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1 Vector spaces and subspaces

Let F be an arbitrary field (eg R or C).

abelian group (V, +) equipped with a function
FxV =V
(A v) = Ao
such that:
e v +v2) = Avp + vy
e (A + X)v =X v+ v
o M) = (Ap)v

e lv="w

Definition (F vector space). An F vector space (a vector space over F') is an

~

We know how to
e sum two vectors

e multiply a vector v € V' by a scalar A € F.

Examples

(i) n € N, F™: column vectors of length n with entries in F:

T
ve F'v=|1, e F,1<i<n
Tn
U1 w1 U1 + Wy
Un, W, Un, + Wy,
/\'U1
Av=1|: AEF
AU,

check: F™ is an F' vector space.
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(ii) Any set X,
RYX={f:X - R}

(set of real valued functions on X) Then R¥ is an R vector space
(f1 + f2) (@) = fr(2) + fa(x)
(Af)(@) = Af(z),  AeR

(i) Mpm(F)=n x m F valued matrices. Sum is sum of entries, AM = (Am;;).

e N
Remark. The axiom of scalar multiplication imply that:

VoeV, Opv=0y

Definition (Subspace). Let V' be a vector space over F. A subset U of V is a
vector subspace of V' (denoted U < V) if:

e Oy €U
o (u,up) eU XU = w1 +ugeU
e V(\u)e FxUMueU.
The last two properties can be combined into a single property:

. V(Al,)\z,ul,UQ)EFXFXUXU, )\1ul—|-)\QUQ€U(>k)

Property (*) means that U is stable by
e scalar multiplication

e vector addition

Example. V is an F vector space, and U < V. Then U is an F' vector space.

Examples

(1) V = R® space of functions f: R — R.
e Let C(R) be the space of continuous functions f : R — R. Then C(R) < V.
e Let P(R) be the space of polynomials of one variable. Then P(R) < V.



(2) Let
x1
V=< |22 €R3:x1+x2+:p3:t
3

check: that this is a subspace of R3 for ¢ = 0 only.

Warning. The union of two subspaces is generally not a subspace. (It is typically
not stable by addition).

Example. V = R? with U; = {(2,0) : = € R}, Uy = {(0,y) : y € R}. Both
subspaces, but the union isn’t since

(1,0)+(0,1) = (1,1) U UV

M~ Y~
el €Uz

Proposition. Let V be an F' vector space. Let U, W < V. Then

Unw <V

Proof. e 0cU0eW = 0e€UnNnW.
e Stability: let (A1, A2, v1,v2) € F x Fx (UNW) x (UNW). Then

AU+ Xovg € U
~ S
eU eU

and similarly for W, hence

AU +Xve e UNW

Definition (Sum of subspaces). Let V be an F vector space. Let U <V, W < V.
Then the sum of U and V is the set:

U+W={u+w: (u,w) e U x W}

Example. Use V = R? and Uy, U from the previous example. Then Uy + Uy = V.



Proposition. Let V' be an F' vector space, with U, W < V. Then

U+W <V

Proof. e 0=_0 + 0 eU+W
eU ew

e Consider A f 4+ Aog for A, A9 € F and f,g € U + W. Then let:
f=hH+ f
~— =~
cU ew
g= g1 + g2
~— =~

cU cw
SO

AMf A+ Aag = M(fi + f2) + Aa(91 + g2)

=\ fi X2 g1 )+ (M fo HAe g2)
N <~ N <~
cU cU cw cw

eU ew
ceU+W

O]

Exercise: Show that U 4+ W is the smallest subspace of V' which contains both U and
w.

1.1 Subspaces and Quotient

Vs

Definition (Quotient). Let V be an F vector space. Let U < V. The quotient
space V/U is the abelian group V/u equipped with the scalar product multiplication:

FxV/U—>V/U

Mo+ U) = w+U (+)

Proposition. V/U is an F vector space.




Start of
lecture 2
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Remark. The multiplication is well defined:

v +U=vy+U
= vy —1v U
—— )\(Ul—vg)GU

= A1 +U =X u+U€cV/U

- J

Exercise: Prove that V/U is an F vector space.

1.2 Spans, linear independence and the Steinitz exchange lemma

Definition (Spand of a family of vectors). Let V' be an F' vector space. Let S C V
be a subset (S = collection of vectors). We define:

(S) = {finite linear combination of elements of S'}

~—
“span of S”

= {Z AsUs, Vs € S, s € F, J is ﬁnite}

sedJ

Convention: () = {0}.

[ Remark. (S) is the smallest vector subspace which contains S. ]

Examples

(1) V=R3
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Define:

e; = |1 (in position i)

0

= V={(e1,...,en)
(3) Xisaset, V=RX ={f: X - R}.
S;: X =R

1 ifz=y
Y= .
0 otherwise

<(S$)w6X> = Span((Sx)xeX>
= {f € R¥ : f has finite support}

(Support of fis {x € X : f(x) #0})

Definition. Let V be an F' vector space. Let S be a subset of V. We say that S
spans V if:
(S)y=V.

Example. V = R?

U1

%w

{v1,v2} spans V.

Definition (Finite dimension). Let V be an F' vector space. We say that V' is finite
dimensional if it is spanned by a finite set.




Example. Let V; = P[z] be the set of polynomials over R, and let V' = P,[z] be
the set of polynomials over R with degree < n. Then {1,z,...,2"} spans P,[z], so
P,[z] = (1,z,...,2™). So P,[x] is finite dimensional.

On the other hand, P[z] is not finite dimensional: it is infinite dimensional, because
there is no family of V' with finitely many elements which spans V.

Question: If V is finite dimensional, is there a minimal number of vectors in the family
so that they span V.

Definition (Independence). We say that (vi,...,v,) elements of V' are linearly
independent if:

D Awi=0, N €F = X\ =0Vi
=1

- 2
Remark. (1) We also say that the family (vy,...,v,) is free.

(2) Equivalently, (v1,...,v,) are not linearly independent if one of these vectors is
a linear combination of the remaining (n — 1) ones. Indeed, 3(A1,...,\,) not
all zero (that is, there exists j such that A; # 0), such that

Example. V = R3. If (vy,vs) free, and v3 is coplanar with both, then (v, ve,vs is
not free.

Remark. (v;)i<i<p free family (linearly independent) then V1 <i < n, v; # 0.

Definition (Basis). A sub set S of V is a basis of V if and only if:
e (S) =V (generating family)

e S linearly independent / free

Remark. When S spans V', we say that S is a generating family. So a basis is a
free generating family.




Examples
(1)
T

Tn

e; = |1 (in position 7)

Then (e;)1<i<n is a basis of V.
(2) V=C. If F =C then {1} is a basis of V. If F' =R then {1,} is a basis of V.

(3) V = P[z] = {polynomials over R}, S = {z" : n > 0}. Then S is a basis for V.

Lemma. Let V be an F' vector space. Then (vy,...,v,) is a basis of V' if and only
if any vector v € V has a unique decomposition:

n
v = Z Aivi, N EF
=1

Notation. (A1,...,\,) are the coordinates of v in the basis (v1,...,v,).
Proof. By assumption, (v1,...,v,) =V so
n
Vo eV,3(M,. A EFY v =) A
i=1
Uniqueness: let

n n
vV = E )\ﬂ)i = E )\;UZ
i=1 =1

i=1

= V1<i<n, =X\

10
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Lemma. If (v1,...,v,) spans V, then some subset of this family is a basis of V.

Proof. If (v1,...,v,) are linearly independent then done. Let’s assume they are not
independent. Then by possible reordering the vectors,

Un € (U1, -y Up_1)
(vy, is a linear combination of vy,...,v,-1) SO
V= <U17"'>Un> = (Ulv"'avn71>

Now we can iterate until the resulting set is a basis of V. (We only have to iterate
finitely many times since n is finite). O

Theorem (Steinitz exchange lemma). Let V' be a finite dimensional vector space
over F. Take:

(i) (v1,.--,vm) free
(ii) (w1,...,w,) generating ((wy, ..., w,) = V).

Then m < n, and up to reordering,

(V1y v ey Uy Wi 1y -+ - Why)

spans V.

Proof. Induction. Suppose that we have replaced [ (> 0) of the w;. Reordering if
necessary:
(U1, .. LW, W) =V

If m = [ then we are done. So assume [ < m. Then take v;11 € V, and we must have
v = Y aivi+ Y Biw
i<l i>l

Since the family (vy,...,v;11) is free, we must have that one of the §; is non zero. So
up to reordering, B;11 # 0

1
= W41 = B Vg1 — § Qv — E Biw;
+

i<l i>1+1

So
w1 € <U17 sy U1, Wit 2, - - 7wn>

11
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hence we have that

V= (v1,...,0,Wig1,. .., Wy)

= <Ula sy U1, W42, - - - 7wn>

so we can induct up on [. The base case [ = 0 is trivial, so we deduce the last part of
the lemma (which also trivially proves that m < n). O

1.3 Basis, dimension, direct sums

Corollary (of Steinitz). Let V' be a finite dimensional vector space over F'. Then
any two basis of V' have the same number of vectors called the dimension of V,
denoted dimp V' (€ N).

Proof. (v1,...,vy), (wi,...,wy) basis of V over F. Then since (v;)1<i<n free, (w;)i<i<m
generating, by Steinitz exchange lemma, n < m. Similarly m < n, so n = m. O

Corollary. Let V be a vector space over F' with dimension n € N.

(i) any set of independent vectors has at most n elements, with equality if and
only if it is a basis

(ii) any spanning (generating) set of vectors has at least n elements with equality
if and only if it is a basis.

Proof. Exercise. O

Proposition. Let U, W be subspaces of V. If U and W are finite dimensional, then
so is (U + W) and:

dim(U + W) =dimU + dim W — dim(U N W)

Proof. Pick (v1,...,v,) basis of U N W. Extend to bases:

(V1o U ULy ey Uy = U
(V1o U W, W) = W
‘ Claim. (v1,...,0,Ul,...,Un, W1,...,W,) is a basis of U + W.

12



Proving it is a generating family is an exercise. Proving it is a free family:

l m n
Z ;v; + Z Biu; + Z Yiw; =0
i=1 =1 =

N——
evu ew

- Z’}/iwiEUﬂW

=1
l n
- Z Sivi - Z’Yzwz
=1 =1

so the set is free, so it’s a basis.

Proposition. Let V be a finite dimensional vector space over F. Let U < V. Then
U and V/U are both finite dimensional and:

dimV = dim U + dim(V/U)

Proof. Let (uq,...,u;) be a basis of U. Complete it to a basis (u1,.. Cy W)
of V.

‘ Claim. (wj4+1 4+ U,...,w, + U) is a basis of V/U.

Exercise. U

Remark. V vector space over F with U < V. We say that U is proper if U #£ V.
U proper implies dim U < dim V/, since V/U # {0}.

13



Definition (Direct sum). Let V' be a vector space, and U, W < V. We say
V=UseW

We say “V is the direct sum of U and W” if and only if any element v € V can be
uniquely decomposed:
v=u+w, uelU weW

Equivalently,

V=UsW <= YoeV,INu,w) eUxW v=u+w

<
Warning 1. If V. =U @ W, we say that W is a complement of U in V. There is

no uniqueness of such a complement.

Example. V =R? = ((1,0)) & ((0,1)) = ((1,0)) @ ((1,1)).

Notation. We will in the sequel systematically use the following notation. Let two
collections of vectors:

Bi={v1,...., v}
BQ = {wl,...,wm}

then
BluBgz{ul,...,ul,wl,...,wm}

not a set, because we care about the order. (it is more like a list) With this notation:

{urt U{ur} = {ur,ur}

so the collection {uj} U {u1} is never a free family.

Lemma. U,W < V. Then the following are equivalent (TFAE):
i) V=UeWw
(ii)) V=U+Wand UNW = {0}

(iii) For any basis By of U, By of W, the union B = B; + Bs is a basis of V.

(Byoef= (i) V = U + W implies that Vv € V, there exists (u,w) € U x W such that

14



v =wu—+w. So it is generating. To show it is free, let w1 +w; = us + wo = v. Then
Ul — U2 = W2 — W1
— ==
eU ew
— U] — U2, W] — W2 € UﬂW:{O}

— U] = U2, W] = W2

(i) = (iii) B basis of U, By basis of W. Let B = B; + Ba. It is clearly a generating family of

U+ W =V It is a free family because

Z)\ﬂ)i =0

must be decomposed as Oy + Oy since V=U & W. So

Z /\iuz’ =0

u1€B1

Z )\iwi =0

w1 E€B2

so \; = 0 for all 4.

(ili)) = (ii) We need to show

Start of
lecture 4

V=U+W, UNW =/{0}

This is obvious.

Definition. Let V be a vector space over F. Let Vq,...,V; <V (subspaces).
(i) Notation: 22:1 Vi={z1+ - F+u,v€eV;,1<j <1}

(ii) The sum is direct, denoted by:

if and only if
v1—|—---—{—vl:vi+---—|—vl' — vlzvll,...,vl:v{
Equivalently: l
V:@Vi <— VUEVE”UZ'U:Z’UZ'

=1 7

15
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Exercise: the following are equivalent:
(i) 22:1 = @é:l V; (sum is direct)
(i) Vi, Vi (X2, V5) = {0},

(iii) For any basis of V;,

is a basis of Zizl Vi.

1.4 Linear maps, isomorphism and the rank-nullity Theorem

Definition (Linear map). Let V, W be vector spaces of F. A map a: V — W is

linear if and only if:
V(A1 A2) € F2 ¥(vy,v3) €V XV

oz()\lvl =F )\2’1)2) = /\10[(1)1) =k )\204(?)2)

Examples

(i) Matrices are linear maps.

(ii) a:C([0,1]) — C([0,1]) defined by

fHMﬂmzéﬁwm

is a linear map

(ii) Fix x € [a,b]. C([a,b]) — R defined by f + f()) is a linear map.

Vs

Remark. Let U,V, W be F vector spaces.
(i) idy : V — V defined by = — x is a linear map.

(i) f p: U - Vand a : V — W are linear, then awo f : U — W is linear.
(linearity is stable by composition)

Lemma. Let V, W be F vector spaces, and B a basis of V. Let ag : B — W be any
map, then there is a unique linear map « : V' — W extending « (a map such that

VYo € B, a(v) = ap(v)).

16



Proof. For allv e V, v =>"", \v;. Denote B = (v1,...,v,). By linearity: a: V. — W
linear, so

Remark. This is true in the infinite dimensional case as well (and the proof is the
same).

e Often, to define a linear map, we define its value on a basis and “extend by linear-
ity”.

o If aj, a0 : V — W are linear and agree on a basis of V, they are equal.

Definition (Isomorphism). Let V, W be vector spaces over F. A map
a: VW
is called an isomorphism if and only if:
(i) « is linear;

(ii) and « is bijective.

If such an « exists, we write V ~ W (V isomorphic to W).

17



e 2
Remark. If o : V — W is an isomorphism then o' : W — V is linear. Take

wy = a(v1), wy = a(vy). Then
o Hwy +ws) = a Ha(vr) + a(v2))
= a " (a(vi +v2))
= U1 + Vg
=a H(w1) + o (wg)

Similarly, VA € F,Yv € V,
a t(AV) = a1 (v)

Lemma. ~ is an equivalence relation on the class of all vector spaces of F'.
(i) idy : V — V is an isomorphism.

(i) a:V — W isomorphism then a~!: W — V is an isomorphism.

(iii) Let f: U — V and a : V. — W be isomorphisms. Then o3 is an isomorphism.

Theorem. If V is a vector space over F' of dimension n, then:

V ~ F"

Proof. Let B = (v1,...,vy,) be a basis of V. Then o : V — f" defined by

A1

n
v = Z )\ﬂ)z‘ —
=1

An

is an isomorphism (exercise). O

[ Remark. Choosing a basis of V is like choosing an isomorphism from V to F™. }

Theorem. Let V, W be vector spaces over F' with finite dimension. Then:

VW <— dimpV =dimp W

Proof. <= dimpV =dimpW = n implies that V ~ F" W ~F"so V ~W.

18



= Let a : V — W be an isomorphism. Let B be a basis of V. Then we claim that
a(B) is a basis of W:

e a(B) spans V follows from surjectivity of a.
e a(B) free family follows from the injectivity of «.

so V and W have the same size basis so dimp V = dimp W.

O
Definition (Kernel and Image of a linear map). Let V, W be vector spaces over F.
Let a: V — W be a linear map. We define:
(i) N(a) =kera={v eV :alv) =0}
(i) im(a) ={w e W: v e V,w =a(v)}.
Lemma. ker « is a vector subspace of V', and im « is a vector subspace of W.
Proof. e A\, Ao € F, vy,v9 € ker @ implies
a()\1v1 + )\2’02) = )\10((2}1) + )\20&(?}2) =0
hence A\vy + Aqvg € ker a.
e A\, € F, wi,wy € ima. Let w; = a(vy), wy = a(vy). Then
AW + Aowy = )\104(’1)1) + )\204(1)2) = 04()\11}1 + )\2’1)2)
hence \jwi + wsy € im o
O

Example. a: C*(R) = C*(R), f — a(f) = f” — f. Then
e « is linear
e kera={f €C®R): f"— f =0} =spang(e’, e?)

e im«? Exercise.

Remark. o : V — W linear map. Then « injective is equivalent to kera = {0}.
a(v1) = a(ve) <= a(v; —v2) =0.

19
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Theorem. Let V,W be vector spaces over F'. Let a : V — W be a linear map.
Then
a:V/kera — ima

v+ ker a — a(v)

is an isomorphism.

Proof. This follows from linearity.

e « is well defined:

v+ kera =" +kera
= v—v €kera
= a(v—1")=0
= a(v) = av)

so @ is well-defined.
e « linear follows from the linearity of a.
e  is a bijection:

— injectivity @(v + kera) = 0 implies that a(v) = 0 hence v € kera. So
v+ kera =0+ ker a.

— surjectivity: follows form the definition of the image: w € im«, Jv € V such
that w = a(v) = @(v).

O]

Vs

Definition (Rank and nullity). e 7(a) = dimim« (rank)

e n(a) = dimker a (nullity)

Theorem (Rank nullity theorem). e Let U,V be vector spaces over F, dimp U <
+00.

o Let a: U — V be a linea map, then

dimU = r(a) + n(«

Proof. We have proved that U/kera ~ ima. So dim(U/kera) = dimima. But
dim(U/ker a) = dimU —dimker . So dimU = dimker a +dimima = r(a) +n(a). O

20
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Lemma. Let V, W be vector spaces over F' of equal finite dimension. Let o : V' —
W be a linear map. Then the following are equivalent:

e ( is injective

e ( is surjective

e (« is an isomorphism

Proof. Follows immediately from the rank-nullity theorem. (Exercise) O

Example. Let V = {(2,9,2) € R® : 2 + y + 2 = 0}. Then consider o : R® — R
defined by (z,y,z) — x +y + 2. Then keraw = V and ima = R, hence by rank
nullity 3 = n(«) + 1 hence dim V' = 2.

1.5 Linear maps from V' to W and matrices

The space of linear maps from V to W. Let V, W be vector spaces over F.

L(V,W)={a:V — W linear}

Proposition. L(V,W) is a vector space over F' with:
(a1 + a2)(v) = a1(v) + az(v)

(A@)(v) = Aa(v)

Moreover if V' and W are finite dimensional over F', then so is L(V, W) and:

dimp L(V, W) = (dimp V)(dimp W)

Proof. Proof that it is a vector space is an exercise.
We will prove the statement about dimensions soon. ]

Matrices and linear maps

Definition (Matrix). A m xXn matrix over F'is an array with m rows and n columns
with entries in F'.

Notation. M,, ,(F) is the set of m x n matrices over F.

21



Proposition. M,, ,(F) is an F' vector space under operations:
o (aij) + (bi) = (asj + bij)
o Aaij) = (Aaij)

Proof. Exercise. O

Proposition. dimp M,, ,,(F) =m X n.

Proof. We exhibit a basis using elementary matrices. Pick 1 <¢ <m, 1 < j <n. Then
we define E;; to be the matrix which is 0 everywhere, except it is 1 in the entry that
is in the i-th row and j-th column. Then (Ej;) is a basis of My, ,(F). Clearly spans
M (F). Family is free is an exercise. O
Representation of linear maps

e V. W vector spaces over F', a: V — W linear map.

e Basis B(vi,...,vy) basis of V, C = (wy,...,wp) basis of W.

e Let v € V, then we can write
n
v = Z )\j’Uj
j=1

so we can consider the coordinates of v in the basis B (A1,..., A, € F™). We may
write this as [v]g.

e Similarly for w € W, we note [w]¢ in a similar way.

Definition (Matrix of « in B, C basis).
[a],c = matrix of o with respect to B,C

We define it as:

Observation:

22



Lemma. For any v € V|

where

Proof. Let v € V, with

Then

Lemma. Let §: U — V, a: V — W linear, and hence avo 8 : U — W linear. Let
A be a basis of U, B be a basis of V, and C a basis of W. Then

[0 Blac = lalsclBlas

23



Proof. A =a]gc, B =[f]ap. Pick u; € A. Then

(a0 B)(u) = a(B(w))
=a Z bi1v,
= ijjza(vj)
= z:: bir Zl: aiw;

:g g aijbji | wi
i J

Proposition. If V and Ware vector spaces over F' and dimp V = n and dimp W =
m. Then L(V, W) ~ M,, (F), and in particular, dim L(V, W) = m X n.

Proof. Fix B,C basis of V, W.

‘ Claim. 0 : L(V,W) — M, »(F') defined by a — [a]pc is an isomorphism.

e 0 is linear:
Mot + Aaslpe = Maa]pe + Aafas]se

e 0 is surjective: let
A = (aij)

Consider the map:

m
Q:vUj — Zaijwi
i=1

and extend by linearity. Then [a|gc = A.

e ( is injective because
[04]37(;:0 = a=0

Hence, using 6, L(V, W) ~ M, »(F).
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Remark. Let B,C be bases of V,W. Let eg : V — F" be defined such that

v +— [a]p, and similarly define e¢ : W — F™ such that w — [w]c. Then the
following diagram commutes:

\ =

Start of
lecture 6 1.6 Change of basis and equivalent matrices

Let 6: U —-V,a:V — W and A, B,C bases of U, V, W.

= [aoBlac = lalsclBlas

Change basis
Let a: V — W and let B, B’ and C,C’ be bases for V and W.

Definition. The “change of basis matrix” from B’ to B is
P = (pij)

given by
P = ([v1ls - [vn]B) = [id]s,5

Lemma. [v|g = Plv|p

Proof. e [a(v)le = [oBcviB

e P= [id]Bllg

25
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-
from B to B'.

Indeed
[0 Blac = [e]gelBlag

—— [id]&g/ [id]B,B’ = [id]Bllg/ = In

= [id]p glidlgs = [idgs = In

Remark. P is a n x n invertible matrix, and P! is the change of basis matrix

~

We changed B to B’ in V. We can also change basis to C to C’' in W.

PI‘OpOSition. A= [a]Byc, A = [a]B/’c/, P = [id]B/ﬁ, Q = [id]clﬁ. Then

A =QtAP

Proof.

o [a(v)|c = [asclv]s = AP[v]p.

SoforallveV,
QA [v]g = AP]p

hence
QA= AP — A =Q'AP

Definition (Equivalent matrices). Two matrices 4, A" € M,, ,,(F) are equivalent

if:
A'=Q AP

with Q € My, m, P € M, ,,, with both invertible.
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Remark. This defines an equivalence relation on My, ,(F).

o A=1I_1AI,
e A/ =Q AP — A=(Q ") 'A'P!
o A'=Q'AP, A" = (Q")"'A’P'. Then

A" = (QQ)) M A(PP)

Proposition. Let V', W be vector spaces over F', with dimpV =n, dimp W = m.
Let a: V — W be a linear map. Then there exists B basis of V' and C basis of W

such that
la]sc = I, |0
BC — 0 0

Proof. Choose B and C wisely.
e Fix r € N such that dimkera =n —r.

e N(a) =ker(a) ={zx € V,a(z) =0}

e Fix a basis of N(«a): vy41,...,v,. Extend it to a basis of V, so
B= (’U]_,. . 'aUT)UT+17"'7vn)
——
ker o
e Claim: (a(v1),...,a(v,)) is a basis of im a.
— Span:

n
v = E )\Z"UZ‘
=1

— av) = Z Aia(v;) = Z Aiee(v;)
=1 =1

Let y € ima then exists v € V such that y = o(v) then

y=>_ Xa(v)
=1

= y € (a(v1),...,a(v))

27



— Free:

zr: AZ'Oz(’Ui) =0
i=1

—o(Ee)

=1

'
— Z)‘ivi € ker o

i=1
' n
L o
i=1 i=r+1
T n
— Z/\wi - Z prv; =0
i=1 i=r+1
but since B is free, we must have \; = 0, u; = 0 so it’s free.
Conclusion: (a(vy1),...,a(v,)) basis of im o, (vyy1, ..., v,) basis of ker . Let
B=(viy...,Vp,Vr41,...,0pn)
C=(a(vi,...,a(v.), Wri1,..., W)
Then
[a]B,C - (Oé(’Ul), ceey O‘(U'I’)? Oé(U,«+1), R Oé(’l)n))

Remark. This provides another proof of the rank nullity theorem:

r(a)+ N(a) =n

Corollary. Any m X n matrix is equivalent to:

(+17)

where r = r(«).

Start of
lecture 7
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Definition. A € M, »(F)

e The column rank of A, r(A) is the dimension of the span of the column vectors
of Ain F™ ie. if A= (ci,...,c,) then r(A) = dimpspan{ci,...,cp}.

e Similarly, the row rank is the column rank of AT.

e )
Remark. If « is a linear map represented by A with respect to some basis, then

r(A) =r(a) = dimim«

Proposition. Two matrices are equivalent if and only if r(A) = r(A’).

Proof. = If A and A’ are equivalent, then they correspond to the same linear map «
written in two different bases

r(A) =r(a) =r(4)
< r(A) =r(A’) =r, then both A and A’ are equivalent to:
I, | 0
010

so A and A’ are equivalent.

Theorem. 7(A) = r(AT) (column rank is the same as row rank)

Proof. Exercise. O

1.7 Elementary operations and elementary matrices

Special case of the change of basis formula.
Let a: V — W be a linear map, (B, B’) bases of V, (C,C’) bases of W.

[algc — o] ¢
IfV =W, «a:V — V linear then we call it an endomorphism.
e B=C,B =
e P is change of matrix from B’ to B.

then
[lpp = P~ 'alsP
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\
Definition. A, A’ are n x n (square) matrices, we say that A and A" are similar
(or conjugate) if and only if:

e A/ =P lAP

e P is n X n square invertible.

Central concept when we will study diagonalisation of matrices. (Spectral theory)

1.8 Elementary operations and elementary matrices

Definition. Elementary column operation on an m X n matrix A:
(i) swap columns ¢ and j (i # j)
(ii) replace column ¢ by A times column i (A # 0, A € F)

(iii) add A times column 7 to column j (with i # j)

e Elementary row operations: analogous way
e Elementary operations are invertible

e These operations can be realised through the action of elementary matrices.

(i) @, 1 # J-

o) |

(iil) 4,4, A, @ # j
Cijr=1d+ E;;
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Link between elementary operations / matrices:
an elementary column (row) operation can be performed by multiplying A by the cor-
responding elementary matrix from the right (left) — Exercise.

Now a constructive proof that any m x n matrix is equivalent to

L. |0
010
e Start with A. If all entries are zero, done.

e Pick a;; = A # 0. Swap rows ¢ and 1 and swap columns j and 1. Then A is in
position (1, 1)

e Multiply column 1 by % to get 1 in position (1, 1).
e Now clean out row 1 and column 1 using elementary operations of type (iii).
e Iterate with A (the (m — 1) x (n — 1) sub matrix)

e Then at the end of the process we will have shown that

Ir 0 —1 / /
= AP= E ---E; A FE---E,.
(0 0) @ p T N

row operations ~ column operations

Variation

e Gauss’ pivot algorithm. If you use only row operations, we can reach the so called
“row echelon form” of the matrix

a"\O’J_>< >
O — 0 L —
O O ANt — >
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Assume that a;1 # 0 for some

e Swap rows ¢ and 1

Divide first row by A = a;1, to get 1 in (1, 1)

Use 1 to clean the rest of the first column

e Move to second column

e [terate.

This procedure is exactly what you do when solving a linear system of equations: Gauss’
pivot algorithm

Representation of square invertible matrices

Lemma. If A is n X n square invertible matrix, then we can obtain I,, using row
elementary operations only (or column operations only).

Proof. e We do the proof for column operations. We argue by induction on the
number of rows

e Suppose that we could reach a form where the upper left corner is I. We want to
obtain the same structure with & — k + 1.

e Claim: there exists j > k such that A = ag11,; # 0. Otherwise the vector &;(;11)
is mot in the span of the column vectors of A (exercise) which contradicts the
assumption that A is invertible.

e Swap column k£ + 1 and j

e Divide column k+1 by A = apy1; # 0

e Use 1 to clear the rest of the k 4+ 1-th row using elementary operation of type (iii).
e This completes the inductive step.

e Continue until &k = n.

Outcome:

AFy---E.=1I,
= A '=FE - E.

so this gives an algorithm for computing A~!. (useful for solving AX = F, linear system
of equations).
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Proposition. Any invertible square matrix is a product of elementary matrices.

1.9 Dual spaces and dual maps

Definition. Let V be a vector space. The we define

V* =dual of V
= L(V,F)
= {a:V — F linear}

[ Notation. a: V — F linear. Then « is a linear form. ]

Examples

(i)
Tr: My n(F) — F

A= (CL@') — Zaii
i=1
= Tr e M;, ,(F)
(i) f:[0,1] - R

then T is a linear form on C*°([0, 1],R) (R vector space). Quantum mechanics. A
function defines a linear form.

Lemma (Dual basis). Let V be a vector space over F' with a finite basis
B={e1,...,en}

Then there exists a basis for V* given by
B* ={e1,...,en}

with

n
&y (Zaiel) = ay, 1§]§n

=1

We call B* the dual basis of B.
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P
Remark. Kronecker symbol

1 ifi=jy
51']' = .
0 otherwise

n
gj <Z a¢€i> =a; < 5j(ai) = 5@']’
i=1

&

Proof. Let {e1,...,e,} be defined as above.
(1) Check that it is free: indeed, °7_; Aje; =0

— Z)\jsj(ei) =0
j=1

= ) Ai=0 Vi<i<n
j=1
— family is free

(2) Check that it is generating: Pick a € V*, then x € V:

v)=a | Nej | =D Nale))
j=1 j=1

On the other hand, let the linear form:

Z alej)e; e V*
j=1

Then:

alejej(z) = Z ale (Z )\kek>

J=1 j=1

—Za €j Z)\kek k)

7j=1

3

= > alej));
=1



Corollary. V finite dimensional,

= dimV*=dimV

s N
Warning. These results about V* are not relevant / very different when talking

about infinite dimensional vector spaces instead.
N\ J

e N
Remark. It is sometimes convenient to think of V* as the space of row vectors of

length n over F, i.e. let (e1,...,e,) be a basis of V, x = Y " | x;e; € V, and let
(€1,...,6n) be a basis of V with @ = Y " | aye; € V*. Then

n n
a(zr) = g ag; g 9,43

i=1 j=1
n n

=D ai ) zjeiles)
=1 j=1
n

= E a;x;
i=1

= (a1,-..,0p)

(scalar product structure)
- J

Definition. If U < V (vector subspace), we define the annihilator of U by:

U ={acV*:VuecUa(u) =0}

Lemma. (i) U° < V* (vector subspace)

(i) If U <V and dim V < oo then dim V = dim U + dim U°.

Proof. (i) 0 € U If a, o/ € U°, then, for all u € U,
(a -+ o)(u) = alu) + /() =0

and for all A € F,
(Aa)(u) = Aa(u) =0

so UV < v*,
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(ii) Let U <V, dimV =n. Let (e1,...,ex) be a basis of U, complete it to a basis

B=(e1,... €k ki1, €n)

of V. Let (e1,...,&,) be the dual basis of B. We claim that U% = (gx41,...,e5).

e Pick ¢ > k, then:
ei(er) = ik =0

so g; € U, since U = (eq,...,ex). So

<5k‘+17 s )5n> < UO

o Let a € UY, then let a € V*, with

n
o = E Q&5
=1

Now for 7 < k:
aclU’ = ale)=0V1<i<k

n
- Zajej(ei) =0
Jj=1

= ;=0 V1<i<k

n n
— a—Zaiei— Z QiE;
i=1 i=k+1
= @€ (Ekt1,---sEn)
= U < <5kz+1,-~,5n>

Lemma. Let V, W be vector spaces over F. Let a € L(V,W). Then the map:
o W= VF
ErrEOoOX

is an element of L(W*, V*). It is called the dual map of a.

Proof. e coq:V — F linear follows by linearity of € and «, so e o € V*.
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e o linear: let 01,02 € W*, then

a* (01 +02) = (01 + 02) ()
=fioa+600a
=a”(61) + a™(62)

and similarly for all A € F',
a*(A0) = Aa™(0)

so o is linear, i.e. a* € L(V*, W™).

Proposition (Dual map matrix). Let V,W be finite dimensional spaces over F
with basis respectively B and C. Let B*, C* be the dual basis of B and C. Then:

[*]e- 5+ = [l

Proof. B = (b1,...,bn),C=1(c1,-..,¢m), B*=(B1,---,0n), C* = (71,...,vm). Say

SO L ) >

Recall: o : W* — V*. Let us compute:

o™ () (bs) = 7 © a(bs)
= ’Yr(a(bs))

= <Z atsct>

t
= Z ats’Yr(ct)
t

= Qrs
Say
o)1
[ ]er e = (@ (), " (vm)) |
B

n
— o' (1) = Zmirﬁi
i=1

= a"(7)(bs) = Zmz‘rﬂi(bS)
=1

Conclusion o*(7y;)(bs) = ars = Mgy s0 [0*]cx g+ = [Q]EC'

)
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1.10 Properties of the dual map, double dual
Let V, W be vector spaces over F, o € L(V,W).

&= (6’1,...,6n)
basis of V'
F=(f1,--s fn)
another basis of V. Let
P =[id]re

)

(change of basis matrix from F to &)
&= (51,...,€n)

f*:(nh"‘?nn)

Lemma. Let P be the change of basis matrix from F to £. Then the change of
basis matrix from F*to £* is:

Proof.

Properties of the dual map

Lemma. Let V, W be vector spaces over F. Let « € L(V,W) and o* € L(W*,V*)
be the dual map. Then:

(i) N(a*) = (ima)? (so o* injective <=> « surjective)

(i) ima* < (N(a))? with equality if V,W are finite dimensional (hence in this
case, o surjective <= « injective).

Dual method: there are many problems (controllability) where the understanding of o*

is simpler than the understanding of a.
Proof. (i) Let ¢ € W*. Then:

e € N(a") <= a*(e) =

— a’(e) =¢(a) =0
— VzeV, ¢(a)x)
<~

e € (ima)

=e(a(x)) =0
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(ii) Let us first show that:
im(a”) < (N(a))”

Indeed, let £ € im(a*)
= c=a"(p), pe W*

— Vue N(a) | e(u) = 0" (9)(w) = p o a(u)p(a(u)) = 0
— ¢ (N(a)°
In finite dimension, we can compute the dimensions of im(a*) and (N («))°.
dim(im(a™)) = r(a™)

r(@) = r([@’e ) = r(lelpe) = r(le]se) = r(@)

= r(a) =r(a¥)

dim(ima*) = r(a®)
+ ()
=dimV — dim N(«a)
— dim{(N(a))"]
so im(a*) < (N(a))? and dim(im(a*)) = dim[(N(a))°] so im(a*) = [N(a)]°. O
Double dual

e I/ vector space over F'

o V* = L(V, f) dual of V. We define the bidual:

V= (V*)* = L(V*, F)

Very important space in infinite dimension: in general, there is no obvious connection
between V and V* (unless Hilbertian structure). However, there is a large class of
function spaces wuch that V ~ V**,

Example. p > 2,

Lp(]R):{f:R%R‘/R|f(a:)|pdx<oo}

Is a reflexive space.
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In general, there is a canonical embedding of V into V**. Indeed, pick v € V', we define:
v:V* = F
e e(v)
linear:
e ¢ € V* implies e(v) € F.
e linearity: A1, Ao € F,e1,60 € V*

0= ()\151 + )\262) = ()\151 + )\262)(’0)
= /\151 (U) + )\282(1})
= )\1@(81) + )\2’[)(52)

so v e LV F).

Theorem. If V is a finite dimensional vector space over F, then:

LV sV

V=

is an isomorphism.

(in infinite dimension we can show under canonical assumptions (Banach space) that:
is injective)
Proof. e V finite dimensional. Given v € V, o € V** € L(V* F).
e “linear: let vi,v9 € V, A, \oF, e € V™:
()\1’01 + /\202)(8) = E()\l’l)l + )\2’02)
= A1e(v1) + A2e(v2)
= )\11}1(5) + )\2@2(6)

e (/\17)1 + )\21)2) = A\01 + Ao

e " injective: indeed, let e € V \ {0}. I extend (e, eq,...,e,) basis of V. Let
(e,€9,...,&y,) the dual basis of (of V*), then

é(e) =¢(e) =1
— e+ {0)
= N() = {0}

so " is injective.
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e “isomorphism. We can compute dimensions:
dimV = dim V* = dim[(V*)*] = dim(V™*)

As a conclusion: “: V' — V** is injective, dim V' = dim V**, so "is surjective, so"is
an isomorphism.

O
Lemma. Let V be a finite dimensional vector space over F', let U < V. Then
U=0%"
so after identification of V' and V**, we have
U~y®
Proof. Let us show that: U < U%.
e Indeed, let v € U:
Ve € U% e(u) =0
— Vee U%e(u) =a(e) =0
— aeU”
— UcUu®
e Commute dimensions
dim U = dimV — dimU° = dim U
O

Remark. T < V*
T°={veV|6(v)=0,v0 c T}

Remark. T < V™', we can define

T°={veV|6(v)=0,0cT}
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Lemma. Let V be a finite dimensional vector space over F'. Let U;,Us < V. Then
(i) (U1 + Uz)o = Ulo N US
(ii) (U1 N UQ)O = U{) i Ug

Proof. (i) Exercise.

(ii) Take © of (i) and use U = U.

1.11 Bilinear Forms

= Quadratic algebra.

Definition. U,V vector spaces over F. Then:
p:UxV = F
is a bilinear form if it “linear in both components”:

e p(u,e):V — F is linear for all u € U (v +— ¢(u,v)).

e p(e,v): U — F is linear for all v € V' (u — ¢(u,v))

Examples

(i) VxV*—= F
(v,0) — 0(v)

(ii) Scalar product / dot product on U =V =R"
(ili) U =V =¢([0,1],R)
1
o0 = [ rdgta
0

(“infinite dimensional scalar product)

Definition (matrix of a bilinear form in a basis). B = (eq,...,ey) basis of U,
C=(f1,.-.,fn) basisof V. ¢ : U x V — F bilinear form.
The matrix of ¢ with respect to B and C is:

[plse = (p(ei £5))1<i<m
—— 1<j<n

EF
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t Lemma. ¢(u,v) = [u]g[QO]B,C[U]C- (*)

Link between the bilinear form and its matrix in given basis.

Proof. w="737" Nie;, v=">""_ pij f;. Then by linearity:

m n
o(u,0) =@ [ D Nei, Y uje;
i=1 j=1

[ Remark. [p|gc is the only matrix such that () holds.

Notation. ¢ : U x V — F bilinear form, then it determines two linear maps:
o :U—=V*
op(u): V= F
v = p(u,v)

define ¢ similarly.

Lemma. B = (ey,...,ey) basis of U, B* = (e1,...,&p) dual basis of U*. C =
(fis.-., fn) basis of V., C* = (m,...,ny) dual basis of V*. Let A = [p]gc then:

[eRrlcs = A

[plgc = AT

~

Proof.

wrei)(fj) = plei, fj) = Aij
— prle) =Y Ay

similarly for ¢p.
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Definition (Degenerate / non degenerate bilinear form). ker pr: “left kernel of ¢”,
ker pr: “right kernel of ¢”. We say that ¢ is non-degenerate if

kerpr, = {0} and kerpr = {0}

Otherwise, we say that ¢ is degenerate.

-

~

Lemma. U, V finite dimensional. B basis of U, C basis of V. ¢ : U xV — F
bilinear form, A = [¢]pc. Then ¢ non degenerate <= A invertible.

Corollary. ¢ non degenerate

= dimU =dimV

Proof.

¢ non degenerate <= ker ¢;, = {0} and ker pr = {0}
«— n(AT)=0and n(4) =0
— r(A") =dimU and r(A) = dimV
<= A invertible and then: dimU = dim V'

Remark. ¢ : R" x R™ — R scalar product, then ¢ is non degenerate, and if we
take the usual bases, then [¢|gp = I.

<
Corollary. When U and V are finite dimensional, then choosing a non degenerate

bilinear form ¢ : U — V — F is equivalent to choosing an isomorphism ¢y, : U —
V.

Definition. T' C U, we define:
T+ ={veV]|etv)=0VteT}
Similarly define for S C V

18 ={ucU, p(u,s)=0,Vs € S}
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Change basis for bilinear forms

Proposition. e B, B basis of U, P = [id]p 5

e C,C basis of V, Q = [id]¢r c-
Let ¢ : U x V — F bilinear form, then

lels e = P plBe@

change of basis formula for bilinear forms.

Proof.

I
—~
3
=3
&
~
S
&
Q
—~
L)
=,
Q
N

t Definition. The rank of ¢ (r(¢)) is the rank of any matrix representing . J

Indeed, r(PT AQ) = r(A) for any invertible P, Q.

Remark. r(p) = r(pr) = r(pr). (we computed matrices in a basis and r(A) =
r(A")

More applications later: scalar product.

1.12 Determinant and Traces

Definition. A € M,,(F) = M xn(F) We define the trace of A

TrA= En: Ay
=1

A = (Aij)i<ij<n

[ Remark. M,,(F) — F linear form (A — Tr A).
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Lemma. Tr(AB) = Tr(BA).

Proof.

TI‘(AB) = i iaijbﬁ
j=1

=1

= Tr(BA)

Corollary. Similar matrices have the same trace

Proof.

Tr(P~'AP) = Tr(APP™Y)
=Tr(A)

Definition. If o : V — V linear (endomorphism) we can define:
Tr o = T([o]s)

in any basis B (does not depend on the choice B).

Lemma. a:V —»V, o*: V¥ = V* dual map, then

Tra=Tra*
Proof.
Tr o = Tr([a])
= Tr([a]5)
= Tr([a"]s) (because [af} = [a")z-)
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1.13 Determinants
Permutations and transpositions
e permutation: S,, = group of permutations of {1,...,n}
o:{l,....,n} = {1,...,n}
is a bijection. Then o is a permutation.
e Transposition k # I, 74y € S, just swaps k and .

e Decomposition: any permutation of ¢ can be decomposed as a product of trans-

positions
o = H T
i=1
T; transposition.

e Signature: ¢: 5, — {—1,1},

1 if n, even
g —
—1 if ny odd

(o) = signature of 0. and ¢ is a group homomorphism.

Definition (Determinant). A € M,,(F') (square matrix),

A = (ai5)1<i<n
1<5<n

We define the determinant of A as:

det A = Z 8(0)@0(1)1610.(2)2 ©Qo(n)n
O'ESn

Example.

d aj;p a2
et 11022 — (12021
ag1 a22

Lemma. If A = (a;;) is an upper (lower) triangular matrix with 0 on the diagonal:
a;j = Ofor i > j (resp i < j)

then det A = 0.
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Proof. For ag(1)1 -+ Gg(n)n Ot to be zero, I need o(j) < j for all j € {1,...,n} which is
impossible for o € S,,. So all the terms are 0, so det A = 0. O

Exercise: Show similarly that if instead we allow the diagonal elements to be nonzero,
then the determinant is the product of the diagonal elements.

Lemma. det A = det(A")

Proof.
det A = Z a(1)1 " Qo(n)n
0€Sn
Z H Qg (i)i
o€Sy
=2 ¢l H Ajo=t
gESy

Now remember (oo™ !) = e(0)e(o™!) so since (o) € {—1,1},

— e(o7 ) =¢(0)

det A = Z 8(0’) ﬁaw_1(i)

oESh
=2_ & H]]ao
oESh =1
Z H Qig(3)
€S
= det(AT)

Why this formula for det A?
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Definition. A volume form d on F" is a function

F'"x...xF" > F
—_————

n times

such that
(i) d is multilinear: for any 1 <14 <n, for all v1,...,v;—1,Vi41,...,0, € F™,
v d(V1, - Vim1, Uy Vi1, - - -, Up)
is linear (i.e. an element of (F™)*) (linear with respect to all coordinate)
(i) d alternate: if v; = v; for some ¢ # j, then

d(vi,...,v,) =0

We want to show that there is in fact only one (up to a multiplicative constant) volume

form on F™ x --- x F™ which is given by the determinant:
A= (ay) = (AW | ... A

(column vectors)

det A = det(AM, ..., AM)

Lemma. F" X --- X F™* - F
(AW AM) 5 det A

is a volume form.

Proof. (i) multilinear o € Sy, then [[i_; a,(;); is multilinear: there is only one term
from each column appearing in the expression. The sum of multilinear maps is

multilinear, so det is multilinear.

(ii) Alternate: Assume k # I, A®) = AD_ T want to show det A = 0. Indeed: let 7 be
the transposition which swaps k and . Then since A*) = A® then a;j = airj for

all 4, 7. We can decompose:
Sn=A, UTA,
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then

det A = Z (o) H Uio (i)

oceSh i=1
n n
- Z H aia(i) + Z 6(0) H aiTU(i)
o€Ap i=1 cE€TAR i=1
n
= > oot = > airo
O'GAn =1 UGAn
n n
= > e = > Taow
O'eAn =1 UeAn =1

Lemma. Let d be a volume form. Then swapping two entries changes the sign.

Proof. Equivalent definition of “alternate”.

0=d(vi,..., v +Vj,...,0 +Vj,...,0p)
=d(vi,..., V. Vi, Un) FA(U1, U U, Uy)
+d(v1,. . v,V Ug) F A (U1, Y, U, )

=04+dwi,..., V...,V .., ) FA(V1, ..V, U, Uy)

Start of

lecture 12 Corollary. o € S,,, d volume form, then:

d(Va(1)s - - - > Va(n)) = €(0)d(V1, ..., Vn)

Proof. o =11, 7.

Theorem. Let d be a volume form on F”. Let A = (AM]...|A™). Then

d(AD] ... |[A™)d(eq, ..., e,) det A

Up to a constant, det is the only volume form on F™.
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Proof.

d(A(l),...,A(” = (Zazle“..., )

Z zld ezaA() 7A(n))

B Zalld elyzajgej,,”’A(”)

7j=1
n
= E E ailajgd(ei,ej,...,A( ))
=1 j5=1
n
= E Haikkd(eil,eh,... ,ein)
1<ii<n =
1<ia<n
1<in<n

The last d term is nonzero only if all the i, are different, so we can write the i; as a
permutation. This means we can continue and get

n

d(AD, . AM) = 3" T aogrd(eays - €om)

oc€Sy k=1
z[nac,k)k]e .
oc€eS, Lk=1
:d(el,..., [Z H k)k]
oESh k=1
=d(e1,...,e,)det A O

Corollary. det is the only volume form such that

d(er,...,en) =1

1.14 Some properties of determinants

Lemma. A, B € M,,(F), then:

det(AB) = (det A)(det B)

o1



Proof. Indeed, pick A. Consider the map:

da :F"x---xF" =3 F
N———

n

defined by
(V1,...,0n) — det(Avy,. .., Avy,)

Then:
e d, is multilinear: v; — Aw; is linear.
e dj is alternate: if v; = v; then Av; = Av;.
S0 d 4 is a volume form. In particular,
da(vi,...,v,) = Cdet(vy,...,vp)
Now we compute C. Ae; = (A) so
da(er,...,en) =det(Aey,..., Ae,) = det(ay,...,A,) =det A

So
C=detA
We have proved:
da(vi, ... ,vn) =d(Avy,. .., Avy)
= (det A) det(vy,...,vy)
Now observe:
AB = ((AB)1,...,(AB),)
(AB); = AB;
S0
det(AB) = det(ABy,...,AB),)
= det(A) det(By,...,By)
= det(A) det(B)

Definition. A € M,,(F), we say that:
(i) Ais singular if det A=0

(ii) A is non singular if det A # 0.
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Lemma. A is invertible implies A is non singular.

Proof. A is invertible.
— JA L A4t =A"1A=1,

— det(AA™!) = det(A'A) =det I, =1
— (det A)(det A™1) =1

= det A#0
O
e 2
Remark. We have proved that
1
det(A™1) =
et ) det A
- J

Theorem. Let A € M,,(F). Then the following are equivalent:
(i) A is invertible
(ii) A is non singular

(if)) r(4) =n

Proof. (i) <= (iii) done (rank nullity Theorem). (i) == (iii) is lemma above. We
need to show (ii) = (iii). Indeed, assume 7(A) < n. Then

<= dimspan{cy,...,c,} <n
= J(Aq,...,\) #(0,...,0)

n
Z )\ici =0
=1
I pick j such that A\; # 0
1
— Cj = _Y Z AiCi

ity
= det A =det(ci,...,¢j,...,cn)
1
= det Cl""’_fz/\ici""’%
ity
1
:Z—Tdet(cl,...,ci,...,cn)
it Y
=0

93



O]

e N
Remark. This gives us the sharp criterion for invertibility of a linear system of n

equations with n unknowns:

YeFr"
A e M, (F)
AX=Y,X e F"

exists a unique solution if and only if A is invertible, which happens if and only if
det A # 0.

Determinant of linear maps

Lemma. Conjugate matrices have the same determinant.

Proof.
det(P7'AP) = det(P~ ') det Adet P
1
= Adet P
ot P det Adet
=detA
(P invertible implies det P # 0). O

Definition. o : V' — V linear (endomorphism). We define
det a = det([a]p)

B is any basis of V. This number does not depend on the choice of the basis!

Theorem. det : L(V,V) — F satisfies:
(i) detid =1
(ii) det(ao f) = det(«) det(S)

(iii) det(a) # 0 if and only if « is invertible and then

det(a™!) = (det o)™t

Proof. Pick a basis and express in terms of [a|g and [5]3. O
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Determinant of block matrices

Lemma. A € My(F), Be M;(F) and C € My, (F). Let

M = (61 g> e M, (F)

(n=Fk+1) then
det M = (det A)(det B)

Proof.
det M = Z (o) Hma(i)i (%)
oESy i=1
Observation:
Me(i)i = 0

if i <k, o(i) > k. So In (*), we need only sum over o € S,, such that:
(i) Vi € [L K], o(4) € [1, K]
(ii) and hence Vj € [k+1,n], o(j) € [k + 1,n].
In other words, we restrict to o of the form:
o1:{1,... k}—={1,...,k}
oo:{k+1,....,n} > {k+1,...,n}
(1) me(j); with 1 < j <k, then o(j) € {1,...,k}, can be rewritten as
Ma(j)j = Yo()i = Yor(5)i
(ii) Similarly, for k+1<j <n, k+1<o(j) <n,
Mo(j)j = ba(j)j = bor(5);

Note that
E(O’) = 8(0’1)5(0’2)
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so then

det M = Z (o) H Me(i)i

oSp =1
k n
= Z g(o1002) Haal(z‘)z‘ H boa ()i
O’1€Sk i=1 j:k+1
O'QESZ
k n
= > eloneo) [ Taoai [T bouiins
o1€5;, i=1 j=k+1
02€S8]
k n
= 2 s ]Tamami] | 2o @) I touis
01E€Sg =1 02€S; j=k+1
= (det A)(det B) =
Corollary. Aq,..., Ay are square matrices, then
det | 0 0 Az -+ % | —(det A;)--- (det Ag)
0o 0 0 --- A
Proof. By induction on k. O

In particular, if A is filled with zeros below the diagonal, then det A is the product of the

entries on the diagonal. (But this is also quite easy to show directly from the definition
of det A).

s N
Warning. In general:

A B
det <C D) # det Adet D — det Bdet C

( )
Remark. In R3, we have that (a x b) - ¢ is a volume form (and represents the

volume of a parallelepiped), and in fact, det(a,b,c) = (a x b) - c.
L J
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1.15 Adjugate matrix

Observation: We know that swapping two column vectors flips the sign of the determi-
nant, and we also know that det A = det AT. So we find that swapping two rows changes
the determinant by a factor of -1.

Remark. We could prove properties of determinant using the decomposition of A
into elementary matrices.

Column (line) expansion and adjugate matrix

Column expansion is to reduce the computation of n x n determinants to (n—1) x (n—1)
determinants. Very useful to compute determinants.

Definition. A € M, (F). Pick 4,j < n. We define:
AZA] S Mn_l(F)

obtained by removing the i-th row and the j-th column from A.

Example.

Lemma (Expansion of the determinant). Let A € M,,(F).

(i) Expansion with respect to the j-th column: pick 1 < j < n, then:

det A=) (1) a;; det A (%)
=1

(ii) Expansion with respect to the i-th row: pick 1 <i < n, then

— i+J .
det A = Z(—l) T det A
j=1

Powerful tool to compute determinants.

o7



Example.
1 -1 1 -1
o 32 T

Proof. Expansion with respect to the j-th column (row expansion formula follows by
taking transpose). Pick 1 < j <n.

e A=(AMW | A®) | ... AU | ... ] A)

]) = § A;5€q, azg)1<z,]<n

det A = det( Zawez,.. A(”>

:Zaijdet(A(l),...,ei,...,A("))
det(AM |- e |- ,A(n)):( 1)1 Vdet(e; | AD | AU=D | 4G+ || A
(~1)" (=1~ det(A;)
(—1)"* det(A;;)

SO

det A = Z aij det(A(l), coaUY e ,A(”))
i=1

= Zaw +J detA ]

Definition (Adjugate matrix). Let A € M, (F). The adjugate matrix adj(A) is
the n X n matrix with (¢, j) entry given by

(1) det(4)

o8



Theorem. Let A € M,,(F), then

adj(A)A = (det A)I,,

In particular, when A is invertible,

1 _ 1
det A

adj(A)

Proof. We just proved: (x)

det A = En:(—l)”j (det Ai“j)aij
i=1
=Y (adj(A4))jia;;
=1
= (adj(A)A)j;

e For j # k we have
0= det(AM, ..., A%

= det (a(l), .. .,Zaikei, L AW ,A(n)>
i=1

aik det(A(l), ey iy ,A("))

AR Ay

I

=1
= (adj(A))jia
i=1
= (adj(A)A) j
=0
for j # k.
So done.

Cramer rule

Proposition. Let A € M,,(F) be invertible. Let b € F™. Then the unique solution

to Az = b is given by:
1

det A
1 < i < n where A;b is obtained by replacing the i-th column of A by b.

Lo =

det (Agb)
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Algorithmically, this avoids computing A~1.
TODO: CHECK WHETHER NEEDS EDITING.

1.16 Eigenvectors, eigenvalues and trigonal matrices
First step towards the diagonalisation of endomorphisms.

e I vector space over F, dimpV =n < oco. a:V — V linear (endomorphism of
V). General problem: Can we find a basis B of V' such that in this basis,

[a]s = [a]sB
has a “nice” form.
Reminder: B’ another basis of V, P = change of basis matrix,
lals = PY[a]sP

Equivalently: given a matrix A € M,,(F), is it conjugated to a matrix with a “simple”
form?

Definition. (i) a € L(V) (a : V — V linear) is diagonalisable if there exists a
basis B of V' such that [a]g in B is diagonal:

M OO - 0
0 X --- 0
[a]g = S )
0 0 - M\

(ii) a € L(V) is triangulable if there exists B basis of V such that [«]p is triangular:

Al ke
0 Ao - %
[o]s = : T :
0 0 - A\
( N

Remark. A matrix is diagonalisable (respectively triangulable) if and only if it is

conjugated to a diagonal (respectively triangular) matrix.
L J
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a € L(V) if and only if there exists v € V' \ {0} such that a(v) = Av.

such that a(v) = Av.

(iii) Va={v e V| a(v) =Av} <V is the eigenspace associated to A € F.

Definition (eigenvalue, eigenvector, eigenspace). (i) A € F is an eigenvalue of

(ii) v € V is an eigenvector of o € L(v) if and only if v # 0 and there exists A € F'

~

e N
Remark. Once can write evalue, evectors, espace.
N\ J
Lemma. «a € L(v), A € F, then
A eigenvalue <= det(a — Aid) =0
Proof.
A eigenvalue <= Jv € V\ {0} | a(v) = v
<~ eV \{0}]|(a—Aid)(v) =0
= ker(a — Aid) # {0}
= a — Aid not injective
<= « — Aid not surjective
<= « — \id not bijective
<= det(a—Aid) =0
O
Remark. If a(v;) = Avj, vj # 0. I can complete it to a basis (v1,...,vj—1,Vj,..., V)
of V. Then

[a]s = (| --- [ (X in j-th entry) | ---)

Elementary facts about polynomials
We will study P(«), P polynomial. o € L(V).

e F field,
f(t) = ant™ + an_1t" P+ -+ art + ag

a; € F. n = the largest exponent such that a, # 0, n = deg f.

o deg(f + g) < max{deg f,degg}, deg(fg) = deg f + degyg
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e F[t] = {polynomials with coefficients in F'}
e )\ root of f(t) < f(\) =0.

Lemma. ) is a root of f, then ¢ — A divides f:

f@)=(=XNg(t), g(t) € F(t)

Proof. f(t) = ant" +--- 4+ art +ag, f(A) = ap\" + -+ a1 A+ ag = 0.

= A 4 Far(t— A)
DN [ VL R L R O kT

Corollary. A nonzero polynomial of degree n (> 0) has at most n roots (counted
with multiplicity).

Proof. Induction on the degree. (Exercise) O

distinct values. Then f; = fs.

l Corollary. fi, fo polynomials of degree < n such that fi(t;) = fa(t:), (ti)i<i<n 1 }
O

Proof. fi — fo has degree < n and at least n roots so fi — fo = 0.

Theorem. Any f € CJt] of positive degree has a (complex) root (hence exactly
deg f roots when counted with multiplicity).

So f € CJt],

r

f@) =c]Jt=2)F cXe€CaieN
=1

— complex analysis.

Definition (characteristic polynomial). Let a € £(V'), the characteristic polyno-
mial of « is

Xa(t) = det(A — tid)
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Remark. The fact that det(A — Aid) is a polynomial in A follows from the very
definition of det.

( I
Remark. Conjugate matrices have the same characteristic polynomial.

det(P7YAP — Mid) = det(P~(A — \id)P)
= det(A — \id)
So we can define
Xa(t) = det(A — Aid)

where A = [, and the polynomial does not depend on the choice of basis.
N\ J

Theorem. o € L(V) is triangulable if and only x, can be written as a product of

linear factors over F':
n

Xo(t) =c] ]t - X)

=1

— If F = C, any matrix is triangulable.

Proof. = Suppose « triangulable, then

A
0 0 an
SO
a) *
W =der| T S w- 0
0 0 - oa)

< We argue by induction on n = dim V.
e n =1 easy.

e n > 1. By assumption, let x,(t) which has a root A\. Then x,(A) = 0 if and
only if A is an eigenvalue of a. Let U = V) be associated eigenspace. Let

(v1,...,vE) be a basis of U. We complete to (vg41,...,v,) of V
span(vgi1,...,0p) = W
V=UesW
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().
o F
O C

a induces an endormorphism @ : V/U — V/U,

C = [a]E,B:(’Uk+1+U,...,’Un+U)

Then: (block product)
det(a —id) =

m ﬁfik X
O \C-em

= (A —t)Fdet(C — tid) = cﬁ(t —a;)
i=1

= det(C —tid)=¢ ] (t—a)
i=k+1
so use the induction because dim V/U = dimV — dimU < dimV. So B =
(Vk+1,- .-, 0p) basis of W where:

a;  *
0 as
[Clw = :
0 0 Gn
implies V=U& W,
B: (vl,...,vk,ﬁk+1,...,f}n)

basis of V' in which
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— triangular form.
O

Start of
lecture 15 Lemma. V n dimensional over FF = R,C, a € L(V). Then x,(t) = (—1)"t" + |

Cn1t" 44y, g =det A=deta, c,_1 = (—1)" 1 Tr A.

Proof. e xq(t) = det(a — tid)

= Xa(0) =deta = ¢y

e Say that F = R or C (if F' = R, we can think of is as having complex entries as
well). We know that « is triangulable over C, so:

ap—t .- %

1.17 Diagonalisation criterion and minimal polynomial
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Notation (polynomial of an endomorphism). Pick p(¢) polynomial over F
p(t) = apt" +---+ait+ag, a; €F
A € M, (F), for all n, A™ € M,,(F). We define:
p(A) = ap A" + - -+ a1 A+ a;id € My (F)
If o € L(V), we define
pla) = apa”™ + - -+ + a1 + apid

where « = ao---oa € L(V).

— very useful.

Theorem (Sharp criterion of diagonalisability). e V vector space over F, dimp V
00

e e L(V)
Then « is diagonalisable if and only if there exists a polynomial p which is the
product of distinct linear factors such that p(a) = 0.

« diagonalisable <= 3J(A1,...,\,) distinct , A; € F' such that:
k
p(t) =TTt =)
i=1

)=0

)

and p(«

Proof. = Suppose «a is diagonalisable, with A1,..., Ax the distinct eigenvalues. Let
p(t) = Hle(t — Xi). Let B be the basis of V made of eigenvectors of « (it is
precisely the basis in which [a]p is diagonal). Then v € B, then a(v) = A;(v) for
some i € {1,...,k}, implies (a — \;id)(v) = 0, implies

k

ple) = |[J(e = Nid) | (v) =0

j=1
but the terms in the product commute, i.e.
(a0 = A\jid) (o — A\gid) = (@ — Agid) (a0 — Ajid)

so for all v € B, p(a)(v) =0, so p(a)(v) = 0 for all v € V (since B is a basis for
V). So p(a) = 0.
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< (Kernel lemma, Bezout’s theorem for prime polynomials)

e Suppose p(a) = 0 for:

Ni FAj, 1 F ]
e Let V), = ker(av — \iid), we claim:

k
V=,
i=1

Indeed let:
LY
t) = ’ 1<i<k
i#£]
Then
1 ifi=j
q;(Ni) = e
0 ifi#£j

Hence let us consider: i
q(t) => q;(t)
=1

Then degq; < k—1,s0degqg < k—1. Also g(A\j) =1forall1 < j <k. So
the polynomial ¢(t) — 1 has degree < k — 1 and at least k roots, so for all ¢,
q(t) = 1. So for all ¢,

q(t)+-+aq(t)=1

e Let us define the projector
1¢j(a) € L(V)

Then

k k
domi=> g
j=1 j=1
k
=1 g | (@
j=1

=id
This means for all v € V,
k k
v=g(a)(v) =Y mv) =Y gj(a)(v)
j=1 J=1
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Observe: pick j € {1...,k},

1

mp(“)@) —0

(a = Ajid)gj(a)(v) =

SO
Vi e {1, . ,k}, (Oé — )\jid)wj(v) =0
= Vje{l,...,k}m;(v) € V),

m; is a projector on V).) Now for all v € V|,
J J

hence i
V=> T,
j=1

We need to prove that the sum is direct. Indeed, let v € V), N (Z#j VAI.>.
- veE V>\j. Then

Oé—/\iid)
SR =
i=14#j ¢ J
k
Ai — Aj)
- I Y=
i=1l,i#j J

SO T ’V)\j =id.

— By assumption v € Z#j Vy,- Now, ig # j, v € VAZ.O, a(v) = A0,

= 7(0) = g;(0)(0)

o — )\iid)
- e
LA Y
_ )‘io - )‘j
N i — A
i#j J

so m; |v,, = 0 for i # j.
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As a conclusion: v € V), N (Zi#]— V)\i)
(1) v € V), implies 7j(v) =v
(2) v €D, Va, implies 7;(v) =0

so v = 0. We have proved:

k
V=W,
j=1

j ’VA]» =id
e ‘ij =0
for i # j.
-
Remark. We have proved the following: if Aq,..., A\; are k distinct eigenval-

ues of «, then
k k
> v =D
i=1 i=1

(always true) (and we know the projectors)
=

This means that the only way diagonalisation fails is if:

k k
Py, =D W, #V
i=1 j=1

Example. A € M, (F), F = C. A has finite order. (there exists m € N such that
A™ =id). Then A is diagonalisable (over C). TODO..

Start of

lecture 16 Theorem (Simultaneous diagonalisation). o dimpV < o0

e o, € L(V) diagonalisable
Then «, 5 are simultaneously diagonalisable (3B basis of V' in which both [a]g,
[B]p are diagonal) if and only if @ and S commute.

Proof. = Exists basis B of V' in which
[OZ]B = D1

18] = Do
D1, Dy both diagonal, then D1 Dy = Dy D1 so aff = Sa.
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< Suppose «, 8 are both diagonalisable and a8 = Ba. Let A1, ..., A; be the k distinct
eigenvalues of . We have shown:

k
a diagonalisable <— V = @ W\
i=1
V), is the eigenspace associated to A;.

Claim: V), stable by 8: S(V),) < Vj,.
Indeed, let v € V), then

afi(v) = na(v) = B(Av) = Aif(v)
so B(v) € Vy,.

e We use criterion for diagonalisability: ( is diagonalisable implies that there
exists p with distinct linear factors such that p(5) = 0.

Now B|ij endomorphism (3 : V), — V),) and

p(6|V>\j) =0

p has distinct linear factors, so B]V)\j is diagonalisable. So there exists B basis of
Vy,; in which 3 |V>\j is diagonal. Then

k
V=W,
=1

so (Bi,...,B,) = B is a basis of V in which both « and § are in diagonal form.
O
Minimal polynomial of an endormorphism

e Remainder: (Groups, Rings and Modules).
Fuclidean algorithm for polynomials: a,b polynomials over F', b # 0, then there
exist polynomials ¢, over F' with:

degr < degb

a=qgb+r

<
Definition (Minimal polynomial). V' vector space over F, dimpV < co. Let o €
L(V). The minimal polynomial m,, of « is the (unique up to a constant) non zero
polynomial with smallest degree such that

ma(a) =0
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Existence and uniqueness follow from the following observations:
e dimpV =n, a € L(V). We know:

dimp L(V) = n?

2
™" cannot be free

= id,q,...,«
= anzoz"2 +--+aa+ay=0
— Jpe Ft] [ pla) =0,p#0
That is, there does exist a polynomial p that kills a.

e Lemma: a € L(V), p € F[t]. Then p(a) = 0 if and only if m, is a factor of p.
Proof: p € F[t], p(a) = 0, mg is minimum polynomial of a. So degm, < degp.
By Euclidean division:

D=mMaq+T
degr < degmy,
Then
p(a) =0 =mqq(a)r(a)
so r(a) = 0. If » # 0, then this would contradict the definition of m,. So r = 0.
So p = myq, that is, m, divides p.

e If m1, my are both polynomial with smallest degree which kill a then by the above
lemma, my | ma, ma | m1 so mg = e¢mq, ¢ € F. That is, the minimal polynomial
is unique up to a constant.

Example. V = R?

=(00) 5=

e Let p(t) = (t — 1), then p(A) = p(B) = 0. So minimal polynomial is either
t—1or (t—1)>2

e Check: my =t —1, mp = (t — 1)2. So A is diagonalisable but B is not.

1.18 Cayley Hamiton Theorem and multiplicity of eiganvalues

Theorem (Cayley Hamilton). Let V' be an F vector space, dimp V' < oco. Let
a € L(V) with characteristic polynomial x4 (t) = det(a — tid). Then xq(a) = 0.
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Corollary. mq | Xa-

Proof. F' = C (general proof is in the notes). « € L(V), n = dimc V. Exists basis
B ={v1,...,v,} such that

al e *
[l =
0 - ay,
(triangulable). Let U; = (vi,...,v;). Then because of the triangular form, (a —

ajid)Uj < Ujfl.

n

va(®) = [J(ai — 1)

i=1
(0 —aqid) - - - (o — ap—1id) (a0 — anid)V
<(a—ajid) - (o — ap-1id)Up—1

<0

So Xa(a) = 0. For the general case, see the notes. O

Definition (algebraic / geometric multiplicity). dimpV < oo, a € L(V). Let A
eigenvalue of . Then

Xa(t) = (£ = A)q(t)
q € Ft], q(A\)#0

e a) is the algebraic multiplicity of A.

e g, is the geometric multiplicity of A\, and g\ = dimker(a — Aid).

( N
Remark. ) eigenvalue <= a — A <= singular <= det(a — Aid) = xo(\) =0
L J

Lemma. \ eigenvalue of a € L(V'), then 1 < gy < aq.

Proof. e g\ = dimker(a — Aid) > 1 since A is an eigenvalue.

o Let us show that gy < ay. Indeed, let (v1,...,v4,) basis of V) = ker(a — Aid), and
compute B = (v1,...,Vx,,Vgy+1;---,Vs) of V. Then

la]s = <)\ig‘” ;)
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= det[a — tid] = det (O\ _(?ld” A j tid> = (A=1)Pxa,(t)

= gx < ay

Lemma. \ eigenvalue of o € L(V). Let:
¢x = multiplicity of A as a root of m, (minimal polynomial)

Then 1 < ¢y < ay.

Proof. e Cayley-Hamilton implies mq | Xa- S0 ¢\ < ay.

e ¢\ > 1. Indeed, there exists b # 0 such that a(v) = Av so then for all p € F|[t],
p(a)(v) = (p(A))v (a™(v) = A"v) so m(a)(v) = (m(A))v so m(A\) =0 so ¢y > 1.
O

Example.

mA?
xa(t) = (t—1)*(t—2)

e So my is either (t —1)2(t —2) or (¢t — 1)(t — 2). Check (A —I)(A—2I) =0,
so mg = (t —1)(t — 2) so A is diagonalisable.

Start of
lecture 17 Example (Jordan block).
Al 0
0 A 0
=1+ . | e My(F)
0 0 1
0 0

Check gy =1,ay=n,cx=n
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Lemma (characterisation of diagonalisable endomorphisms over F' = C). F = C,
dimcV =n < 00, a € L(V). The following are equivalent:

(i) « diagonalisable
(ii) VA eigenvalue of «a, ay = gy

(iii) VA eigenvalue of «, ¢y = 1.

Proof. (i) <= (iii) done. We need (i) <= (ii). Indeed, let (A1, ..., Ax) be the distinct
eigenvalues of a. We showed:

k
a diagonalisable <= V = @ W\
i=1
dimV =n = deg Xa
k
Yo
i=1
k
(Xa(t) = (=)™ ]t = 2)™)
i=1
S0
k k
a diagonalisable <= Z ay, = Z 9N (%)
i=1 i=1
We know: V1 <i <k, g), < ay,. Hence (x) holds <= V1 <i <k, ay, = g,. O
1.19 Jordan normal form
[ Note. In this subsection, F' = C. j
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Definition (Jordan normal form). Let A € M, (C), we say that A is in Jordan
Normal Form (JNF) if it is a block diagonal matrix:

Ju (A1) 0 0
e 0 JHQFAQ) o
0 0 Ty ()

where:
e k> 1, k integer
® ny,...,NnE integers

[ ] Zf:l ’[’Li =N

Ai € C, 1 <4 <k: they need not be distinct

meN, m#0, A€ C, J,(A)=A) if m=1,

QIQ
I

/Jw /Q\)‘— \\ ol
|

Example. n = 3,

A0 0 JiA 0 0
A=[o x o]=[ 0o ) o
00 A 0 0 A

so this is in Jordan Normal Form.

Theorem. Every matrix A € M,,(C) is similar to a matrix in Jordan Normal Form,
which is unique up to reordering the Jordan block.

Proof. Non examinable (in Groups, Rings and Modules class). (Proof is in lecturer’s
notes). O
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Example. n = 2, possible JNF in this case?

(Aol A02> m=(E—AD(E— X)), M %A

Example. n = 3,

A0 0
0 )\2 0 (t — )\1)(25 — )\2)(t — )\3) )\1, )\2, )\3 distinct

0 0 X3

A 00
0 A 0 (t =)t = A2)
0 0 X
M 0 0
0 X 1 (t— M) (t — \2)?
0 0 X

A0 0

0 X 0] (t—N

0 0 X

A0 0

0 X 1] (t—))>2

0 0 A

A1 o0

0 X 1| (@t=x?3

0 0 X

Useful observation: which explains why JNF is unique. — we can directly compute in
the JNF the quantities ay, g, cy. Indeed, let M > 2 and let J,,(\). Then
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ST - OO(\Q\

O

ool Q)

(T.T e Q/X\§

By induction we can show:

Gl (3

for K < m, and is 0 for kK = m. We say that the matrix (J,, — Aid) is nilpotent of order
m. (u™ =0 and u™ ! # 0). So

a) = sum of sizes of blocks with eigenvalue A = number of A\ on the diagonal

gx = dimker(A — Aid) = number of blocks with eigenvalue A
exdm(A) = (t — X)™kills it

(because (J,, — Aid) is nilpotent of order exactly m) so

¢y = size of the largest block with eigenvalue A
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Example.
0 —1
=07

Find a basis in which A is Jordan Normal Form?
xa(t) = (t — 1)? eigenvalue A = 1. A —id # 0 implies ma(t) = (t — 1)2, and
Jordan Normal Form
1 1
(1)

. -1 -1
A—ld(l 1)

ker(A —id) = (v1), v1 = (1,—1)". I look for a (non-unique!) vy such that

(i) Eigenvectors:

(A — id)vg = V1

vy = (—1,0)T works.
[A]s = J1(1)

I = (11 _01>
GG

for B = (v1,v9).

—_——— T ——
p-1 J P
Exercise:
3 -2 0
A=11 0 O
1 0 1

Find a basis in which A is JNF.
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Theorem (Generalised eigenspace decomposition). e dimcV =n< 0
e ac L(V).
e my(t) = (t— ) - (t— Ag)

® \i,...,\; distinct eigenvalues of a.
Then

P~

V=PV,

1
Vj = ker[(a — Aid)“]

.
I

(Vj is generalised eigenspace)

[ Remark. o diagonalisable, ¢; = 1. THen V; eigenspace associated to A;.

Proof. projectors onto V; are explicit. Indeed, let

pi(t) = [Tt = x)

i#]

Then the p; have no common factor, so by Euclid’s algorithm, we can find ¢i,...

polynomials such that

k
Z pigi =1
i=1

We define
Tj = q;p;(a)

(i) By (%),

k k
id =Y "gpj(a)=>
=1 j=1

k
= YWweVv= ZT[']'(U)
j=1

(i) mal(a) =0, ma = [T5_ (¢ — \)%
= (o= Njid)m; = (a — Ajid)9g;pj(a) =0

= YweV,n(v)eV;
Vj = ker(a — A\;id)%
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Hence Vv € V N
v="> )
j=1

k
= V=> T
j=1

(iii) Show that:
k k
Z W = @ W,
j=1 j=1

Indeed, mm; = 0 if i # j and so m; = m; (2?21 7rj> = m2.

— 7ri|V>\i =id

— direct sum projection follows:

v="VyN ZV)\Z.

i#]
v = Zvj, v € V)\j
i#]
If apply 7; and use:
Fi‘VAi =id

7TZ'|V)\J_ =0 for j#i

so v =0.

k

V=W,

i=1
Vi, = ker(a — A\jid)®

By definition
(o = Niid)]v,,

is nilpotent, since
(o = Aid)*]y;, =0

= all I need to do is to find JNF nilpotent endomorphism.
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Start of
lecture 18

e ac L(V), dimcV =n, a* =0, a" ! £0. == JNF with blocks J,,(0). — By

induction on the dimension.
o =001 £0
— Jz eV, (z,a(x),...,a" (z))
free.
Question: F' = span(z,a(z),...,a* 1 (x)). Can I find G such that:
V=F&d

G stable by a?
— done.

1.20 Bilinear Forms

Bilinear form: ¢ : V xV — F.

e dimpV < 0o, B basis of V.

* ¢l = [l = ((ei, €5))1<ij<n B = (€i)1<i<n.

Lemma. ¢ : V x V — F bilinear, B, B’ two basis of V, P = [id] 5 then

[elz = PTlglP

-

Proof. Special case of the general formula — Lecture 10. O
Definition (Congruent matrices). A, B € M, (F), we say that A and B are con-
gruent if and only if there exists P invertible such that

A=P'BP
N

Remark. This defines an equivalence relation.
)

-

Definition (Symmetric). A bilinear form ¢ on V' is symmetric if:

o(u,v) =p(v,u) V(u,v) CV XV
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Remark. e Ac M,(F), we say that A is symmetric if and only if A = AT
— A= (aig)i<ij<n, aij = aji

e  symmetric <= [p|p is symmetric in any basis B of V.

J
N
Remark. To be able to represent ¢ by a diagonal matrix, then ¢ must be symmetric
P'AP=D = D'PTA'P
= A=AT
J
Definition (Quadratic form). A map @ : V — F'is a quadratic form if and only if
there exists a bilinear form ¢ : V x V — F such that Yu € V,
Q(u) = ¢(u, u)
N
Remark. B = (ei)lgign, A= [SO]B = (QD(CZ', ej))lgi,jgn- Then
~—
n
u= inei,x = (T1,...,Zn) "
=1
Then
Q(u) = p(u, u)
n n
= <Z i€, Z xiez‘)
i=1 i=1
n n
=3 zix; (e e))
i=1 j=1 T
n n
i=1 j=1
=z Az
SO
Qu) =z Az
J
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Observation:

n
! Az = g ;T T
ij=1

n
= E ajixia:j

ij=1
n
1
=3 > (aij +aji)ziz;
ij=1

- %J(A + ATz

and 3(A + AT) is symmetric.

Proposition. If Q) : V — F' is a quadratic form, then there exists a unique sym-
metric bilinear form ¢ : V x V — F such that:

Vu € V,Q(u) = ¢(u,u)

Proof. Let ¢ bilinear form on V such that

Vu, Q(u) = (u, u)
Let 1
go(u, U) = 5(1/}(“7 U) + @ZJ(U’ u))

e ¢ symmetric

o p(u,u) = ¢(u,u) = Qu).

— existence of ¢ symmetric. Now uniqueness. Let ¢ be a symmetric bilinear form such
that o(u,u) = Q(u)Vu € V. Then

Qu+v) =o(u+v,u+v)
= p(u,u) + p(v,u) + o(v,u) + (v, v)
= Q(u) + 2¢(u,v) + Q(v)

SO

ol ) = 51Q(u+v) — Qw) — Q)]

= POLARIZATION IDENTITY. O
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Theorem (Diagonalisation of symmetric bilinear forms). Let ¢ : V x V' — F be a
symmetric bilinear form (dimp V' < 00). Then there exists a basis B of V' such that:

[¢]p is diagonal

— extensions to infinite dimensional cases.
Proof. e dimpV < 0.

e Induction on the dimension n.

e n=0,1 are clear.

e Suppose that the theorem holds for all dimensions < n.

(1) Let ¢ : V x V — F be a symmetric bilinear form. If p(u,u) =0, Vu € V, ¢
is identically zero. (polarization identity).

= Ju e V\{0} | ¢(u,u) #0

(because ¢ # 0).
(2) Let us call u=-e;. (e1 #0, w(e1,e1) # 0). Let us define

U= ((ex))*
={veV|yple,v)=0}
= ker{p(e1,0) : V — F v — p(e1,v)}

(linear because ¢ is bilinear). Now rank nullity:
dimV =n=14+dimU

(r(p(e1,0)) =1 p(e1,e1) #0) So dimU =n — 1.
(3) Claim U + (e1) = U @ (e1). Indeed, v € (e1) N U then v = Xe;, A € F.

pler,v) =0 (vel)
so 0= ¢(e1, Ae1) = Ap(er,e1) so A =0, sov =0.

(4) Conclusion V' = (e1) ® U, by counting dimensions.
(5) Complete (eg,...,e,) basis of U. So B = (e, eq,...,e,) basis of V. And:

fle,6) O« O
(=[5 [ A

O
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(p(ej,e1) = ¢(er,e;) =0 for 2 < j <n).

A" = (p(ei, er))2<i j<n
Then (A’)T = A’ since ¢ symmetric.

= ply:UxU—=F

bilinear symmetric with matrix A’. By the induction hypotheses, I can find
B = (é,...,el) basis of U in which [¢|y]p is diagonal. Then

» En
[(p](el,eé,.l.,e’n)

diagonal form. O

Remark. p(e1,e1) #0
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Example. V = R?
e Q(x1,x9,23) = 33% + :c% + 2:1::,2) + 22129 + 22123 — 2x9w3 = = | Az where
1 1 1
A=11 1 -1
1 -1 2
e Diagonalise: Two ways.

(1) Follow the proof of diagonalisation — algorithm.
(2) “Complete the square”

Q(x1,x9,23) = a:% + a:% + 2x§ + 22129 + 22123 — 22923

= (r1+ 22+ 1:3)2 + x% — 4x9x3

2 2 2
= (1 + o2 + z3) + (x3 — 222) — (222)

——
A 5 3
— P}
10 0
PTAP=[(0 1 0
0 0 -1
— To find P, remember:
) 11 1
=10 -2 1| =P
) 0 2 0
Start of
lecture 19 1.21 Sylvester’s law / Sesquilinear forms

Recall:

Theorem. dimpV < o0, ¢ : V XV — F is a symmetric bilinear form = there
exists B basis of V' in which [¢]g is diagonal.

[ Remark. We take ' = R or C in this subsection. j
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Corollary. F' = C, dimcV < o0, ¢ symmetric bilinear form on V. Then there
exists basis of V' such that

o= (ftg). = rank(y)

Proof. Pick a basis £ = (ey,...,ey,) such that

ag 0 --- 0
0 as -~ 0
le=1. . .
0 0 - a,

Reorder e; such that a; # 0 for 1 <7 <r, a; =0 for ¢ > r. Fori <r, Ilet \/a; be a
choice of complex root of a;, we define:

N

i o for1<i<r
v =
’ € fori<r

B=(viy...,Up,€r41,...,6n), B basis of V

Corollary. Every symmetric matrix of M,,(C) is congruent to a UNIQUE matrix

of the form:
I, |0

010

We want to address the same problem with F' = R. — we cannot take complex roots
this time.
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exists B = (v1,...,vy,) basis of V such that

Lo
[T
O O

O

p,4>0,p+qg=r(p).

Corollary. F' = R, dimr V' < o0, ¢ symmetric bilinear form on V. Then there

~

Proof. £ = (e1,...,ey,) basis of V such that

ag 0 - 0
0 ag --- 0

[ple = R : a; € R
0 O an

Reorder a; so that:
e a; >0for1<i¢<p
e g; <0forp+1<i<ygq

e g;=0fori>qg+1

We define:
\/eé—i I1<:<p
V; = \/e‘;j p+ 1 < { S q
€; 7 Z q + 1
Then let B = (vy,...,v,) and then [p]g has the announced form.

Definition (signature). We define (under the assumptions above)

s(¢) = p — q = signature of ¢

(we also speak of the signature of the associated quadratic form Q(u) = ¢(u,u))

This definition makes sense:
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Theorem (Sylvester’s law of inertia). F' = R, dimg V' < 00, ¢ symmetric bilinear
form on V. If ¢ is represented by:

4],
el

with B, B’ bases of V. Then p =p’ and q = ¢'.

A\

[

N
Definition. ¢ be a symmetric bilinear form on a real valued vector space (F' = R).

We say that:
(i) ¢ is positive definite
< YueV\{0}, o(u,u)>0
(ii) ¢ is positive semi definite
— YueV, e(u,u)>0
(iii) ¢ is negative definite
— YueV\{0}, ou,u)<0

(iv) ¢ is negative semi definite

— YueV, e(u,u) <0
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Example.

oo
N——

positive definite for p =n

e positive semi definite for p < n.

Proof. (Of Sylvester’s law of inertia)
In order to prove that p is independent of the choice of the basis, we show that p has a

geometric interpretation:
Claim: p is the largest dimension of subspace on which ¢ is positive definite.

Proof:
Say B = (v1,...,v,) in which:

z I
O ©
(1) Let X = (v1,...,vp). Then ¢ is positive definite on X. Indeed, u = >7_; v,
Q(u) = p(u, u)
p p
= (Z Aivi, /\wi>
i=1 i=1

=D Ae(vi,v)
ij=1
P
2 >0 for u #0
1

-.
Il

dim X = p, ¢|xxx is positive definite.

(2) Suppose that ¢ is definite positive when restricted to another subspace X’. Let
X =(vi,...,0p), Y = (Upt1,...,0n), B=(v1,...,0,). Then
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o 1o
GO Y

.| O
[C@; : = )

—> We know that ¢ is negative semi definite on Y. So Y N X’ = {0}. Indeed, if
ueYNX and u # 0, then u € Y so p(u,u) <0, but u € X’ so p(u,u) > 0. So
YNX' ={0}. SoY+X' =Y &X' sodimY +dim X' <n, and dimY =n — p so
dim X’ < p.

So now we know that p has a geometric interpretation / is unique. Then by considering

—p, we find that ¢ is unique too. O
Remark. Similarly, ¢ is the largest dimension of a subset on which ¢ is negative
definite.

t Definition. K = kernel of a bilinear form ¢ = {v € V' | Vu € V, p(u,v) = 0}. J

[ Remark. dim K + r(p) =n }
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e N
Remark. F' = R. One notices that there is a subspace T of dimension n — (p +

q) + min{p, ¢} such that ¢|r = 0. Indeed: B = (v1,...,v,),

To | O

[({jﬁc 5 i O

T = (V1 + Vpt1,- - Vg + Vptqs Uptqtls - -, Un) (if p > q). Check ¢|7 =0 (V(u,v) €

q n—(p+q)
T x T, p(u,v) = 0). Moreover, one can show that this is the largest dimension of a

subspace T” on which @|7/ym =0
L y,

Sesquilinear Forms
e F=C

e Standard inner product on C" is (z,y) = Y ;" | x;y;. In particular,

n

lz]* = (z,2) = ) |

i=1
N——
€R+

( N

Warning. C" x C"* — C
n
(z,y) = (@, y) = > =l
i=1
is mot a bilinear form: A € C,

Ozy) =) A = Mz, y)
=1

=l

— antilinear with respect to the second coordinate.
. J
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Start of
lecture 20

Definition. V, W C vector spaces. A sesquilinear form ¢ is a function ¢ : VxW —
C such that:

(1) e(AMv1 + Aqva, w) = Arp(v1, w) + Aep(ve, w) (linear with respect to the first
coordinate)

(i) @(v, w1 + dows) = A\p(v,w1) + A2@(v,ws) (antilinear with respect to the
second coordinate).

~

dime W < o0, dimg V' < 00, ¢ sesquilinear, V x W — C
e linear first variable: p(Au,v) = Ap(u,v)

e multilinear second variable ¢(u, Av) = Ap(u, v)

Definition. B = (vy,...,vy) basis of V, C = (w1, ...,w,) basis of W.

[plsc = (p(vi,wj))

m X n matrix.

Lemma. p(v,w) = [U]g[w]ls,c[ 15

Proof. Exercise.

Lemma. B, B’ basis for V, P = [id]s 5, C,C’ basis for W, Q = [id]¢ ¢. Then

lelsc =P plBe@

Proof. Exercise.

1.22 Hermitian Forms / C, Skew Symmetric forms / R
Hermitian form

dimcV < 00, ¢ : V x V — C sesquilinear (W = V).

Definition (Hermitian form). A sesquilinear form ¢ : V x V' — C is called Hermi-
tian if

Y(u,v) € VxV, o(u,v)=p(,u)
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s N
Remark. ¢ Hermitian

= @(u,u) = 90(u7u)

= VYu e V,p(u,u) €R

Allows us to speak of positive / negative (semi) definite Hermitian form.
L J

Lemma. A sesquilinear form ¢ : V x V' — C is Hermitian if and only if VB basis
of V,

[ols = [#]5

Proof. A = [¢lg = (aij)i1<ij<n, aij = ¢(ei,ej). Then a;; = @(es,ej), aji = ¢(ej,e) =

p(ei, ej) = aij-

Conversely [¢p|lp = A, A= AT
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Then

p(v,u) =¢ (Z pici, » AM)
=1 =1
= ZMiTjﬁﬂ(eia e;)
=1

n
= > mhag

1,7=1

n
= > i

i,j=1
n
- 3
i,j=1
= ¢(u,v) O

Polarization identity
A Hermitian form ¢ on a complex vector space V' is entirely determined by: @ : V — R,

u +— @(u,u) via the formula:

o(u,v) = i[Q(u +0) —Q(u—v)+1iQ(u+ ) —iQ(u — iv)]

= polarization identity for Hermitian forms

Proof. Exercise (just check). O

Theorem (Sylvester’s law of inertia for Hermitian forms). dimc V' < oo, ¢ : V x
V — C a Hermitian form on V. Then 38 = (vy,...,v,) basis of V:

where P and g depend only on ¢.
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Proof. (Sketch: nearly identical to the real case of symmetric forms).

e Existence: ¢ = 0, done. Assume ¢ # 0, then the polarization identity ensures that
there exists e; # 0 such that
p(er,e1) # 0

Rescale:
€1

lp(er, e1)]
= ¢(v1,v1) = £1. Then we consider the orthogonal:

v =

W={weV]|p,w) =0}
and we check (verbatim like in the real case)
V={(m)oW

(dimW =n —1). Now argue by induction on the dimension on V' by considering
¢ |w which is Hermitian on W x W.

e Uniqueness of p: As in the real case,
p = maximal dimension of a subspace on which ¢ is definite positive (¢(u,u) € R)

Similarly for q.

Skew Symmetric Real Valued Forms

F =R, V vector space over R.

Definition (skew symmetric). A bilinear form ¢ : V x V — R is skew symmetric
if:
(P(U?U) = —QO(U,U) V(U,Q}) eVxVv

This is also often called antisymmetric.

( )

Remark. (i) p(u,u) = —p(u,u) so p(u,u) =0. Yu € V.
(ii) VB basis of V, [p]g = —[¢]4-

(iii) A € M,(R),
1 1
A=A+ AT) + (A AT)
i.e. decomposition into symmetric and antisymmetric / skew symmetric parts.
L J
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e v:V xV — R skew symmetric bilinear form.
Then there exists B basis of V,

B — ('Ul,wl,'UQ,'lUQ, ey Umy Wims V2m+15 V2m+25 - - - 7Un)

yv\Sb\(’/l\
o | s
g o \ KJ&I ks \

O \\
-1 0

such that

L],

O\

O o

Theorem (Sylvester for skew symmetric form). e V vector space over R, dimg V'

Corollary. Skew symmetric matrices have an even rank.

Proof. (Sketch). Induction on the dimension of V.
e © =0 then done.
e p#0 = 3I(v1,vy) € V x V such that ¢(vy,w;) # 0.

e v; # 0, wy # 0, after scaling:
p(vr,w1) =1

= p(wy,v) = —1
since skew symmetric.
e (v1,w) linearly independent.
o(v1, Av1) = Ap(v1,v1) =0
since skew symmetric.
e Define U = (v1,wy).
W ={veV]|epv,v)=¢pw,v) =0}

Exercise: show that V =U & W.

e Now apply the induction hypothesis to ¢|w «w skew symmetric.
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Inner Product Spaces

e definite positive bilinear forms:
— Scalar product

— Norm (distance)

—> SPECTACULAR generalisation / application to infinite dimensional spaces:

Hilbert Spaces

— part IT (linear analysis, analysis of functions).

Definition (Inner product). Let V' be a vector space over R (respectively C). An
inner product is a positive definite symmetric (respectively Hermitian) bilinear form
ponV.

Notation. ¢(u,v) = (u,v).

If such a bilinear form exists, V' is called a real (respectively complex) inner product
space.

Example. (i) R", 2= (z1,...,2,) , ¥ = (Y1, %),

n
(@,y) = wiys
=1

— inner product.
(i) C", (x,y) = >_;~, ¥; — inner product.
(iii) V =C([0,1],C) )
()= [ Fatoae

“L? scalar product”

One can check that (i), (ii), (iii) are inner products.
(uyu) =0 = u=0

— definite positive assumption.
Start of
lecture 21
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1.23 Gram Schmidt and orthogonal complement

e V' vector space over R (or C). An inner product is a positive definite symmetric
(or Hermitian) bilinear form on V.

Notation. ¢(u,v) = (u,v).

e Norm: ||v]| = y/(v,v) (the norm). Then ||v]| > 0 and |jv|]| =0 <= v =0.

— associated notion of length.

Lemma (Cauchy-Schwartz).
(v, 0)| < lull]o]

More over, equality holds if and only if v and v are proportional.

Proof. f =R or C. Let t € F, then

0 < [[tu—of?
= (tu — v, tu — v)
= t¥<u7u> - t<’U, U> - E(U, U> + H/U”2
= [t[*|ull* — 2 Re(t(v, u)) + [|v]|?

Explicitly: the minimum is taken at ¢t = <|IZ|1|)2>

2 2
— 0 < |<uvv>’ ‘UH2—2RG<’<U7U> >+HU”2

= fu? ]|
[{u, v)[?
= 0 < ||’UH2— H,;HQ

= |(u,v)|* < [|ull?||v]?

Exercise: equality = wu and v are proportional. O

Corollary (Triangle inequality).

[u+ o] < flull + [Jv]] (%)

— key to show that || e || is a norm.
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Proof.

|u4v||* = (u+v,u+v)
= [[ull? + 2Re({u, v)) + [|v]®
<l + 2fjul [0l + [0l
= (ull + o)

-

Definition. A set (ey,...,ex) of vectors of V is
(i) Orthogonal: if (e;,e;) = 0 if i # j.

(ii) Orthonormal: if (e;, e;) = 6;; where

Lo
sy=4 7
0 i#]

Lemma. If (ey,...,ex) is orthogonal, then
(i) The family is free
(ii) v = Z?:l Ajej, then

(v, €5)
S =
A
Proof. (i) Z?Zl Ajej =0
k k
— 0= <Z )\jej,61'> == Z)\j<ej’ei> == >\z
j=1 j=1

so the family is free.
(i) v =21 Nies.
= (v,¢j) = Njej,e5) = Alley|?

1
= \j = —=(v,¢e)
S (21 R
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Lemma (Parseval’s Identity). If V' is a finite dimensional inner product space and
(e1,...,en) is an orthonormal basis, then

n

(u,v) = Z(u, ei)(v, e;)

i=1
In particular, in an orthonormal basis,
n
ol = (v, v) = > (v, e)?

i=1

n

v=">y (v,e)e;
=1

(le:ll = 1)

Proof. w=">%"" (e e)ei, |ler] =1, v =31 (v, ei)e;

= (u,v) <Z<u, ei>ei,z<v,ei>ei> = Z(u, ei) (v, e;)

i=1 i=1 i=1

Theorem (Gram-Schmidt orthogonalisation process). V inner product space let I
countable (finite) est and (v;);er linearly independent. Then there exists a sequence
(e;)ier of orthonormal vectors such that

span(vy, ..., vg) = span(ey,...,ek)

vk > 1.

— if dim V' < oo, then we have existence of an orthonormal basis.
Proof. We construct the (e;);er family by induction on k.

e k=1v#0 = e = L.

[[o1]]

e Say we found (eq,...,ex) , we look for epq.

101



'n b‘v\(.l-ld/'\
We define:
k
A
it = Vi1 — O (Vky1, €i)€s
i=1
¢ ¢, # 0. Indeed, otherwise,
Vi+1 € <61,...,ek> = (’Ul,... ,’Uk>

which would contradict the fact that (v;);ecs is free.

e Pick 1< j < k:

k
<€k+176] Vk+1 — Z /l)k—‘,-l)el €i, €5

= <vk+1a€j) - <Uk+1a€j)
=0

o (01 V) = (e ek )
/

€
e We take epyq = i O

- ||ek+!||

—> Gram Schmidt designs an algorithm to compute e for all k.

Corollary. V finite dimensional inner product space. Then any orthonormal set
of vectors can be extended to an orthonormal basis of V.

Proof. Pick (e1,...,ex) orthonormal. Then they are linearly independent, so we can
extend (eq,..., €k, Vgt1,--.,0y) basis of V. Apply Gram-Schmidt to this set noticing
that there is no need to modify the first k& vectors.

— (61,...,6k,€k+1,...,€n)

orthonormal basis of V. ]
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Note. A € M, (R), then A has orthonormal column vectors if and only if

ATA=id (R)

ATA=id (C)

Definition. (i) A € M, (R) is orthogonal if:
ATA=id (<= A1=4T)

(ii)) A € M, (C) is unitary if:

ATA=id (< A1=4AT)

where:
e T is upper triangular

e R is orthogonal (respectively unitary)

Proposition. A € M, (R) (respectively M,,(C)), then A can be written A = RT

Proof. Exercise: apply Gram Schmidt to the (c1,...,¢,) column vectors of A.

Orthogonal complement and projection

O

-

Definition. e I/ inner product space

o V1,V < V.
We say that V is the orthogonal direct sum of Vi and V5 if:

GHvVv=neoh
(il) Yoi,v9) € Vi X Vi, (v1,v2) =0

1
Notation. V=V, @& V5 (V =V; + V3) TODO...

p
Remark. v € Vi, N Va, v = (v,0) =0 = v=0.

-
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Definition (orthogonal). V inner product space, W < V.

Wt ={veV|(wuw) =0VYwe W} = orthogonal of W

Lemma. V inner product space, dimV < oo, W < V. Then

Lo
V=Waow (*)

1.24 Orthogonal complement and adjoint map

Definition. Suppose V.= U @& W (U is a complement of W in V). We define
m:V —=>W,v=u+w w. Then

e 7 is linear

We say that 7 is the projector operator onto W.

p
Remark. idw = projection onto U — V inner product space, W finite dimensional,

then we can chose U = W+ and 7 is explicit.

&

Lemma. e Let V be an inner product space

o Let W <V, W finite dimensional.
Let (e1,...,ex) be an orthonormal basis of W (given by Gram-Schmidt). Then
€L
(i) w(v) = Zf:1<v, eye; YweEV and V=W @ W+,

(ii) Yo e V,Yw e W,
lo =7 ()] < [lv—w]|

with equality if and only if w = 7(v) (that is w(v) is the point in W closest to

v).
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P
Remark. Infinite dimensional generalisation:

e 1 inner product space — V Hilbert space

e W finite dimensional — W closed (completeness)

— part II class “Linear Analysis”.
L

Proof. (i) W =span(ey,...,ek), (€i)1<i<k orthogonal. Let us define

Observation:
v=n(v)+ v—m(v)
~—~—~ ~—
ew claim: € W+
Indeed

v—7(v) EWT <= Ywe W, ({v—7(v)w) =0
)

= V1< <k, (v—m(v),e)=0

We compute:

k
(v—m(v),e) = <v — Z(v, ei)ei, ej>

=1

—~

v, ej) — (v, e5)

o

We have shown v — 7(v) € W+ Hence

Andve WnWw+

~—
€ ewd
_— U =
So
Lol
V=weWw
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(ii) Indeed, let w € W, then
lv = wl® = v —7(v) + 7(v) —w]
—_———  ——
ewt ew

= (v—m(v) +7m(v) —w,v—m(v) + w(v) — w)
=llv = m(@)* + [I7(v) — w]®
(o)
With equality if and only if w = w(w). PYTHAGORAS. O

> -

Adjoint map

N
Definition. Let V, W be finite dimensional inner product spaces, let a € L(V, W).
Then there exists a unique linear map

oW —->W
such that Y(v,w) € V x W,
(a(v), w) = (v, " (w))

Moreover, if B is an orthonormal basis of V' and C is an orthonormal basis of W
then

J

Proof. Computation: B = (v1,...,v,), C = (w1,...,wn), A = [a|gc = (a;;). Existence

[@*]es = A =C= (Cij)

cij = aj;. We compute:
<a (Z Aﬂ)i) 72 Mjwj> = <Z AiQgi W, Zujwj>
i j ik j
= Z NiGjifi; (orthonormal)
i?j
Then
<Z AiV;, o Z W > = <Z Aiv;, Z ,ujckjvk>
; i 3k
= 2\l
,J

So the expressions are equal because ¢;; = aj;. So this proves existence. Uniqueness
follows by computing a*(w;) — exercise. O
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e N
Remark. We are using the same notation o* for the adjoint of o and the dual of

a. V,W are real product spaces, o € L(V, W),
YRy V = V*
v (o, v)
Yrw : W — W*
w — (o, w)
Then the adjoint map of « is given by:

W —Ww — V=V
YR,W dual of wglv

Self adjoint maps and isometries

Definition. V inner product space finite dimensional a@ € L(V), a* € L(V) the
adjoint map. Then:

e (av,w) = (v,aw) Y(v,w) € V XV <= a = a*. We call such a map self
adjoint. (R a symmetric, C o Hermitian).

o (aw,aw) = (v,w) V(v,w) EV xV <= a* =a}

orthogonal, C « unitary).

we call an isometry. (R «

Proof. Check the equivalence that preserving the scalar product
({av, aw) = (v, w) V(v,w) € V x V)
is equivalent to (« invertible and a* = 1)
= (av,ow) = (v,w) V(v,w) € V x V. Use v = w:
law]|* = {aw, av) = (v,0) = ||v]®

(o preserves the norm: isometry) So ker a = {0}, so a bijective, a~! well defined.
(since finite dimensional). o € L(V'), Then Y(v,w) € V x V,

TODO
— Yo eV, {v,a*w) = (v,a  w)
— Yo, a*w—alw) =0
I take v = a*w — o~ lw
— a'w=a lwVYweV

e a* :a_l
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1. a€ L(V), a* =a™ !, then

(aw, aw) = (v, a*aw) = (v, w)

TODO
a isometry (a = a™!)

— Y(v,w) € V x V{av,aw) = (v,w)

= Yo eV, |a)| =

(preservation of scalar product <= preservation of the norm)

Lemma. V finite dimensional real (complex) inner product space. Then a € L(V)
is:

(i) Self adjoint if and only if in any orthonormal basis of V, [a]g is symmetric
(Hermitian).

(ii) An isometry if and only if in any orthonormal basis of V', [a]g is orthogonal
(unitary).

Proof. B orthonormal basis,

e Self adjoint [a*]} = [a]p

o Isometry [a]} = [a]5".

Definition. V finite dimensional inner product space.

o ['=R,
(V) ={a € L(V),«a isometry } = orthogonal group of V'
o F=C,
U(V)={a € L(V), aisometry} = unitary group of V'
p
Remark. V finite dimensional, {e,...,e,} orthonormal basis.
e FF =R, (V) <> {orthonormal basis of V}, o (af(e1,...,ale,)).
e F=C, U(V) <> {orthonormal basis of V'}, a — (a(eq,...,a(ey)).
-
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lecture 23 1.25 Spectral theory for self adjoint maps

e Spectral theory = study of the spectrum of operators
— mathematics
— physics (QUANTUM MECHANICS)

= INFINITE DIMENSIONAL. Finite dimension — infinite dimension. Linear
maps — Hilbert space / compact operator.

e Adjoint operator: V, W finite dimensional inner product spaces, a € L(V, W),
then the adjoint o* € L(W, V) such that V(v,w) € V x W,

(a(v), wyw = (v, " (w))v
We defined:
- Self adjoint maps, V =W, a = a*,
— Y(v,w) eV xV, (av,w)=(v,ow)
- isometries V=W, a* =a~!
= Y(v,w) e VxV, (aw,ow)= (v,w)
— R: orthogonal group
— C: unitary group.

Spectral theory for self adjoint operators

Lemma. Let V be a finite dimensional inner product space. Let o € £(V') be self
adjoint: (o = a*). Then:

(i) « has real eigenvalues

(ii) eigenvectors of o with respect to different eigenvalues are orthogonal.

Proof. (i) v € V' \ {0}, A € C such that cv = Av. Then

So (A = N)|[v||?> = 0. But |[v||* # 0 since v #0 s0o A = A so A € R.
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(ii) av =Av, A€ R, v # 0. aw = pw, p € R, w # 0. Also A # pu. Then

So (A — p){v,w) =0. But A # p so (v,w) =0.

Theorem. Let V be a finite dimensional inner product space. Let o € L(V) be
self adjoint (o = a*). Then V has an orthonormal basis made of eigenvectors of a.

— We also say: a can be diagonalised in an orthonormal basis for V.

Proof. F'=R or C. We argue by induction on the dimension of V', dimp V = n.

e n =1 — trivial.

e n—1 — n. B any orthonormal basis of V' say A = [a]p. By the fundamental
Theorem of Algebra, we know that y4(t) (= characteristic polynomial of A) has
a compler root. This root is an eigenvalue of & and a = o = this root is
real. Let us call A\ € R this eigenvalue, pick an eigenvector v; € V' \ {0} such that
|vi]l = 1, avy = Avy. Let U = (v1)* < V. Then KEY OBSERVATION: U stable
by a, i.e. a(U) < U. Indeed, let u € U, then:

{au, v1) = (u, vy
= (u, vy

= (u, A\v;

)
)
)
AMu, vr)
0

So a(u) € U. This implies: we may consider a|y € L(U) and self adjoint, and
then n = dimV =dimU + 1, so dimU = n — 1 so by induction hypothesis there

L
exists (vg,...,v,) orthonormal basis of eigenvectors for a|y. Then V = (v1) @ U
so (v1,...,v,) orthonormal basis of V' made of eigenvectors of a.

O]
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~

Remark. If you want to think in terms of matrices for the proof of (ii), then the

choice of U means that [A] is written as
Voo VA
A0
@ ;
0

A7 [

Corollary. V finite dimensional inner product space. If @ € £(V) is self adjoint,
then V' is the orthogonal direct sum of all the eigenspaces of a.

Spectral theory for unitary maps

Lemma. V be a complex inner product space (Hermitian sesquilinear structure).
Let a € £(V) be unitary (o* = a~1). Then

(i) all the eigenvalues of « lie on the unit circle

(ii) eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. (i) av =X v, v#0, A € C.

e )\ # 0: « unitary implies « invertible.

Aol = Av, v)
(A, v)
(o, v)
= (v, a’v)
= (v, )
1
(3
= <ol

So A|v||* = %H'I}‘P so since v # 0, A\ = 1, i.e. [\ = 1.
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e av = v, aw = pw, A\, 1 # 0, 4 # X. Then

(by (1)). So (A — p)(v,w) = 0. But A # p so (v,w) = 0.

Theorem (Spectral theory for unitary maps). Let V be a finite dimensional complez
inner product space. Let o € L(V) be unitary (o* = a~!). Then V has an
orthonormal basis made of eigenvectors of «.

— Equivalently, a unitary on V' Hermitian can be diagonalised in an orthonormal basis.

Proof. Pick B any orthonormal basis of V. A = [a]g. Then xa(t) (= characteristic
polynomial of A) has a complex root. So « has a complex eigenvalue. Fix v € V'\ {0}
with |lv1|| # 0, avy = Avy. Let U = (v1)t. Then: KEY OBSERVATION: o(U) < U.
Indeed: v € U, then

—~

(ou,v1) = (u, a™v1)

I
=
Q\
<

S
S~

—~
s
<
iy
~

Il

£
> =
&
~_

— au € U, so o(U) < U. We argue by induction on dimcV = n. We consider
aly € L(U) which is unitary, and by the induction hypothesis, a|y is diagonalisable in
an orthonormal basis (ve,...,v,) of U = (v1,...,v,) is an orthonormal basis of V|
made of eigenvectors of a. O
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Warning. We used the complex structure to make sure that there is an eigenvalue
(which is a priori complex valued).

In general, a real valued orthonormal matrix (AAT = id) cannot be diagonalised
over R.

Example (Rotation map in R?).
= <c9s a —sin a>
sina cosa

xA(A) = (cosa — \)? + sin? «

Then the eigenvalues are A = e*® (¢ generally). (Hence diagonalisable in C but

not R).

1.26 Application to bilinear forms

Diagonalisation of self adjoint / unitary operators.

Theorem 1. Let V be a finite dimensional inner product space (over R or C). Let
a € L(V) be self adjoint (o = «*). Then there exists an orthonormal basis of V
made of eigenvectors of a.

Theorem. Let V be a finite dimensional compler inner product space. Let o €
L(V) be unitary (a* = a~!). Then there exists an orthonormal basis of V made
of eigenvectors of a.

These theorems are so important we stated them twice!

e Translate these statements for bilinear forms.

Corollary. let A € M, (R) (respectively C) be a symmetric (respectively Hermi-
tian) matrix. Then there is an orthogonal (respectively unitary) matrix such that
PT AP (respectively PTAP) is diagonal with real valued entries.

[ Remark. Pl = P'
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Proof. F =R (C). Let (,) be the standard inner product over R”. Then A € L(F") is
self adjoint, hence we can find an orthonormal (for the standard inner product) basis of
F™ such that A is diagonal in this basis, say (vi,...,vy). Let P = (v | --+ | vp)

(vi,...,v,) orthonormal basis <= P orthogonal (unitary)
— P'P=id(P'P =id)

So P7'AP = PTAP = D, and we know ); are real, they are the eigenvalues of a
symmetric operator. U

Corollary. Let V be a finite dimensional real (complex) inner product space. Let
¢ : VxV — F be a symmetric (Hermitian) bilinear form. Then there is an
orthonormal basis of V' such that ¢ in this basis is represented by a diagonal matrix.

Proof. Let B = {v1,...,v,} be any orthonormal basis of V. Let A = [p]p. Then since
¢ is symmetric (Hermitian), AT = A (T = A), hence there is an orthogonal (unitary)
matrix P such that PTAP (PTAP) is diagonal, say D. Let v; be the i-th row of P'
(P1), then {v1,...,v,} is an orthonormal basis say B’ of V and [p]g = D. (We are
using the change of basis for bilinear forms). O

( I
Remark. Diagonal entries of PT AP (PTAP) are exactly the eigenvalues of A.
Moreover:

A(p) = #(positive eigenvalues of A) — #(negative eigenvalues of A)

(recall A is the signature of a bilinear form)
L J

Important corollary

Corollary (Simultaneous diagonalisation of Hermitian forms). Let V' be a finite
dimensional real (complex) vector space. Let:

o, : VXV F

¢, are bilinear symmetric (Hermitian) forms. And suppose ¢ is positive definite.
Then there exists (vy,...,v,) basis of V' with respect to which both bilinear forms
are represented by a diagonal matrix.

Proof. ¢ is positive definite so ¢ induces a scalar product on V', V equipped with ¢ is
a finite dimensional inner product space:

<u’ U> = Qp(uv U)
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Hence there exists an orthonormal (for the ¢ induced scalar product) basis of V' in which
1) is represented by a diagonal matrix. Observe that ¢ in this basis is represented by the
Identity matrix (because the basis orthonormal for ¢: B = (vi,...,v,), (v;,v;) = §;j =
©(v,v5)) So both matrices of ¢ and ¢ in B are diagonal. O

Corollary (Matrix reformulation of simultaneous diagonalisation). Let A, B €
M, (R) (respectively M,,(C)), both symmetric (respectively Hermitian). Assume
Vo #0, T Ar > 0. Then there exists Q € M, (R) (respectively M, (C)) invertible
such that both QT AQ (respectively QTAQ) and QT BQ (respectively QTBQ) are
diagonal.

Proof. Direct consequence of the simultaneous diagonalisation Theorem. O
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