1 λjej , then

λj =
⟨v, ej⟩
∥ej∥2

Proof. (i)
∑k

j=1 λjej = 0

=⇒ 0 =

〈
k∑
j=1

λjej , ei

〉
=

k∑
j=1

λj⟨ej , ei⟩ = λi

so the family is free.

(ii) v =
∑k

i=1 λiei.
=⇒ ⟨v, ej⟩ = λj⟨ej , ej⟩ = λ∥ej∥2

=⇒ λj =
1

∥ej∥2
⟨v, ej⟩
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Lemma (Parseval’s Identity). If V is a finite dimensional inner product space and
(e1, . . . , en) is an orthonormal basis, then

⟨u, v⟩ =
n∑
i=1

⟨u, ei⟩⟨v, ei⟩

In particular, in an orthonormal basis,

∥v∥2 = ⟨v, v⟩ =
n∑
i=1

|⟨v, ei⟩|2

v =

n∑
i=1

⟨v, ei⟩ei

(∥ei∥ = 1)

Proof. u =
∑n

i=1⟨e, ei⟩ei, ∥e1∥ = 1, v =
∑n

i=1⟨v, ei⟩ei

=⇒ ⟨u, v⟩

〈
n∑
i=1

⟨u, ei⟩ei,
n∑
i=1

⟨v, ei⟩ei

〉
=

n∑
i=1

⟨u, ei⟩⟨v, ei⟩

Theorem (Gram-Schmidt orthogonalisation process). V inner product space let I
countable (finite) est and (vi)i∈I linearly independent. Then there exists a sequence
(ei)i∈I of orthonormal vectors such that

span⟨v1, . . . , vk⟩ = span⟨e1, . . . , ek⟩

∀k ≥ 1.

→ if dimV <∞, then we have existence of an orthonormal basis.

Proof. We construct the (ei)i∈I family by induction on k.

� k = 1, v1 ̸= 0 =⇒ e1 =
v1

∥v1∥ .

� Say we found (e1, . . . , ek) , we look for ek+1.
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We define:

e′k+1 = vk+1 −
k∑
i=1

⟨vk+1, ei⟩ei

� e′k+1 ̸= 0. Indeed, otherwise,

vk+1 ∈ ⟨e1, . . . , ek⟩ = ⟨v1, . . . , vk⟩

which would contradict the fact that (vi)i∈I is free.

� Pick 1 ≤ j ≤ k:

⟨e′k+1, ej⟩ =

〈
vk+1 −

k∑
i=1

⟨vk+1, ei⟩ei, ej

〉
= ⟨vk+1, ej⟩ − ⟨vk+1, ej⟩
= 0

� ⟨v1, . . . , vk+1⟩ = ⟨e1, . . . , ek, e′k+1⟩.

� We take ek+1 =
e′k+1

∥e′k+!∥

=⇒ Gram Schmidt designs an algorithm to compute ek for all k.

Corollary. V finite dimensional inner product space. Then any orthonormal set
of vectors can be extended to an orthonormal basis of V .

Proof. Pick (e1, . . . , ek) orthonormal. Then they are linearly independent, so we can
extend (e1, . . . , ek, vk+1, . . . , vn) basis of V . Apply Gram-Schmidt to this set noticing
that there is no need to modify the first k vectors.

=⇒ (e1, . . . , ek, ek+1, . . . , en)

orthonormal basis of V .
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Note. A ∈ Mn(R), then A has orthonormal column vectors if and only if

A⊤A = id (R)

A⊤A = id (C)

Definition. (i) A ∈ Mn(R) is orthogonal if:

A⊤A = id ( ⇐⇒ A−1 = A⊤)

(ii) A ∈ Mn(C) is unitary if:

A⊤A = id ( ⇐⇒ A−1 = A⊤)

Proposition. A ∈ Mn(R) (respectively Mn(C)), then A can be written A = RT
where:

� T is upper triangular

� R is orthogonal (respectively unitary)

Proof. Exercise: apply Gram Schmidt to the (c1, . . . , cn) column vectors of A.

Orthogonal complement and projection

Definition. � V inner product space

� V1, V2 ≤ V .
We say that V is the orthogonal direct sum of V1 and V2 if:

(i) V = V1 ⊕ V2

(ii) ∀v1, v2) ∈ V1 × V2, ⟨v1, v2⟩ = 0

Notation. V = V1
⊥
⊕ V2 (V = V1 + V2) TODO. . .

Remark. v ∈ V1 ∩ V2, ∥v∥2 = ⟨v, v⟩ = 0 =⇒ v = 0.
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Definition (orthogonal). V inner product space, W ≤ V .

W⊥ = {v ∈ V | ⟨v, w⟩ = 0 ∀w ∈W} = orthogonal of W

Lemma. V inner product space, dimV <∞, W ≤ V . Then

V =W
⊥
⊕W⊥ (∗)

Start of
lecture 22 1.24 Orthogonal complement and adjoint map

Definition. Suppose V = U ⊕ W (U is a complement of W in V ). We define
π : V →W , v = u+ w 7→ w. Then

� π is linear

� π2 = π

We say that π is the projector operator onto W .

Remark. idπ ≡ projection onto U → V inner product space,W finite dimensional,
then we can chose U =W⊥ and π is explicit.

Lemma. � Let V be an inner product space

� Let W ≤ V , W finite dimensional.
Let (e1, . . . , ek) be an orthonormal basis of W (given by Gram-Schmidt). Then

(i) π(v) =
∑k

i=1⟨v, ei⟩ei ∀v ∈ V and V =W
⊥
⊕W⊥.

(ii) ∀v ∈ V , ∀w ∈W ,
∥v − π(v)∥ ≤ ∥v − w∥

with equality if and only if w = π(v) (that is π(v) is the point in W closest to
v).
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Remark. Infinite dimensional generalisation:

� V inner product space → V Hilbert space

� W finite dimensional → W closed (completeness)

→ part II class “Linear Analysis”.

Proof. (i) W = span⟨e1, . . . , ek⟩, (ei)1≤i≤k orthogonal. Let us define

π(v) =
k∑
i=1

⟨v, ei⟩ei

Observation:
v = π(v)︸︷︷︸

∈W

+ v − π(v)︸ ︷︷ ︸
claim: ∈W⊥

Indeed

v − π(v) ∈W⊥ ⇐⇒ ∀w ∈W, ⟨v − π(v)w⟩ = 0

⇐⇒ ∀1 ≤ j ≤ k, ⟨v − π(v), ej⟩ = 0

We compute:

⟨v − π(v), ej⟩ =

〈
v −

k∑
i=1

⟨v, ei⟩ei, ej

〉
= ⟨v, ej⟩ − ⟨v, ej⟩
= 0

We have shown v − π(v) ∈W⊥ Hence

v = π(v)︸︷︷︸
∈W

+(v − π(v))︸ ︷︷ ︸
∈W⊥

=⇒ V =W +W⊥

And v ∈W ∩W⊥

=⇒ ∥v∥2 = ⟨ v︸︷︷︸
∈W

, v︸︷︷︸
∈W⊥

⟩ = 0

=⇒ v = 0

So

V =W
⊥
⊕W⊥
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(ii) Indeed, let w ∈W , then

∥v − w∥2 = ∥ v − π(v)︸ ︷︷ ︸
∈W⊥

+π(v)− w︸ ︷︷ ︸
∈W

∥2

= ⟨v − π(v) + π(v)− w, v − π(v) + π(v)− w⟩
= ∥v − π(v)∥2 + ∥π(v)− w∥2

≥ ∥v − π(v)∥2

With equality if and only if w = π(w). PYTHAGORAS.

Adjoint map

Definition. Let V,W be finite dimensional inner product spaces, let α ∈ L(V,W ).
Then there exists a unique linear map

α∗ :W →W

such that ∀(v, w) ∈ V ×W ,

⟨α(v), w⟩ = ⟨v, α∗(w)⟩

Moreover, if B is an orthonormal basis of V and C is an orthonormal basis of W
then

[α∗]C,B = [α]⊤B,C

Proof. Computation: B = (v1, . . . , vn), C = (w1, . . . , wm), A = [α]B,C = (aij). Existence

[α∗]C,B = A
⊤
= C = (cij)

cij = aji. We compute:〈
α

(∑
i

λivi

)
,
∑
j

µjwj

〉
=

〈∑
i,k

λiakiwk,
∑
j

µjwj

〉
=
∑
i,j

λiajiµj (orthonormal)

Then 〈∑
i

λivi, α
∗

∑
j

µjwj

〉 =

〈∑
i

λivi,
∑
j,k

µjckjvk

〉

=
∑
i,j

λicijµj

So the expressions are equal because cij = aji. So this proves existence. Uniqueness
follows by computing α∗(wj) → exercise.
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Remark. We are using the same notation α∗ for the adjoint of α and the dual of
α. V,W are real product spaces, α ∈ L(V,W ),

ψR,V : V
≃−→ V ∗

v 7→ ⟨•, v⟩

ψR,W :W
≃−→W ∗

w 7→ ⟨•, w⟩

Then the adjoint map of α is given by:

W −→
ψR,W

W ∗ −→
dual of α

V ∗ −→
ψ−1
R,V

V

Self adjoint maps and isometries

Definition. V inner product space finite dimensional α ∈ L(V ), α∗ ∈ L(V ) the
adjoint map. Then:

� ⟨αv,w⟩ = ⟨v, αw⟩ ∀(v, w) ∈ V × V ⇐⇒ α = α∗. We call such a map self
adjoint. (R α symmetric, C α Hermitian).

� ⟨αv, αw⟩ = ⟨v, w⟩ ∀(v, w) ∈ V × V ⇐⇒ α∗ = α−1 we call an isometry. (R α
orthogonal, C α unitary).

Proof. Check the equivalence that preserving the scalar product

(⟨αv, αw⟩ = ⟨v, w⟩ ∀(v, w) ∈ V × V )

is equivalent to (α invertible and α∗ = α−1)

⇒ ⟨αv, αw⟩ = ⟨v, w⟩ ∀(v, w) ∈ V × V . Use v = w:

∥αv∥2 = ⟨αv, αv⟩ = ⟨v, v⟩ = ∥v∥2

(α preserves the norm: isometry) So kerα = {0}, so α bijective, α−1 well defined.
(since finite dimensional). α ∈ L(V ), Then ∀(v, w) ∈ V × V ,

TODO

=⇒ ∀v ∈ V, ⟨v, α∗w⟩ = ⟨v, α−1w⟩
=⇒ ∀v⟨v, α∗w − α−1w⟩ = 0

I take v = α∗w − α−1ω

=⇒ α∗w = α−1w ∀w ∈ V

=⇒ α∗ = α−1
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1. α ∈ L(V ), α∗ = α−1, then

⟨αv, αw⟩ = ⟨v, α∗αw⟩ = ⟨v, w⟩

TODO
α isometry (α = α−1)

⇐⇒ ∀(v, w) ∈ V × V ⟨αv, αw⟩ = ⟨v, w⟩

⇐⇒ ∀v ∈ V, ∥α(v)∥ = ∥v∥

(preservation of scalar product ⇐⇒ preservation of the norm)

Lemma. V finite dimensional real (complex) inner product space. Then α ∈ L(V )
is:

(i) Self adjoint if and only if in any orthonormal basis of V , [α]B is symmetric
(Hermitian).

(ii) An isometry if and only if in any orthonormal basis of V , [α]B is orthogonal
(unitary).

Proof. B orthonormal basis,

[α∗]B = [α]⊤B

� Self adjoint [α∗]⊤B = [α]B

� Isometry [α]⊤B = [α]−1
B .

Definition. V finite dimensional inner product space.

� F = R,

θ(V ) = {α ∈ L(V ), α isometry} ≡ orthogonal group of V

� F = C,
U(V ) = {α ∈ L(V ), αisometry} ≡ unitary group of V

Remark. V finite dimensional, {e1, . . . , en} orthonormal basis.

� F = R, θ(V ) ↔ {orthonormal basis of V }, α 7→ (α(e1, . . . , α(en)).

� F = C, U(V ) ↔ {orthonormal basis of V }, α 7→ (α(e1, . . . , α(en)).
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Start of
lecture 23 1.25 Spectral theory for self adjoint maps

� Spectral theory ≡ study of the spectrum of operators

→ mathematics

→ physics (QUANTUM MECHANICS)

⇒ INFINITE DIMENSIONAL. Finite dimension → infinite dimension. Linear
maps → Hilbert space / compact operator.

� Adjoint operator: V , W finite dimensional inner product spaces, α ∈ L(V,W ),
then the adjoint α∗ ∈ L(W,V ) such that ∀(v, w) ∈ V ×W ,

⟨α(v), w⟩W = ⟨v, α∗(w)⟩V

We defined:

- Self adjoint maps, V =W , α = α∗,

⇐⇒ ∀(v, w) ∈ V × V, ⟨αv,w⟩ = ⟨v, αw⟩

- isometries V =W , α∗ = α−1

⇐⇒ ∀(v, w) ∈ V × V, ⟨αv, αw⟩ = ⟨v, w⟩

– R: orthogonal group
– C: unitary group.

Spectral theory for self adjoint operators

Lemma. Let V be a finite dimensional inner product space. Let α ∈ L(V ) be self
adjoint: (α = α∗). Then:

(i) α has real eigenvalues

(ii) eigenvectors of α with respect to different eigenvalues are orthogonal.

Proof. (i) v ∈ V \ {0}, λ ∈ C such that αv = λv. Then

λ∥v∥2 = ⟨λv, v⟩
= ⟨αv, v⟩
= ⟨v, α∗v⟩
= ⟨v, αv⟩
= ⟨v, λv⟩
= λ∥v∥2

So (λ− λ)∥v∥2 = 0. But ∥v∥2 ̸= 0 since v ̸= 0 so λ = λ so λ ∈ R.
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(ii) αv = λv, λ ∈ R, v ̸= 0. αw = µw, µ ∈ R, w ̸= 0. Also λ ̸= µ. Then

λ⟨v, w⟩ = ⟨λv,w⟩
= ⟨αv,w⟩
= ⟨v, α∗w⟩
= ⟨v, αw⟩
= ⟨v, µw⟩
= µ⟨v, w⟩
= µ⟨v, w⟩

So (λ− µ)⟨v, w⟩ = 0. But λ ̸= µ so ⟨v, w⟩ = 0.

Theorem. Let V be a finite dimensional inner product space. Let α ∈ L(V ) be
self adjoint (α = α∗). Then V has an orthonormal basis made of eigenvectors of α.

→ We also say: α can be diagonalised in an orthonormal basis for V .

Proof. F = R or C. We argue by induction on the dimension of V , dimF V = n.

� n = 1 → trivial.

� n − 1 → n. B any orthonormal basis of V say A = [α]B. By the fundamental
Theorem of Algebra, we know that χA(t) (≡ characteristic polynomial of A) has
a complex root. This root is an eigenvalue of α and α = α∗ =⇒ this root is
real. Let us call λ ∈ R this eigenvalue, pick an eigenvector v1 ∈ V \ {0} such that
∥v1∥ = 1, αv1 = λv1. Let U = ⟨v1⟩⊥ ≤ V . Then KEY OBSERVATION: U stable
by α, i.e. α(U) ≤ U . Indeed, let u ∈ U , then:

⟨αu, v1⟩ = ⟨u, αv∗1⟩
= ⟨u, αv1⟩
= ⟨u, λv1⟩
= λ⟨u, v1⟩
= 0

So α(u) ∈ U . This implies: we may consider α|U ∈ L(U) and self adjoint, and
then n = dimV = dimU + 1, so dimU = n − 1 so by induction hypothesis there

exists (v2, . . . , vn) orthonormal basis of eigenvectors for α|U . Then V = ⟨v1⟩
⊥
⊕ U

so (v1, . . . , vn) orthonormal basis of V made of eigenvectors of α.
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Remark. If you want to think in terms of matrices for the proof of (ii), then the
choice of U means that [A] is written as

Corollary. V finite dimensional inner product space. If α ∈ L(V ) is self adjoint,
then V is the orthogonal direct sum of all the eigenspaces of α.

Spectral theory for unitary maps

Lemma. V be a complex inner product space (Hermitian sesquilinear structure).
Let α ∈ L(V ) be unitary (α∗ = α−1). Then

(i) all the eigenvalues of α lie on the unit circle

(ii) eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. (i) αv = λv, v ̸= 0, λ ∈ C.
� λ ̸= 0: α unitary implies α invertible.

�

λ∥v∥2 = λ⟨v, v⟩
⟨λv, v⟩

= ⟨αv, v⟩
= ⟨v, α∗v⟩
= ⟨v, α−1v⟩

=

〈
v,

1

λ
v

〉
=

1

λ
∥v∥2

So λ∥v∥2 = 1
λ
∥v∥2 so since v ̸= 0, λλ = 1, i.e. |λ| = 1.

111



� αv = λv, αw = µw, λ, µ ̸= 0, µ ̸= λ. Then

λ⟨v, w⟩ = ⟨λv,w⟩
= ⟨αv,w⟩
= ⟨v, α∗w⟩
= ⟨v, α−1w⟩

=

〈
v,

1

µ
w

〉
=

1

µ
⟨v, w⟩

= µ⟨v, w⟩

(by (i)). So (λ− µ)⟨v, w⟩ = 0. But λ ̸= µ so ⟨v, w⟩ = 0.

Theorem (Spectral theory for unitary maps). Let V be a finite dimensional complex
inner product space. Let α ∈ L(V ) be unitary (α∗ = α−1). Then V has an
orthonormal basis made of eigenvectors of α.

→ Equivalently, α unitary on V Hermitian can be diagonalised in an orthonormal basis.

Proof. Pick B any orthonormal basis of V . A = [α]B. Then χA(t) (≡ characteristic
polynomial of A) has a complex root. So α has a complex eigenvalue. Fix v1 ∈ V \ {0}
with ∥v1∥ ≠ 0, αv1 = λv1. Let U = ⟨v1⟩⊥. Then: KEY OBSERVATION: α(U) ≤ U .
Indeed: u ∈ U , then

⟨αu, v1⟩ = ⟨u, α∗v1⟩
= ⟨u, α−1v1⟩

=

〈
u,

1

λ
v1

〉
=

1

λ
⟨u, v1⟩

= 0

=⇒ αu ∈ U , so α(U) ≤ U . We argue by induction on dimC V = n. We consider
α|U ∈ L(U) which is unitary, and by the induction hypothesis, α|U is diagonalisable in
an orthonormal basis (v2, . . . , vn) of U =⇒ (v1, . . . , vn) is an orthonormal basis of V ,
made of eigenvectors of α.
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Warning. We used the complex structure to make sure that there is an eigenvalue
(which is a priori complex valued).
In general, a real valued orthonormal matrix (AA⊤ = id) cannot be diagonalised
over R.

Example (Rotation map in R2).

A =

(
cosα − sinα
sinα cosα

)
χA(λ) = (cosα− λ)2 + sin2 α

Then the eigenvalues are λ = e±iα (̸∈ generally). (Hence diagonalisable in C but
not R).

Start of
lecture 24 1.26 Application to bilinear forms

Diagonalisation of self adjoint / unitary operators.

Theorem 1. Let V be a finite dimensional inner product space (over R or C). Let
α ∈ L(V ) be self adjoint (α = α∗). Then there exists an orthonormal basis of V
made of eigenvectors of α.

Theorem. Let V be a finite dimensional complex inner product space. Let α ∈
L(V ) be unitary (α∗ = α−1). Then there exists an orthonormal basis of V made
of eigenvectors of α.

These theorems are so important we stated them twice!

� Translate these statements for bilinear forms.

Corollary. let A ∈ Mn(R) (respectively C) be a symmetric (respectively Hermi-
tian) matrix. Then there is an orthogonal (respectively unitary) matrix such that
P⊤AP (respectively P †AP ) is diagonal with real valued entries.

Remark. P † = P
⊤
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Proof. F = R (C). Let ⟨, ⟩ be the standard inner product over Rn. Then A ∈ L(Fn) is
self adjoint, hence we can find an orthonormal (for the standard inner product) basis of
Fn such that A is diagonal in this basis, say (v1, . . . , vn). Let P = (v1 | · · · | vn)

(v1, . . . , vn) orthonormal basis ⇐⇒ P orthogonal (unitary)

⇐⇒ P⊤P = id(P †P = id)

So P−1AP = P⊤AP = D, and we know λi are real, they are the eigenvalues of a
symmetric operator.

Corollary. Let V be a finite dimensional real (complex) inner product space. Let
φ : V × V → F be a symmetric (Hermitian) bilinear form. Then there is an
orthonormal basis of V such that φ in this basis is represented by a diagonal matrix.

Proof. Let B = {v1, . . . , vn} be any orthonormal basis of V . Let A = [φ]B. Then since
φ is symmetric (Hermitian), A⊤ = A († = A), hence there is an orthogonal (unitary)
matrix P such that P⊤AP (P †AP ) is diagonal, say D. Let vi be the i-th row of P⊤

(P †), then {v1, . . . , vn} is an orthonormal basis say B′ of V and [φ]B′ = D. (We are
using the change of basis for bilinear forms).

Remark. Diagonal entries of P⊤AP (P †AP ) are exactly the eigenvalues of A.
Moreover:

∆(φ) = #(positive eigenvalues of A)−#(negative eigenvalues of A)

(recall ∆ is the signature of a bilinear form)

Important corollary

Corollary (Simultaneous diagonalisation of Hermitian forms). Let V be a finite
dimensional real (complex) vector space. Let:

φ,ψ : V × V → F

φ,ψ are bilinear symmetric (Hermitian) forms. And suppose φ is positive definite.
Then there exists (v1, . . . , vn) basis of V with respect to which both bilinear forms
are represented by a diagonal matrix.

Proof. φ is positive definite so φ induces a scalar product on V , V equipped with φ is
a finite dimensional inner product space:

⟨u, v⟩ = φ(u, v)
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Hence there exists an orthonormal (for the φ induced scalar product) basis of V in which
ψ is represented by a diagonal matrix. Observe that φ in this basis is represented by the
Identity matrix (because the basis orthonormal for φ: B = (v1, . . . , vn), ⟨vi, vj⟩ = δij =
φ(vi, vj)) So both matrices of φ and ψ in B are diagonal.

Corollary (Matrix reformulation of simultaneous diagonalisation). Let A,B ∈
Mn(R) (respectively Mn(C)), both symmetric (respectively Hermitian). Assume
∀x ̸= 0, x⊤Ax > 0. Then there exists Q ∈ Mn(R) (respectively Mn(C)) invertible
such that both Q⊤AQ (respectively Q†AQ) and Q⊤BQ (respectively Q†BQ) are
diagonal.

Proof. Direct consequence of the simultaneous diagonalisation Theorem.
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