Linear Algebra

June 3, 2023

Contents

1	Vect	or spaces and subspaces	3
	1.1	Subspaces and Quotient	6
	1.2	Spans, linear independence and the Steinitz exchange lemma	7
	1.3	Basis, dimension, direct sums	12
	1.4	Linear maps, isomorphism and the rank-nullity Theorem	16
	1.5	Linear maps from V to W and matrices $\ldots \ldots \ldots$	21
	1.6	Change of basis and equivalent matrices	25
	1.7	Elementary operations and elementary matrices	29
	1.8	Elementary operations and elementary matrices	30
	1.9	Dual spaces and dual maps	33
		Properties of the dual map, double dual	38
	1.11	Bilinear Forms	42
			45
		Determinants	47
			51
		3 0	57
	1.16	Eigenvectors, eigenvalues and trigonal matrices	60
		Diagonalisation criterion and minimal polynomial	
		Cayley Hamiton Theorem and multiplicity of eiganvalues	71
			74
			81
		Sylvester's law / Sesquilinear forms	
		Hermitian Forms / \mathbb{C} , Skew Symmetric forms / \mathbb{R}	
		Gram Schmidt and orthogonal complement	
		Orthogonal complement and adjoint map	
		Spectral theory for self adjoint maps	
	1.26	Application to bilinear forms	13

Lectures

Lecture 1Lecture 2Lecture 3 Lecture 4 Lecture 5Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15 Lecture 16 Lecture 17Lecture 18Lecture 19 Lecture 20Lecture 21 Lecture 22Lecture 23

Lecture 24

Start of lecture 1

1 Vector spaces and subspaces

Let F be an arbitrary field (eg \mathbb{R} or \mathbb{C}).

Definition (F vector space). An F vector space (a vector space over F) is an abelian group (V, +) equipped with a function

 $\begin{aligned} F\times V \to V \\ (\lambda,v) \mapsto \lambda v \end{aligned}$

such that:

- $\lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2$
- $(\lambda_1 + \lambda_2)v = \lambda_1 v + \lambda_2 v$
- $\lambda(\mu v) = (\lambda \mu) v$
- 1v = v

We know how to

- sum two vectors
- multiply a vector $v \in V$ by a scalar $\lambda \in F$.

Examples

(i) $n \in \mathbb{N}$, F^n : column vectors of length n with entries in F:

$$v \in F^{n}, v = \begin{vmatrix} x_{1} \\ \vdots \\ x_{n} \end{vmatrix}, \qquad x_{i} \in F, 1 \leq i \leq n$$
$$v + w = \begin{vmatrix} v_{1} \\ \vdots \\ v_{n} \end{vmatrix} \begin{vmatrix} w_{1} \\ \vdots \\ w_{n} \end{vmatrix} \begin{vmatrix} v_{1} + w_{1} \\ \vdots \\ w_{n} \end{vmatrix} \begin{vmatrix} v_{1} + w_{1} \\ \vdots \\ v_{n} + w_{n} \end{vmatrix}$$
$$\lambda v = \begin{vmatrix} \lambda v_{1} \\ \vdots \\ \lambda v_{n} \end{vmatrix} \lambda \in F$$

check: F^n is an F vector space.

(ii) Any set X,

$$\mathbb{R}^X = \{f : X \to \mathbb{R}\}$$

(set of real valued functions on X) Then \mathbb{R}^X is an \mathbb{R} vector space

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(\lambda f)(x) = \lambda f(x), \qquad \lambda \in \mathbb{R}$$

(iii) $\mathcal{M}_{n,m}(F) \equiv n \times m F$ valued matrices. Sum is sum of entries, $\lambda M = (\lambda m_{ij})$.

Remark. The axiom of scalar multiplication imply that:

 $\forall v \in V, \quad 0_F v = 0_V$

Definition (Subspace). Let V be a vector space over F. A subset U of V is a vector subspace of V (denoted $U \leq V$) if:

- $\bullet \ 0_V \in U$
- $(u_1, u_2) \in U \times U \implies u_1 + u_2 \in U$
- $\forall (\lambda, u) \in F \times U, \lambda u \in U.$

The last two properties can be combined into a single property:

• $\forall (\lambda_1, \lambda_2, u_1, u_2) \in F \times F \times U \times U, \quad \lambda_1 u_1 + \lambda_2 u_2 \in U \ (*)$

Property (*) means that U is stable by

- scalar multiplication
- vector addition

Example. V is an F vector space, and $U \leq V$. Then U is an F vector space.

Examples

(1) $V = \mathbb{R}^{\mathbb{R}}$ space of functions $f : \mathbb{R} \to \mathbb{R}$.

- Let $\mathcal{C}(\mathbb{R})$ be the space of continuous functions $f : \mathbb{R} \to \mathbb{R}$. Then $\mathcal{C}(\mathbb{R}) \leq V$.
- Let $\mathbb{P}(\mathbb{R})$ be the space of polynomials of one variable. Then $\mathbb{P}(\mathbb{R}) \leq V$.

(2) Let

$$V = \left\{ \begin{vmatrix} x_1 \\ x_2 \in \mathbb{R}^3 : x_1 + x_2 + x_3 = t \\ x_3 \end{vmatrix} \right\}$$

check: that this is a subspace of \mathbb{R}^3 for t = 0 only.

Warning. The union of two subspaces is generally *not* a subspace. (It is typically not stable by addition).

Example. $V = \mathbb{R}^2$, with $U_1 = \{(x,0) : x \in \mathbb{R}\}, U_2 = \{(0,y) : y \in \mathbb{R}\}$. Both subspaces, but the union isn't since

$$\underbrace{(1,0)}_{\in U_1} + \underbrace{(0,1)}_{\in U_2} = (1,1) \notin U \cup V$$

Proposition. Let V be an F vector space. Let $U, W \leq V$. Then

 $U\cap W\leq V$

Proof. • $0 \in U, 0 \in W \implies 0 \in U \cap W$.

• Stability: let $(\lambda_1, \lambda_2, v_1, v_2) \in F \times F \times (U \cap W) \times (U \cap W)$. Then

$$\underbrace{\lambda_1 v_1}_{\in U} + \underbrace{\lambda_2 v_2}_{\in U} \in U$$

and similarly for W, hence

$$\lambda_1 v_1 + \lambda_2 v_2 \in U \cap W$$

Definition (Sum of subspaces). Let V be an F vector space. Let $U \leq V$, $W \leq V$. Then the sum of U and V is the set:

$$U + W = \{u + w : (u, w) \in U \times W\}$$

Example. Use $V = \mathbb{R}^2$ and U_1, U_2 from the previous example. Then $U_1 + U_2 = V$.

Proposition. Let V be an F vector space, with $U, W \leq V$. Then

 $U+W \leq V$

 $Proof. \qquad \bullet \ 0 = \underbrace{0}_{\in U} + \underbrace{0}_{\in W} \in U + W$

• Consider $\lambda_1 f + \lambda_2 g$ for $\lambda_1, \lambda_2 \in F$ and $f, g \in U + W$. Then let:

$$f = \underbrace{f_1}_{\in U} + \underbrace{f_2}_{\in W}$$
$$g = \underbrace{g_1}_{\in U} + \underbrace{g_2}_{\in W}$$

 \mathbf{SO}

$$\lambda_1 f + \lambda_2 g = \lambda_1 (f_1 + f_2) + \lambda_2 (g_1 + g_2)$$

= $(\lambda_1 \underbrace{f_1}_{\in U} + \lambda_2 \underbrace{g_1}_{\in U}) + (\lambda_1 \underbrace{f_2}_{\in W} + \lambda_2 \underbrace{g_2}_{\in W})$
 $\in U + W$

Exercise: Show that U + W is the *smallest* subspace of V which contains both U and W.

1.1 Subspaces and Quotient

Definition (Quotient). Let V be an F vector space. Let $U \leq V$. The quotient space V/U is the abelian group V/u equipped with the scalar product multiplication:

$$F \times V/U \to V/U$$

 $(\lambda, v + U) \mapsto \lambda v + U$ (*)

Proposition. V/U is an F vector space.

Remark. The multiplication is well defined:

$$v_1 + U = v_2 + U$$
$$\implies v_1 - v_2 \in U$$
$$\implies \lambda(v_1 - v_2) \in U$$
$$\implies \lambda v_1 + U = \lambda v_2 + U \in V/U$$

Exercise: Prove that V/U is an F vector space.

Start of lecture 2

1.2 Spans, linear independence and the Steinitz exchange lemma

Definition (Spand of a family of vectors). Let V be an F vector space. Let $S \subset V$ be a subset (S = collection of vectors). We define:

$$\underbrace{\langle S \rangle}_{\text{"span of } S"} = \{ \text{finite linear combination of elements of } S \}$$
$$= \left\{ \sum_{s \in J} \lambda_s v_s, v_s \in S, \lambda_s \in F, J \text{ is finite} \right\}$$

Convention: $\langle \emptyset \rangle = \{0\}.$

Remark. $\langle S \rangle$ is the smallest vector subspace which contains S.

Examples (1) $V = \mathbb{R}^3$

$$S = \left\{ \begin{vmatrix} 1 \\ 0 \\ 1 \\ 2 \end{vmatrix}, \begin{vmatrix} 2 \\ -2 \\ -4 \end{vmatrix} \right\}$$
$$\implies \langle S \rangle = \left\{ \begin{vmatrix} a \\ b \\ 2b \end{vmatrix}, (a,b) \in \mathbb{R}^2 \right\}$$

(2)

$$V = \mathbb{R}^n = \left\{ \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix}, x_i \in \mathbb{R}, 1 \le i \le n \right\}$$

Define:

$$e_{i} = \begin{vmatrix} 0 \\ \vdots \\ 1 & (\text{in position } i) \\ \vdots \\ 0 \\ \implies V = \langle e_{1}, \dots, e_{n} \rangle$$

(3) X is a set, $V = \mathbb{R}^X = \{f : X \to \mathbb{R}\}.$

$$S_x : X \to \mathbb{R}$$
$$y \mapsto \begin{cases} 1 & \text{if } x = y\\ 0 & \text{otherwise} \end{cases}$$

$$\langle (S_x)_{x \in X} \rangle = \operatorname{span}((S_x)_{x \in X})$$

= { $f \in \mathbb{R}^X : f$ has finite support }

(Support of f is $\{x \in X : f(x) \neq 0\}$)

Definition. Let V be an F vector space. Let S be a subset of V. We say that S spans V if:

 $\langle S \rangle = V.$

Example.
$$V = \mathbb{R}^2$$

 v_1
 v_2
 $\{v_1, v_2\}$ spans V .

Definition (Finite dimension). Let V be an F vector space. We say that V is finite dimensional if it is spanned by a finite set.

Example. Let $V_1 = P[x]$ be the set of polynomials over \mathbb{R} , and let $V = P_n[x]$ be the set of polynomials over \mathbb{R} with degree $\leq n$. Then $\{1, x, \ldots, x^n\}$ spans $P_n[x]$, so $P_n[x] = \langle 1, x, \ldots, x^n \rangle$. So $P_n[x]$ is finite dimensional.

On the other hand, P[x] is *not* finite dimensional: it is infinite dimensional, because there is no family of V with finitely many elements which spans V.

Question: If V is finite dimensional, is there a *minimal* number of vectors in the family so that they span V.

Definition (Independence). We say that (v_1, \ldots, v_n) elements of V are *linearly* independent if:

$$\sum_{i=1}^{n} \lambda_{i} v_{i} = 0, \ \lambda_{i} \in F \implies \lambda_{i} = 0 \ \forall i$$

Remark. (1) We also say that the family (v_1, \ldots, v_n) is *free*.

(2) Equivalently, (v_1, \ldots, v_n) are not linearly independent if one of these vectors is a linear combination of the remaining (n-1) ones. Indeed, $\exists (\lambda_1, \ldots, \lambda_n)$ not all zero (that is, there exists j such that $\lambda_j \neq 0$), such that

$$\sum_{i=1}^{n} \lambda_{i} v_{i} = 0 \implies v_{j} = -\frac{1}{\lambda_{j}} \sum_{\substack{i=1\\i\neq j}}^{n} \lambda_{i} v_{i}$$

Example. $V = \mathbb{R}^3$. If (v_1, v_2) free, and v_3 is coplanar with both, then (v_1, v_2, v_3) is not free.

Remark. $(v_i)_{1 \le i \le n}$ free family (linearly independent) then $\forall 1 \le i \le n, v_i \ne 0$.

Definition (Basis). A sub set S of V is a *basis* of V if and only if:

- $\langle S \rangle = V$ (generating family)
- S linearly independent / free

Remark. When S spans V, we say that S is a generating family. So a basis is a free generating family.

Examples

(1)

$$V = \mathbb{R}^{n} = \left\{ \begin{vmatrix} x_{1} \\ \vdots \\ x_{n} \end{vmatrix}, x_{i} \in \mathbb{R}, 1 \leq i \leq n \right\}$$
$$e_{i} = \begin{vmatrix} 0 \\ \vdots \\ 1 \quad (\text{in position } i) \\ \vdots \\ 0 \end{vmatrix}$$

Then $(e_i)_{1 \le i \le n}$ is a basis of V.

(2) $V = \mathbb{C}$. If $F = \mathbb{C}$ then $\{1\}$ is a basis of V. If $F = \mathbb{R}$ then $\{1, i\}$ is a basis of V.

(3) $V = P[x] = \{ \text{polynomials over } \mathbb{R} \}, S = \{x^n : n \ge 0 \}$. Then S is a basis for V.

Lemma. Let V be an F vector space. Then (v_1, \ldots, v_n) is a basis of V if and only if any vector $v \in V$ has a *unique* decomposition:

$$v = \sum_{i=1}^{n} \lambda_i v_i, \quad \lambda_i \in F$$

Notation. $(\lambda_1, \ldots, \lambda_n)$ are the *coordinates* of v in the basis (v_1, \ldots, v_n) .

Proof. By assumption, $\langle v_1, \ldots, v_n \rangle = V$ so

$$\forall v \in V, \exists (\lambda_1, \dots, \lambda_n) \in F^n \qquad v = \sum_{i=1}^n \lambda_i v_i$$

Uniqueness: let

$$v = \sum_{i=1}^{n} \lambda_i v_i = \sum_{i=1}^{n} \lambda'_i v_i$$
$$\implies \sum_{i=1}^{n} (\lambda_i - \lambda'_i) v_i = 0$$
$$\implies \forall 1 \le i \le n, \ \lambda_i = \lambda'_i$$

Lemma. If (v_1, \ldots, v_n) spans V, then some subset of this family is a basis of V.

Proof. If (v_1, \ldots, v_n) are linearly independent then done. Let's assume they are not independent. Then by possible reordering the vectors,

$$v_n \in \langle v_1, \ldots, v_{n-1} \rangle$$

 $(v_n \text{ is a linear combination of } v_1, \ldots, v_{n-1})$ so

$$V = \langle v_1, \dots, v_n \rangle = \langle v_1, \dots, v_{n-1} \rangle$$

Now we can iterate until the resulting set is a basis of V. (We only have to iterate finitely many times since n is finite).

Theorem (Steinitz exchange lemma). Let V be a *finite dimensional* vector space over F. Take:

(i) $(v_1, ..., v_m)$ free

(ii) (w_1, \ldots, w_n) generating $(\langle w_1, \ldots, w_n \rangle = V)$.

Then $m \leq n$, and up to reordering,

 $(v_1,\ldots,v_m,w_{m+1},\ldots,w_n)$

spans V.

Start of lecture 3

Proof. Induction. Suppose that we have replaced $l \geq 0$ of the w_i . Reordering if necessary:

$$\langle v_1, \dots, v_l, w_{l+1}, \dots, w_n \rangle = V$$

If m = l then we are done. So assume l < m. Then take $v_{l+1} \in V$, and we must have

$$v_{l+1} = \sum_{i \le l} a_i v_i + \sum_{i > l} \beta_i w_i$$

Since the family (v_1, \ldots, v_{l+1}) is free, we must have that one of the β_i is non zero. So up to reordering, $\beta_{l+1} \neq 0$

$$\implies w_{l+1} = \frac{1}{\beta_{l+1}} \left[v_{l+1} - \sum_{i \le l} \alpha_i v_i - \sum_{i > l+1} \beta_i w_i \right]$$

 So

$$w_{l+1} \in \langle v_1, \dots, v_{l+1}, w_{l+2}, \dots, w_n \rangle$$

hence we have that

$$V = \langle v_1, \dots, v_l, w_{l+1}, \dots, w_n \rangle$$

= $\langle v_1, \dots, v_{l+1}, w_{l+2}, \dots, w_n \rangle$

so we can induct up on l. The base case l = 0 is trivial, so we deduce the last part of the lemma (which also trivially proves that $m \leq n$).

1.3 Basis, dimension, direct sums

Corollary (of Steinitz). Let V be a finite dimensional vector space over F. Then any two basis of V have the same number of vectors called the *dimension* of V, denoted $\dim_F V \ (\in \mathbb{N})$.

Proof. $(v_1, \ldots, v_n), (w_1, \ldots, w_m)$ basis of V over F. Then since $(v_i)_{1 \le i \le n}$ free, $(w_i)_{1 \le i \le m}$ generating, by Steinitz exchange lemma, $n \le m$. Similarly $m \le n$, so n = m.

Corollary. Let V be a vector space over F with dimension $n \in \mathbb{N}$.

- (i) any set of independent vectors has at $most \ n$ elements, with equality if and only if it is a basis
- (ii) any spanning (generating) set of vectors has at *least* n elements with equality if and only if it is a basis.

Proof. Exercise.

Proposition. Let U, W be subspaces of V. If U and W are finite dimensional, then so is (U + W) and:

 $\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$

Proof. Pick (v_1, \ldots, v_n) basis of $U \cap W$. Extend to bases:

$$\langle v_1, \dots, v_l, u_1, \dots, u_m \rangle = U$$

 $\langle v_1, \dots, v_l, w_1, \dots, w_n \rangle = W$

Claim. $(v_1, \ldots, v_l, u_1, \ldots, u_m, w_1, \ldots, w_n)$ is a basis of U + W.

Proving it is a generating family is an exercise. Proving it is a free family:

$$\sum_{i=1}^{l} \alpha_{i} v_{i} + \sum_{i=1}^{m} \beta_{i} u_{i} + \sum_{i=1}^{n} \gamma_{i} w_{i} = 0 \qquad (*)$$

$$\implies \sum_{i=1}^{n} \gamma_{i} w_{i} \in U \cap W$$

$$\implies \sum_{i=1}^{n} \gamma_{i} w_{i} \in U \cap W$$

$$\implies \sum_{i=1}^{l} S_{i} v_{i} = \sum_{i=1}^{n} \gamma_{i} w_{i}$$

$$\stackrel{(*)}{\implies} \sum_{i=1}^{l} (\alpha_{i} - S_{i}) v_{i} + \sum_{i=1}^{m} \beta_{i} u_{i} = 0$$

$$\stackrel{U \text{ basis}}{\implies} \beta_{i} = 0, \quad \alpha_{i} = S_{i}$$

$$\stackrel{(*)}{\implies} \sum_{i=1}^{l} \alpha_{i} v_{i} + \sum_{i=1}^{n} \gamma_{i} w_{i} = 0$$

$$\stackrel{W \text{ basis}}{\implies} \alpha_{i} = \gamma_{i} = 0$$

so the set is free, so it's a basis.

Proposition. Let V be a finite dimensional vector space over F. Let $U \leq V$. Then U and V/U are both finite dimensional and:

$$\dim V = \dim U + \dim(V/U)$$

Proof. Let (u_1, \ldots, u_l) be a basis of U. Complete it to a basis $(u_1, \ldots, u_l, w_{l+1}, \ldots, w_n)$ of V.

Claim. $(w_{l+1} + U, \ldots, w_n + U)$ is a basis of V/U.

Exercise.

Remark. V vector space over F with $U \leq V$. We say that U is proper if $U \neq V$. U proper implies dim $U < \dim V$, since $V/U \neq \{\emptyset\}$. **Definition** (Direct sum). Let V be a vector space, and $U, W \leq V$. We say

 $V = U \oplus W$

We say "V is the *direct* sum of U and W" if and only if any element $v \in V$ can be *uniquely* decomposed:

 $v = u + w, \quad u \in U, \ w \in W$

Equivalently,

$$V = U \oplus W \iff \forall v \in V, \exists ! (u, w) \in U \times W \quad v = u + w$$

Warning 1. If $V = U \oplus W$, we say that W is a complement of U in V. There is no uniqueness of such a complement.

Example. $V = \mathbb{R}^2 = \langle (1,0) \rangle \oplus \langle (0,1) \rangle = \langle (1,0) \rangle \oplus \langle (1,1) \rangle.$

Notation. We will in the sequel systematically use the following notation. Let two collections of vectors:

$$\mathcal{B}_1 = \{v_1, \dots, v_l\}$$
$$\mathcal{B}_2 = \{w_1, \dots, w_m\}$$

then

$$\mathcal{B}_1 \cup \mathcal{B}_2 = \{u_1, \dots, u_l, w_l, \dots, w_m\}$$

not a set, because we care about the order. (it is more like a list) With this notation:

 $\{u_1\} \cup \{u_1\} = \{u_1, u_1\}$

so the collection $\{u_1\} \cup \{u_1\}$ is never a free family.

Lemma. $U, W \leq V$. Then the following are equivalent (TFAE):

- (i) $V = U \oplus W$
- (ii) V = U + W and $U \cap W = \{0\}$
- (iii) For any basis \mathcal{B}_1 of U, \mathcal{B}_2 of W, the union $\mathcal{B} = \mathcal{B}_1 + \mathcal{B}_2$ is a basis of V.

(R) roof \to (i) V = U + W implies that $\forall v \in V$, there exists $(u, w) \in U \times W$ such that

v = u + w. So it is generating. To show it is free, let $u_1 + w_1 = u_2 + w_2 = v$. Then

$$\underbrace{u_1 - u_2}_{\in U} = \underbrace{w_2 - w_1}_{\in W}$$
$$\implies u_1 - u_2, w_1 - w_2 \in U \cap W = \{0\}$$
$$\implies u_1 = u_2, w_1 = w_2$$

(i) \implies (iii) \mathcal{B}_1 basis of U, \mathcal{B}_2 basis of W. Let $\mathcal{B} = \mathcal{B}_1 + \mathcal{B}_2$. It is clearly a generating family of U + W = V It is a free family because

$$\sum \lambda_i v_i = 0$$

must be decomposed as $0_U + 0_W$ since $V = U \oplus W$. So

$$\sum_{u_1 \in \mathcal{B}_1} \lambda_i u_i = 0$$
$$\sum_{v_1 \in \mathcal{B}_2} \lambda_i w_i = 0$$

so $\lambda_i = 0$ for all i.

(iii) \implies (ii) We need to show

$$V = U + W, \quad U \cap W = \{0\}$$

This is obvious.

Start of lecture 4

Definition. Let V be a vector space over F. Let $V_1, \ldots, V_l \leq V$ (subspaces).

(i) Notation: $\sum_{i=1}^{l} V_i = \{x_1 + \dots + v_l, v_j \in V_j, 1 \le j \le l\}$

(ii) The sum is *direct*, denoted by:

$$\sum_{i=1}^{l} V_i = \bigoplus_{i=1}^{l} V_i$$

if and only if

$$v_1 + \dots + v_l = v'_1 + \dots + v'_l \implies v_1 = v'_1, \dots, v_l = v'_l$$

Equivalently:

$$V = \bigoplus_{i=1}^{i} V_i \iff \forall v \in V \exists ! v_i \ v = \sum_i v_i$$

Exercise: the following are equivalent:

- (i) $\sum_{i=1}^{l} = \bigoplus_{i=1}^{l} V_i$ (sum is direct)
- (ii) $\forall i, V_i \cap \left(\sum_{j \neq i} V_j\right) = \{0\}.$
- (iii) For any basis of V_i ,

$$\mathcal{B} = \bigcup_{i=1}^{l} \mathcal{B}_i$$

is a basis of $\sum_{i=1}^{l} V_i$.

1.4 Linear maps, isomorphism and the rank-nullity Theorem

Definition (Linear map). Let V, W be vector spaces of F. A map $\alpha : V \to W$ is *linear* if and only if:

$$\forall (\lambda_1, \lambda_2) \in F^2, \forall (v_1, v_2) \in V \times V \\ \alpha(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2)$$

Examples

- (i) Matrices are linear maps.
- (ii) $\alpha : \mathcal{C}([0,1]) \to \mathcal{C}([0,1])$ defined by

$$f \mapsto \alpha(f)(x) = \int_0^x f(t) \mathrm{d}t$$

is a linear map

(iii) Fix $x \in [a, b]$. $\mathcal{C}([a, b]) \to \mathbb{R}$ defined by $f \mapsto f(\lambda)$ is a linear map.

Remark. Let U, V, W be F vector spaces.

- (i) $\operatorname{id}_V: V \to V$ defined by $x \mapsto x$ is a linear map.
- (ii) If $\beta : U \to V$ and $\alpha : V \to W$ are linear, then $\alpha \circ \beta : U \to W$ is linear. (linearity is *stable* by composition)

Lemma. Let V, W be F vector spaces, and \mathcal{B} a basis of V. Let $\alpha_0 : \mathcal{B} \to W$ be any map, then there is a unique linear map $\alpha : V \to W$ extending α_0 (a map such that $\forall v \in \mathcal{B}, \alpha(v) = \alpha_0(v)$).

Proof. For all $v \in V$, $v = \sum_{i=1}^{n} \lambda_i v_i$. Denote $\mathcal{B} = (v_1, \ldots, v_n)$. By linearity: $\alpha : V \to W$ linear, so

$$\alpha(v) = \alpha\left(\sum_{i=1}^{n} \lambda_i v_i\right)$$
$$= \sum_{i=1}^{n} \lambda_i \alpha(v_i)$$
$$= \sum_{i=1}^{n} \lambda_i \alpha_0(v_i)$$

Remark. This is true in the infinite dimensional case as well (and the proof is the same).

- Often, to define a linear map, we define its value on a basis and "extend by linearity".
- If $\alpha_1, \alpha_2: V \to W$ are linear and agree on a basis of V, they are equal.

Definition (Isomorphism). Let V, W be vector spaces over F. A map

 $\alpha:V\to W$

is called an *isomorphism* if and only if:

- (i) α is linear;
- (ii) and α is bijective.

If such an α exists, we write $V \simeq W$ (V isomorphic to W).

Remark. If $\alpha : V \to W$ is an isomorphism then $\alpha^{-1} : W \to V$ is linear. Take $w_1 = \alpha(v_1), w_2 = \alpha(v_2)$. Then

$$\alpha^{-1}(w_1 + w_2) = \alpha^{-1}(\alpha(v_1) + \alpha(v_2))$$

= $\alpha^{-1}(\alpha(v_1 + v_2))$
= $v_1 + v_2$
= $\alpha^{-1}(w_1) + \alpha^{-1}(w_2)$

 $\alpha^{-1}(\lambda V) = \lambda \alpha^{-1}(v)$

Similarly, $\forall \lambda \in F, \forall v \in V$,

Lemma. \simeq is an equivalence relation on the class of all vector spaces of F.

- (i) $id_V: V \to V$ is an isomorphism.
- (ii) $\alpha: V \to W$ isomorphism then $\alpha^{-1}: W \to V$ is an isomorphism.
- (iii) Let $\beta: U \to V$ and $\alpha: V \to W$ be isomorphisms. Then $\alpha \circ \beta$ is an isomorphism.

Theorem. If V is a vector space over F of dimension n, then:

 $V \simeq F^n$

Proof. Let $\mathcal{B} = (v_1, \ldots, v_n)$ be a basis of V. Then $\alpha : V \to f^n$ defined by

$$v = \sum_{i=1}^{n} \lambda_i v_i \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

,

is an isomorphism (exercise).

Remark. Choosing a basis of V is like choosing an isomorphism from V to F^n .

Theorem. Let V, W be vector spaces over F with finite dimension. Then:

$$V \simeq W \iff \dim_F V = \dim_F W$$

Proof. $\leftarrow \dim_F V = \dim_F W = n$ implies that $V \simeq F^n$, $W \simeq F^n$ so $V \simeq W$.

- \Rightarrow Let $\alpha : V \to W$ be an isomorphism. Let \mathcal{B} be a basis of V. Then we claim that $\alpha(\mathcal{B})$ is a basis of W:
 - $\alpha(\mathcal{B})$ spans V follows from surjectivity of α .
 - $\alpha(\mathcal{B})$ free family follows from the injectivity of α .

so V and W have the same size basis so $\dim_F V = \dim_F W$.

Definition (Kernel and Image of a linear map). Let V, W be vector spaces over F. Let $\alpha : V \to W$ be a linear map. We define:

(i)
$$N(\alpha) = \ker \alpha = \{v \in V : \alpha(v) = 0\}$$

(ii) $\operatorname{im}(\alpha) = \{ w \in W : \exists v \in V, w = \alpha(v) \}.$

Lemma. ker α is a vector subspace of V, and im α is a vector subspace of W.

Proof. • $\lambda_1, \lambda_2 \in F, v_1, v_2 \in \ker \alpha$ implies

$$\alpha(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2) = 0$$

hence $\lambda_1 v_1 + \lambda_2 v_2 \in \ker \alpha$.

• $\lambda_1, \lambda_2 \in F, w_1, w_2 \in \operatorname{im} \alpha$. Let $w_1 = \alpha(v_1), w_2 = \alpha(v_2)$. Then

$$\lambda_1 w_1 + \lambda_2 w_2 = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2) = \alpha(\lambda_1 v_1 + \lambda_2 v_2)$$

hence $\lambda_1 w_1 + \lambda_2 w_2 \in \operatorname{im} \alpha$

Example. $\alpha : \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}), f \mapsto \alpha(f) = f'' - f$. Then

- α is linear
- ker $\alpha = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}) : f'' f = 0 \} = \operatorname{span}_{\mathbb{R}} \langle e^t, e^{-t} \rangle$
- $\operatorname{im} \alpha$? Exercise.

Remark. $\alpha : V \to W$ linear map. Then α injective is equivalent to ker $\alpha = \{0\}$. $\alpha(v_1) = \alpha(v_2) \iff \alpha(v_1 - v_2) = 0.$ **Theorem.** Let V, W be vector spaces over F. Let $\alpha : V \to W$ be a linear map. Then

 $\overline{\alpha}: V/\ker \alpha \to \operatorname{im} \alpha$

 $v + \ker \alpha \mapsto \alpha(v)$

is an isomorphism.

Proof. This follows from linearity.

• $\overline{\alpha}$ is well defined:

$$v + \ker \alpha = v' + \ker \alpha$$
$$\implies v - v' \in \ker \alpha$$
$$\implies \alpha(v - v') = 0$$
$$\implies \alpha(v) = \alpha(v')$$

so $\overline{\alpha}$ is well-defined.

- $\overline{\alpha}$ linear follows from the linearity of α .
- $\overline{\alpha}$ is a bijection:
 - injectivity $\overline{\alpha}(v + \ker \alpha) = 0$ implies that $\alpha(v) = 0$ hence $v \in \ker \alpha$. So $v + \ker \alpha = 0 + \ker \alpha.$
 - surjectivity: follows form the definition of the image: $w \in \operatorname{im} \alpha, \exists v \in V$ such that $w = \alpha(v) = \overline{\alpha}(v)$.

Start of lecture 5

Definition (Rank and nullity). • $r(\alpha) = \dim \operatorname{im} \alpha \text{ (rank)}$

• $n(\alpha) = \dim \ker \alpha$ (nullity)

• Let U, V be vector spaces over F, $\dim_F U <$ **Theorem** (Rank nullity theorem). $+\infty$.

• Let $\alpha: U \to V$ be a linea map, then

 $\dim U = r(\alpha) + n(\alpha)$

Proof. We have proved that $U/\ker \alpha \simeq \operatorname{im} \alpha$. So $\dim(U/\ker \alpha) = \dim \operatorname{im} \alpha$. But $\dim(U/\ker\alpha) = \dim U - \dim \ker \alpha$. So $\dim U = \dim \ker \alpha + \dim \operatorname{im} \alpha = r(\alpha) + n(\alpha)$. \Box **Lemma.** Let V, W be vector spaces over F of *equal* finite dimension. Let $\alpha : V \to W$ be a linear map. Then the following are equivalent:

- α is injective
- α is surjective
- α is an isomorphism

Proof. Follows immediately from the rank-nullity theorem. (Exercise)

Example. Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. Then consider $\alpha : \mathbb{R}^3 \to \mathbb{R}$ defined by $(x, y, z) \mapsto x + y + z$. Then ker $\alpha = V$ and im $\alpha = \mathbb{R}$, hence by rank nullity $3 = n(\alpha) + 1$ hence dim V = 2.

1.5 Linear maps from V to W and matrices

The space of linear maps from V to W. Let V, W be vector spaces over F.

$$L(V, W) = \{\alpha : V \to W \text{ linear}\}$$

Proposition. L(V, W) is a vector space over F with:

 $(\alpha_1 + \alpha_2)(v) = \alpha_1(v) + \alpha_2(v)$

 $(\lambda \alpha)(v) = \lambda \alpha(v)$

Moreover if V and W are finite dimensional over F, then so is L(V, W) and:

 $\dim_F L(V, W) = (\dim_F V)(\dim_F W)$

Proof. Proof that it is a vector space is an exercise. We will prove the statement about dimensions soon.

Matrices and linear maps

Definition (Matrix). A $m \times n$ matrix over F is an array with m rows and n columns with entries in F.

Notation. $\mathcal{M}_{m,n}(F)$ is the set of $m \times n$ matrices over F.

Proposition. $\mathcal{M}_{m,n}(F)$ is an F vector space under operations:

•
$$(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$$

• $\lambda(a_{ij}) = (\lambda a_{ij})$

Proof. Exercise.

Proposition. dim_F $\mathcal{M}_{m,n}(F) = m \times n$.

Proof. We exhibit a basis using elementary matrices. Pick $1 \le i \le m, 1 \le j \le n$. Then we define E_{ij} to be the matrix which is 0 everywhere, except it is 1 in the entry that is in the *i*-th row and *j*-th column. Then (E_{ij}) is a basis of $\mathcal{M}_{m,n}(F)$. Clearly spans $\mathcal{M}_{m,n}(F)$. Family is free is an exercise.

Representation of linear maps

- V, W vector spaces over $F, \alpha : V \to W$ linear map.
- Basis $\mathcal{B}(v_1,\ldots,v_n)$ basis of $V, \mathcal{C} = (w_1,\ldots,w_m)$ basis of W.
- Let $v \in V$, then we can write

$$v = \sum_{j=1}^{n} \lambda_j v_j$$

so we can consider the coordinates of v in the basis $\mathcal{B}(\lambda_1, \ldots, \lambda_n \in F^n)$. We may write this as $[v]_{\mathcal{B}}$.

• Similarly for $w \in W$, we note $[w]_{\mathcal{C}}$ in a similar way.

Definition (Matrix of α in \mathcal{B}, \mathcal{C} basis).

 $[\alpha]_{\mathcal{B},\mathcal{C}} \equiv \text{matrix of } \alpha \text{ with respect to } \mathcal{B},\mathcal{C}$

We define it as:

$$[\alpha]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} \vdots & \vdots & \vdots \\ [\alpha(v_1)]_{\mathcal{C}} & [\alpha(v_2)]_{\mathcal{C}} & \cdots & [\alpha(v_n)]_{\mathcal{C}} \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Observation:

$$\alpha(v_j) = \sum_{i=1}^m a_{ij} w_i$$

Lemma. For any $v \in V$,

$$[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}} \cdot [v]_{\mathcal{B}}$$

where

$$(Av)_i = \sum_{j=1}^n a_{ij}\lambda_j$$

Proof. Let $v \in V$, with

$$v = \sum_{j=1}^{n} \lambda_j v_j$$

Then

$$\alpha(v) = \alpha \left(\sum_{j=1}^{n} \lambda_j v_j \right)$$
$$= \sum_{j=1}^{n} \lambda_j \alpha(v_j)$$
$$= \sum_{j=1}^{n} \lambda_j \sum_{i=1}^{m} a_{ij} w_i$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \lambda_j \right) w_i$$

Lemma. Let $\beta: U \to V$, $\alpha: V \to W$ linear, and hence $\alpha \circ \beta: U \to W$ linear. Let \mathcal{A} be a basis of U, \mathcal{B} be a basis of V, and \mathcal{C} a basis of W. Then

$$[\alpha \circ \beta]_{\mathcal{A},\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[\beta]_{\mathcal{A},\mathcal{B}}$$

Proof. $A = [\alpha]_{\mathcal{B},\mathcal{C}}, B = [\beta]_{\mathcal{A},\mathcal{B}}$. Pick $u_l \in \mathcal{A}$. Then

$$(\alpha \circ \beta)(u_l) = \alpha(\beta(u_l))$$

= $\alpha\left(\sum_j b_{jl}v_j\right)$
= $\sum_j b_{jl}\alpha(v_j)$
= $\sum_j b_{jl}\sum_i a_{ij}w_i$
= $\sum_i \left(\sum_j a_{ij}b_{jl}\right)w_i$

Proposition. If V and Ware vector spaces over F and $\dim_F V = n$ and $\dim_F W = m$. Then $L(V,W) \simeq \mathcal{M}_{m,n}(F)$, and in particular, $\dim L(V,W) = m \times n$.

Proof. Fix \mathcal{B}, \mathcal{C} basis of V, W.

Claim. $\theta: L(V, W) \to \mathcal{M}_{m,n}(F)$ defined by $\alpha \mapsto [\alpha]_{\mathcal{B},\mathcal{C}}$ is an isomorphism.

• θ is linear:

$$[\lambda_1 \alpha_1 + \lambda_2 \alpha_2]_{\mathcal{B},\mathcal{C}} = \lambda_1 [\alpha_1]_{\mathcal{B},\mathcal{C}} + \lambda_2 [\alpha_2]_{\mathcal{B},\mathcal{C}}$$

 $A = (a_{ij})$

• θ is surjective: let

Consider the map:

$$\alpha: v_j \mapsto \sum_{i=1}^m a_{ij} w_i$$

and extend by linearity. Then $[\alpha]_{\mathcal{B},\mathcal{C}} = A$.

• θ is injective because

$$[\alpha]_{\mathcal{B},\mathcal{C}} = 0 \implies \alpha \equiv 0$$

Hence, using θ , $L(V, W) \simeq \mathcal{M}_{m,n}(F)$.

Remark. Let \mathcal{B}, \mathcal{C} be bases of V, W. Let $\varepsilon_{\mathcal{B}} : V \to F^n$ be defined such that $v \mapsto [\alpha]_{\mathcal{B}}$, and similarly define $\varepsilon_{\mathcal{C}} : W \to F^m$ such that $w \mapsto [w]_{\mathcal{C}}$. Then the following diagram commutes:

Start of lecture 6

1.6 Change of basis and equivalent matrices

Let $\beta: U \to V$, $\alpha: V \to W$ and $\mathcal{A}, \mathcal{B}, \mathcal{C}$ bases of U, V, W.

 $\implies [\alpha \circ \beta]_{\mathcal{A},\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[\beta]_{\mathcal{A},\mathcal{B}}$

Change basis

Let $\alpha: V \to W$ and let $\mathcal{B}, \mathcal{B}'$ and $\mathcal{C}, \mathcal{C}'$ be bases for V and W.

Definition. The "change of basis matrix" from
$$\mathcal{B}'$$
 to \mathcal{B} is
$$P = (p_{ij})$$

given by

$$P = ([v'_1]_{\mathcal{B}} \cdots [v'_n]_{\mathcal{B}}) = [\mathrm{id}]_{\mathcal{B}', \mathcal{B}}$$

Lemma. $[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$

Proof. •
$$[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{B}}$$

• $P = [id]_{\mathcal{B}', \mathcal{B}}$

$$\implies [\mathrm{id}(v)]_{\mathcal{B}} = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}}[v]_{\mathcal{B}'}$$
$$\implies [v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$$

Remark. P is a $n \times n$ invertible matrix, and P^{-1} is the change of basis matrix from \mathcal{B} to \mathcal{B}' .

Indeed

$$[\alpha \circ \beta]_{\mathcal{A},\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[\beta]_{\mathcal{A},\mathcal{B}}$$
$$\implies [\mathrm{id}]_{\mathcal{B},\mathcal{B}'}[\mathrm{id}]_{\mathcal{B},\mathcal{B}'} = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}'} \equiv I_n$$
$$\implies [\mathrm{id}]_{\mathcal{B}',\mathcal{B}}[\mathrm{id}]_{\mathcal{B},\mathcal{B}'} = [\mathrm{id}]_{\mathcal{B},\mathcal{B}} \equiv I_n$$

We changed \mathcal{B} to \mathcal{B}' in V. We can also change basis to \mathcal{C} to \mathcal{C}' in W.

Proposition.
$$A = [\alpha]_{\mathcal{B},\mathcal{C}}, A' = [\alpha]_{\mathcal{B}',\mathcal{C}'}, P = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}}, Q = [\mathrm{id}]_{\mathcal{C}',\mathcal{C}}.$$
 Then
$$A' = Q^{-1}AP$$

Proof.

$$[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{B}}$$
$$[\alpha \circ \beta]_{\mathcal{A},\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[\beta]_{\mathcal{A},\mathcal{B}}$$
$$[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$$

٠

$$[\alpha(v)]_{\mathcal{C}} = Q[\alpha(v)]_{\mathcal{C}} = Q[\alpha]_{\mathcal{B}',\mathcal{C}'} = QA'[v]_{\mathcal{B}'}$$

•
$$[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{B}} = AP[v]_{\mathcal{B}'}.$$

So for all $v \in V$,

$$QA'[v]_{\mathcal{B}'} = AP[v]_{\mathcal{B}'}$$

hence

$$QA' = AP \implies A' = Q^{-1}AP$$

Definition (Equivalent matrices). Two matrices $A, A' \in \mathcal{M}_{m,n}(F)$ are equivalent if:

$$A' = Q^{-1}AP$$

with $Q \in \mathcal{M}_{m,m}, P \in \mathcal{M}_{n,n}$, with both invertible.

Remark. This defines an equivalence relation on $\mathcal{M}_{m,n}(F)$.

- $A = I_m^{-1} A I_n$
- $A' = Q^{-1}AP \implies A = (Q^{-1})^{-1}A'P^{-1}$
- $A' = Q^{-1}AP, A'' = (Q')^{-1}A'P'$. Then

$$A'' = (QQ')^{-1}A(PP')$$

Proposition. Let V, W be vector spaces over F, with $\dim_F V = n$, $\dim_F W = m$. Let $\alpha : V \to W$ be a linear map. Then there exists \mathcal{B} basis of V and \mathcal{C} basis of W such that

$$[\alpha]_{\mathcal{B},\mathcal{C}} = \left(\begin{array}{c|c} I_r & 0\\ \hline 0 & 0 \end{array}\right)$$

Proof. Choose \mathcal{B} and \mathcal{C} wisely.

- Fix $r \in \mathbb{N}$ such that dim ker $\alpha = n r$.
- $N(\alpha) = \ker(\alpha) = \{x \in V, \alpha(x) = 0\}$
- Fix a basis of $N(\alpha)$: v_{r+1}, \ldots, v_n . Extend it to a basis of V, so

$$\mathcal{B} = (v_1, \dots, v_r, \underbrace{v_{r+1}, \dots, v_n}_{\ker \alpha})$$

• Claim: $(\alpha(v_1), \ldots, \alpha(v_r))$ is a basis of im α .

– Span:

$$v = \sum_{i=1}^{n} \lambda_i v_i$$
$$\implies \alpha(v) = \sum_{i=1}^{n} \lambda_i \alpha(v_i) = \sum_{i=1}^{r} \lambda_i \alpha(v_i)$$

Let $y \in \operatorname{im} \alpha$ then exists $v \in V$ such that $y = \alpha(v)$ then

$$y = \sum_{i=1}^{r} \lambda_i \alpha(v_i)$$
$$\implies y \in \langle \alpha(v_1), \dots, \alpha(v_r) \rangle$$

- Free:

$$\sum_{i=1}^{r} \lambda_i \alpha(v_i) = 0$$
$$\implies \alpha\left(\sum_{i=1}^{r} \lambda_i v_i\right) = 0$$
$$\implies \sum_{i=1}^{r} \lambda_i v_i \in \ker \alpha$$
$$\implies \sum_{i=1}^{r} \lambda_i v_i = \sum_{i=r+1}^{n} \mu_i v_i$$
$$\implies \sum_{i=1}^{r} \lambda_i v_i - \sum_{i=r+1}^{n} \mu_I v_i = 0$$

but since \mathcal{B} is free, we must have $\lambda_i = 0, \mu_i = 0$ so it's free.

Conclusion: $(\alpha(v_1), \ldots, \alpha(v_r))$ basis of im α , (v_{r+1}, \ldots, v_n) basis of ker α . Let

$$\mathcal{B} = (v_1, \dots, v_r, v_{r+1}, \dots, v_n)$$
$$\mathcal{C} = (\alpha(v_1, \dots, \alpha(v_r), w_{r+1}, \dots, w_m))$$

Then

$$[\alpha]_{\mathcal{B},\mathcal{C}} = (\alpha(v_1), \dots, \alpha(v_r), \alpha(v_{r+1}), \dots, \alpha(v_n))$$

Remark. This provides another proof of the rank nullity theorem:

 $r(\alpha) + N(\alpha) = n$

Corollary. Any $m \times n$ matrix is equivalent to:

$$\left(\begin{array}{c|c} I_r & 0\\ \hline 0 & 0 \end{array}\right)$$

where $r = r(\alpha)$.

Start of lecture 7

Definition. $A \in \mathcal{M}_{m,n}(F)$

- The column rank of A, r(A) is the dimension of the span of the column vectors of A in F^m , i.e. if $A = (c_1, \ldots, c_n)$ then $r(A) = \dim_F \operatorname{span}\{c_1, \ldots, c_n\}$.
- Similarly, the row rank is the column rank of A^{\top} .

Remark. If α is a linear map represented by A with respect to some basis, then

 $r(A) = r(\alpha) = \dim \operatorname{im} \alpha$

Proposition. Two matrices are equivalent if and only if r(A) = r(A').

Proof. \Rightarrow If A and A' are equivalent, then they correspond to the same linear map α written in two different bases

$$r(A) = r(\alpha) = r(A')$$

 $\Leftarrow r(A) = r(A') = r$, then both A and A' are equivalent to:

$$\left(\begin{array}{c|c} I_r & 0\\ \hline 0 & 0 \end{array}\right)$$

so A and A' are equivalent.

Theorem. $r(A) = r(A^{\top})$ (column rank is the same as row rank)

Proof. Exercise.

1.7 Elementary operations and elementary matrices

Special case of the change of basis formula. Let $\alpha: V \to W$ be a linear map, $(\mathcal{B}, \mathcal{B}')$ bases of $V, (\mathcal{C}, \mathcal{C}')$ bases of W.

$$[\alpha]_{\mathcal{B},\mathcal{C}} \to [\alpha]_{\mathcal{B}',\mathcal{C}}$$

If V = W, $\alpha : V \to V$ linear then we call it an endomorphism.

- $\mathcal{B} = \mathcal{C}, \, \mathcal{B}' = \mathcal{C}'$
- P is change of matrix from \mathcal{B}' to \mathcal{B} .

then

$$[\alpha]_{\mathcal{B}',\mathcal{B}'} = P^{-1}[\alpha]_{\mathcal{B},\mathcal{B}}P$$

Definition. A, A' are $n \times n$ (square) matrices, we say that A and A' are *similar* (or *conjugate*) if and only if:

- $A' = P^{-1}AP$
- P is $n \times n$ square invertible.

Central concept when we will study diagonalisation of matrices. (Spectral theory)

1.8 Elementary operations and elementary matrices

Definition. Elementary *column* operation on an $m \times n$ matrix A:

- (i) swap columns *i* and *j* $(i \neq j)$
- (ii) replace column i by λ times column i $(\lambda \neq 0, \lambda \in F)$
- (iii) add λ times column i to column j (with $i \neq j$)
- Elementary row operations: analogous way
- Elementary operations are invertible
- These operations can be realised through the action of *elementary matrices*.
 (i) i, j, i ≠ j.

(ii) i

(iii)
$$i,j,\lambda,\,i\neq j$$

$$C_{i,j,\lambda} = \mathrm{id} + E_{i,j}$$

Link between elementary operations / matrices:

an elementary column (row) operation can be performed by multiplying A by the corresponding elementary matrix from the right (left) \rightarrow Exercise.

Now a constructive proof that any $m \times n$ matrix is equivalent to

$$\left(\begin{array}{c|c} I_r & 0\\ \hline 0 & 0 \end{array}\right)$$

- Start with A. If all entries are zero, done.
- Pick $a_{ij} = \lambda \neq 0$. Swap rows *i* and 1 and swap columns *j* and 1. Then λ is in position (1, 1)
- Multiply column 1 by $\frac{1}{\lambda}$ to get 1 in position (1, 1).
- Now clean out row 1 and column 1 using elementary operations of type (iii).
- Iterate with \tilde{A} (the $(m-1) \times (n-1)$ sub matrix)
- Then at the end of the process we will have shown that

$$\begin{pmatrix} I_r & 0\\ \hline 0 & 0 \end{pmatrix} \equiv Q^{-1}AP = \underbrace{E'_p \cdots E'_1}_{\text{row operations}} A \underbrace{E_1 \cdots E_c}_{\text{column operations}}$$

Variation

• Gauss' pivot algorithm. If you use *only* row operations, we can reach the so called "row echelon form" of the matrix

- Assume that $a_{i1} \neq 0$ for some i
- Swap rows *i* and 1
- Divide first row by $\lambda = a_{i1}$, to get 1 in (1, 1)
- Use 1 to clean the rest of the first column
- Move to second column
- Iterate.

This procedure is exactly what you do when solving a linear system of equations: Gauss' pivot algorithm

Representation of square invertible matrices

Lemma. If A is $n \times n$ square invertible matrix, then we can obtain I_n using row elementary operations only (or column operations only).

- *Proof.* We do the proof for column operations. We argue by induction on the number of rows
 - Suppose that we could reach a form where the upper left corner is I_k . We want to obtain the same structure with $k \to k + 1$.
 - Claim: there exists j > k such that $\lambda = a_{k+1,j} \neq 0$. Otherwise the vector $\delta_{i(k+1)}$ is *not* in the span of the column vectors of A (exercise) which contradicts the assumption that A is invertible.
 - Swap column k + 1 and j
 - Divide column k+1 by $\lambda = a_{k+1,j} \neq 0$
 - Use 1 to clear the rest of the k + 1-th row using elementary operation of type (iii).
 - This completes the inductive step.
 - Continue until k = n.

Outcome:

$$AE_1 \cdots E_c = I_n$$
$$\implies A^{-1} = E_1 \cdots E_c$$

so this gives an algorithm for computing A^{-1} . (useful for solving AX = F, linear system of equations).

Proposition. Any invertible square matrix is a product of elementary matrices.

Start of lecture 8

1.9 Dual spaces and dual maps

Definition. Let V be a vector space. The we define

$$V^* = \text{dual of } V$$
$$= L(V, F)$$
$$= \{\alpha : V \to F \text{ linear} \}$$

Notation. $\alpha: V \to F$ linear. Then α is a linear form.

Examples

(i)

$$\operatorname{Tr} : \mathcal{M}_{n,n}(F) \to F$$

$$A = (a_{ij}) \mapsto \sum_{i=1}^{n} a_{ii}$$

$$\Longrightarrow \operatorname{Tr} \in \mathcal{M}_{n,n}^{*}(F)$$
(ii) $f : [0,1] \to \mathbb{R}$

$$T_{f} : \mathcal{C}^{\infty}([0,1],\mathbb{R})$$

$$\varphi \mapsto \int_{0}^{1} f(x)\varphi(x)dx$$
then T_{f} is a linear form on $\mathcal{C}^{\infty}([0,1],\mathbb{R})$ (\mathbb{R} vector space)

then T_f is a linear form on $\mathcal{C}^{\infty}([0,1],\mathbb{R})$ (\mathbb{R} vector space). Quantum mechanics. A function defines a linear form.

Lemma (Dual basis). Let V be a vector space over F with a finite basis

 $\mathcal{B} = \{e_1, \ldots, e_n\}$

Then there exists a basis for V^* given by

$$\mathcal{B}^* = \{\varepsilon_1, \dots, \varepsilon_n\}$$

with

$$\varepsilon_j\left(\sum_{i=1}^n a_i e_i\right) = a_j, \quad 1 \le j \le n$$

We call \mathcal{B}^* the dual basis of \mathcal{B} .

Remark. Kronecker symbol

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$
$$\varepsilon_j \left(\sum_{i=1}^n a_i e_i\right) = a_j \iff \varepsilon_j(a_i) = \delta_{ij}$$

Proof. Let $\{\varepsilon_1, \ldots, \varepsilon_n\}$ be defined as above.

- (1) Check that it is free: indeed, $\sum_{j=1}^{n} \lambda_j \varepsilon_j = 0$ $\implies \sum_{j=1}^{n} \lambda_j \varepsilon_j(e_i) = 0$ $\implies \sum_{j=1}^{n} \lambda_i = 0 \quad \forall 1 \le i \le n$
 - \implies family is free
- (2) Check that it is generating: Pick $\alpha \in V^*$, then $x \in V$:

$$\alpha(x) = \alpha\left(\sum_{j=1}^n \lambda_j e_j\right) = \sum_{j=1}^n \lambda_j a(e_j)$$

On the other hand, let the linear form:

$$\sum_{j=1}^{n} \alpha(e_j) \varepsilon_j \in V^*$$

Then:

$$\sum_{j=1}^{n} \alpha(e_j)\varepsilon_j(x) = \sum_{j=1}^{n} \alpha(e_j)\varepsilon_j\left(\sum_{k=1}^{n} \lambda_k e_k\right)$$
$$= \sum_{j=1}^{n} \alpha(e_j) \sum_{k=1}^{n} \lambda_k \varepsilon_k(e_k)$$
$$= \sum_{j=1}^{n} \alpha(e_j)\lambda_j$$
$$= \alpha(x)$$
$$\implies \alpha = \sum_{j=1}^{n} \alpha(e_j)\varepsilon_j$$

Corollary. V finite dimensional,

$$\implies \dim V^* = \dim V$$

Warning. These results about V^* are not relevant / very different when talking about infinite dimensional vector spaces instead.

Remark. It is sometimes convenient to think of V^* as the space of *row* vectors of length *n* over *F*, i.e. let (e_1, \ldots, e_n) be a basis of *V*, $x = \sum_{i=1}^n x_i e_i \in V$, and let $(\varepsilon_1, \ldots, \varepsilon_n)$ be a basis of *V* with $\alpha = \sum_{i=1}^n \alpha_i \varepsilon_i \in V^*$. Then

$$\alpha(x) = \sum_{i=1}^{n} \alpha \varepsilon_i \left(\sum_{j=1}^{n} x_j e_j \right)$$
$$= \sum_{i=1}^{n} a_i \sum_{j=1}^{n} x_j \varepsilon_i(e_j)$$
$$= \sum_{i=1}^{n} a_i x_i$$
$$= (\alpha_1, \dots, \alpha_n)$$

(scalar product structure)

Definition. If $U \leq V$ (vector subspace), we define the *annihilator* of U by: $U^0 = \{ \alpha \in V^* : \forall u \in U, \alpha(u) = 0 \}$

Lemma. (i) $U^0 \leq V^*$ (vector subspace) (ii) If $U \leq V$ and dim $V < \infty$ then dim $V = \dim U + \dim U^0$.

Proof. (i) $0 \in U^0$. If $\alpha, \alpha' \in U^0$, then, for all $u \in U$,

$$(\alpha + \alpha')(u) = \alpha(u) + \alpha'(u) = 0$$

and for all $\lambda \in F$,

 $(\lambda \alpha)(u) = \lambda \alpha(u) = 0$

so $U^0 \leq V^*$.

(ii) Let $U \leq V$, dim V = n. Let (e_1, \ldots, e_k) be a basis of U, complete it to a basis

 $\mathcal{B} = (e_1, \dots, e_k, e_{k+1}, \dots, e_n)$

of V. Let $(\varepsilon_1, \ldots, \varepsilon_n)$ be the dual basis of \mathcal{B} . We claim that $U^0 = \langle \varepsilon_{k+1}, \ldots, \varepsilon_n \rangle$.

• Pick i > k, then:

$$\varepsilon_i(e_k) = \delta_{ik} = 0$$

so $\varepsilon_i \in U^0$, since $U = \langle e_1, \ldots, e_k \rangle$. So

$$\langle \varepsilon_{k+1}, \ldots, \varepsilon_n \rangle \leq U^0$$

• Let $\alpha \in U^0$, then let $\alpha \in V^*$, with

$$\alpha = \sum_{i=1}^{n} \alpha_i \varepsilon_i$$

Now for $i \leq k$:

$$\alpha \in U^0 \implies \alpha(e_i) = 0 \ \forall 1 \le i \le k$$
$$\implies \sum_{j=1}^n \alpha_j \varepsilon_j(e_i) = 0$$
$$\implies \alpha_i = 0 \quad \forall 1 \le i \le k$$
$$\implies \alpha = \sum_{i=1}^n \alpha_i \varepsilon_i = \sum_{i=k+1}^n \alpha_i \varepsilon_i$$
$$\implies \alpha \in \langle \varepsilon_{k+1}, \dots, \varepsilon_n \rangle$$
$$\implies U^0 \le \langle \varepsilon_{k+1}, \dots, \varepsilon_n \rangle$$

Lemma. Let V, W be vector spaces over F. Let $\alpha \in \mathcal{L}(V, W)$. Then the map: $\alpha^* : W^* \to V^*$ $\varepsilon \mapsto \varepsilon \circ \alpha$

is an element of $\mathcal{L}(W^*, V^*)$. It is called the *dual* map of α .

Proof. • $\varepsilon \circ \alpha : V \to F$ linear follows by linearity of ε and α , so $\varepsilon \circ \alpha \in V^*$.

• α^* linear: let $\theta_1, \theta_2 \in W^*$, then

$$\alpha^*(\theta_1 + \theta_2) = (\theta_1 + \theta_2)(\alpha)$$
$$= \theta_1 \circ \alpha + \theta_2 \circ \alpha$$
$$= \alpha^*(\theta_1) + \alpha^*(\theta_2)$$

and similarly for all $\lambda \in F$,

$$\alpha^*(\lambda\theta) = \lambda\alpha^*(\theta)$$

so α^* is linear, i.e. $\alpha^* \in \mathcal{L}(V^*, W^*)$.

Proposition (Dual map matrix). Let V, W be finite dimensional spaces over F with basis respectively \mathcal{B} and \mathcal{C} . Let $\mathcal{B}^*, \mathcal{C}^*$ be the dual basis of \mathcal{B} and \mathcal{C} . Then:

$$[\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*} = [\alpha]_{\mathcal{B},\mathcal{C}}^\top$$

Proof. $\mathcal{B} = (b_1, \dots, b_n), \mathcal{C} = (c_1, \dots, c_m), \mathcal{B}^* = (\beta_1, \dots, \beta_n), \mathcal{C}^* = (\gamma_1, \dots, \gamma_m).$ Say $[\alpha]_{\mathcal{B},\mathcal{C}} = A = (a_{ij})_{1 \le i \le m, 1 \le j \le n}$

Recall: $\alpha^*: W^* \to V^*$. Let us compute:

$$\alpha^*(\gamma_r)(b_s) = \gamma_r \circ \alpha(b_s)$$
$$= \gamma_r(\alpha(b_s))$$
$$= \gamma_r\left(\sum_t a_{ts}c_t\right)$$
$$= \sum_t a_{ts}\gamma_r(c_t)$$
$$= a_{rs}$$

Say

$$[\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*} = (\alpha^*(\gamma_1), \dots, \alpha^*(\gamma_m)) \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$
$$= (m_{ij})_{1 \le i \le n, 1 \le j \le m}$$
$$\implies \alpha^*(\gamma_r) = \sum_{i=1}^n m_{ir} \beta_i$$
$$\implies \alpha^*(\gamma_r)(b_s) = \sum_{i=1}^n m_{ir} \beta_i(b_s)$$
$$= m_{sr}$$

Conclusion $\alpha^*(\gamma_r)(b_s) = a_{rs} = m_{sr}$ so $[\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*} = [\alpha]_{\mathcal{B},\mathcal{C}}^\top$.

Start of lecture 9

1.10 Properties of the dual map, double dual

Let V, W be vector spaces over $F, \alpha \in L(V, W)$.

$$\mathcal{E} = (e_1, \dots, e_n)$$

basis of ${\cal V}$

$$\mathcal{F} = (f_1, \ldots, f_n)$$

another basis of V. Let

$$P = [\mathrm{id}]_{\mathcal{F},\mathcal{E}}$$

(change of basis matrix from \mathcal{F} to \mathcal{E})

$$\mathcal{E}^* = (\varepsilon_1, \dots, \varepsilon_n)$$

 $\mathcal{F}^* = (\eta_1, \dots, \eta_n)$

Lemma. Let P be the change of basis matrix from \mathcal{F} to \mathcal{E} . Then the change of basis matrix from \mathcal{F}^* to \mathcal{E}^* is:

 $(P^{-1})^{\top}$

Proof.

$$[\mathrm{id}]_{\mathcal{F}^*,\mathcal{E}^*} = [\mathrm{id}]_{\mathcal{E},\mathcal{F}}^\top = ([\mathrm{id}]_{\mathcal{F},\mathcal{E}}^{-1})^\top = (P^{-1})^\top$$

Properties of the dual map

Lemma. Let V, W be vector spaces over F. Let $\alpha \in \mathcal{L}(V, W)$ and $\alpha^* \in \mathcal{L}(W^*, V^*)$ be the dual map. Then:

- (i) $N(\alpha^*) = (\operatorname{im} \alpha)^0$ (so α^* injective $\iff \alpha$ surjective)
- (ii) $\operatorname{im} \alpha^* \leq (N(\alpha))^0$ with *equality* if V, W are finite dimensional (hence in this case, α^* surjective $\iff \alpha$ injective).

Dual method: there are many problems (controllability) where the understanding of α^* is simpler than the understanding of α .

Proof. (i) Let $\varepsilon \in W^*$. Then:

$$\varepsilon \in N(\alpha^*) \iff \alpha^*(\varepsilon) = 0$$
$$\iff \alpha^*(\varepsilon) = \varepsilon(\alpha) = 0$$
$$\iff \forall x \in V, \ \varepsilon(\alpha)(x) = \varepsilon(\alpha(x)) = 0$$
$$\iff \varepsilon \in (\operatorname{im} \alpha)$$

(ii) Let us first show that:

$$\operatorname{im}(\alpha^*) \le (N(\alpha))^0$$

Indeed, let $\varepsilon \in \operatorname{im}(\alpha^*)$

$$\implies \varepsilon = \alpha^*(\varphi), \ \varphi \in W^*$$
$$\implies \forall u \in N(\alpha) \mid \varepsilon(u) = \alpha^*(\varphi)(u) = \varphi \circ \alpha(u)\varphi(\alpha(u)) = 0$$
$$\implies \varepsilon \in (N(\alpha))^0$$

In finite dimension, we can compute the dimensions of $im(\alpha^*)$ and $(N(\alpha))^0$.

$$\dim(\operatorname{im}(\alpha^*)) = r(\alpha^*)$$
$$r(\alpha^*) = r([\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*}) = r([\alpha]_{\mathcal{B},\mathcal{C}}^\top) = r([\alpha]_{\mathcal{B},\mathcal{C}}) = r(\alpha)$$
$$\implies r(\alpha) = r(\alpha^*)$$

 \mathbf{SO}

$$\dim(\operatorname{im} \alpha^*) = r(\alpha^*) + r(\alpha) = \dim V - \dim N(\alpha) = \dim[(N(\alpha))^0]$$

so $\operatorname{im}(\alpha^*) \leq (N(\alpha))^0$ and $\operatorname{dim}(\operatorname{im}(\alpha^*)) = \operatorname{dim}[(N(\alpha))^0]$ so $\operatorname{im}(\alpha^*) = [N(\alpha)]^0$.

Double dual

- V vector space over F
- $V^* = \mathcal{L}(V, f)$ dual of V. We define the bidual:

 $V^{**} = (V^*)^* = \mathcal{L}(V^*, F)$

Very important space in infinite dimension: in general, there is no obvious connection between V and V^{*} (unless Hilbertian structure). However, there is a large class of function spaces which that $V \simeq V^{**}$.

Example. p > 2,

$$L^{p}(\mathbb{R}) = \left\{ f: \mathbb{R} \to \mathbb{R} \left| \int_{\mathbb{R}} |f(x)|^{p} \mathrm{d}x < \infty \right. \right\}$$

Is a reflexive space.

In general, there is a canonical embedding of V into V^{**} . Indeed, pick $v \in V$, we define:

 $\hat{v}: V^* \to F$ $\varepsilon \mapsto \varepsilon(v)$

linear:

- $\varepsilon \in V^*$ implies $\varepsilon(v) \in F$.
- linearity: $\lambda_1, \lambda_2 \in F, \varepsilon_1, \varepsilon_2 \in V^*$

$$\hat{v} = (\lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2) = (\lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2)(v)$$
$$= \lambda_1 \varepsilon_1(v) + \lambda_2 \varepsilon_2(v)$$
$$= \lambda_1 \hat{v}(\varepsilon_1) + \lambda_2 \hat{v}(\varepsilon_2)$$

so $\hat{v} \in \mathcal{L}(V^*, F)$.

Theorem. If V is a *finite dimensional* vector space over F, then:

 $\hat{}:V\to V^{**}$

 $v\mapsto \hat{v}$

is an isomorphism.

(in infinite dimension we can show under canonical assumptions (Banach space) that: ^ is injective)

Proof. • V finite dimensional. Given $v \in V$, $\hat{v} \in V^{**} \in \mathcal{L}(V^*, F)$.

• $\hat{}$ linear: let $v_1, v_2 \in V, \lambda_1, \lambda_2 F, \varepsilon \in V^*$:

$$(\lambda_1 v_1 + \lambda_2 v_2)(\varepsilon) = \varepsilon (\lambda_1 v_1 + \lambda_2 v_2)$$
$$= \lambda_1 \varepsilon (v_1) + \lambda_2 \varepsilon (v_2)$$
$$= \lambda_1 \hat{v}_1(\varepsilon) + \lambda_2 \hat{v}_2(\varepsilon)$$
$$\Longrightarrow (\widehat{\lambda_1 v_1 + \lambda_2 v_2}) = \lambda_1 \hat{v}_1 + \lambda_2 \hat{v}_2$$

• injective: indeed, let $e \in V \setminus \{0\}$. I extend (e, e_2, \ldots, e_n) basis of V. Let $(\varepsilon, \varepsilon_2, \ldots, \varepsilon_n)$ the dual basis of $(of V^*)$, then

$$\hat{e}(\varepsilon) = \varepsilon(e) = 1$$
$$\implies \hat{e} \neq \{0\}$$
$$\implies N() = \{0\}$$

so is injective.

• `isomorphism. We can compute dimensions:

 $\dim V = \dim V^* = \dim[(V^*)^*] = \dim(V^{**})$

As a conclusion: ^: $V \to V^{**}$ is injective, dim $V = \dim V^{**}$, so ^ is surjective, so ^ is an isomorphism.

Lemma. Let V be a finite dimensional vector space over F, let $U \leq V$. Then

 $\hat{U} = U^{00}$

so after identification of V and V^{**} , we have

 $U\simeq U^{00}$

Proof. Let us show that: $U \leq U^{00}$.

• Indeed, let $u \in U$:

$$\begin{aligned} \forall \varepsilon \in U^0, \varepsilon(u) &= 0 \\ \Longrightarrow \ \forall \varepsilon \in U^0, \varepsilon(u) = \hat{u}(\varepsilon) = 0 \\ &\implies \hat{u} \in U^{00} \\ &\implies \hat{U} \subset U^{00} \end{aligned}$$

• Commute dimensions

$$\dim U^{00} = \dim V - \dim U^0 = \dim U$$

Remark. $T \leq V^*$
 $T^0 = \{ v \in V \mid \theta(v) = 0, \forall \theta \in T \}$

Start of lecture 10

Remark. $T \leq V^+$, we can define

$$T^0 = \{ v \in V \mid \theta(v) = 0, \theta \in T \}$$

Lemma. Let V be a finite dimensional vector space over F. Let $U_1, U_2 \leq V$. Then

(i) $(U_1 + U_2)^0 = U_1^0 \cap U_2^0$ (ii) $(U_1 \cap U_2)^0 = U_1^0 + U_2^0$

Proof. (i) Exercise.

(ii) Take ⁰ of (i) and use $U^{00} = U$.

1.11 Bilinear Forms

 \implies Quadratic algebra.

Definition. U, V vector spaces over F. Then:

 $\varphi:U\times V\to F$

is a *bilinear form* if it "linear in both components":

- $\varphi(u, \bullet): V \to F$ is linear for all $u \in U$ $(v \mapsto \varphi(u, v))$.
- $\varphi(\bullet, v): U \to F$ is linear for all $v \in V$ $(u \mapsto \varphi(u, v))$

Examples

(i) $V \times V^* \to F$

$$(v,\theta) \mapsto \theta(v)$$

- (ii) Scalar product / dot product on $U = V = \mathbb{R}^n$
- (iii) $U = V = \mathcal{C}([0, 1], \mathbb{R})$

$$\varphi(f,g) = \int_0^1 f(t)g(t) \mathrm{d}t$$

("infinite dimensional scalar product)

Definition (matrix of a bilinear form in a basis). $\mathcal{B} = (e_1, \ldots, e_m)$ basis of U, $\mathcal{C} = (f_1, \ldots, f_n)$ basis of V. $\varphi : U \times V \to F$ bilinear form. The matrix of φ with respect to \mathcal{B} and \mathcal{C} is:

$$[\varphi]_{\mathcal{B},\mathcal{C}} = (\underbrace{\varphi(e_i, f_j)}_{\in F})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Lemma. $\varphi(u, v) = [u]_{\mathcal{B}}^{\top}[\varphi]_{\mathcal{B}, \mathcal{C}}[v]_{\mathcal{C}}.$ (*)

Link between the bilinear form and its matrix in given basis.

Proof. $u = \sum_{i=1}^{m} \lambda_i e_i, v = \sum_{j=1}^{n} \mu_j f_j$. Then by linearity:

$$\varphi(u, v) = \varphi\left(\sum_{i=1}^{m} \lambda_i e_i, \sum_{j=1}^{n} \mu_j e_j\right)$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_i \mu_j \varphi(e_i, e_j)$$
$$= [u]_{\mathcal{B}}^{\top}[\varphi]_{\mathcal{B}, \mathcal{C}}[v]_{\mathcal{C}}$$

Remark. $[\varphi]_{\mathcal{B},\mathcal{C}}$ is the only matrix such that (*) holds.

Notation. $\varphi: U \times V \to F$ bilinear form, then it determines two linear maps: $\varphi_L: U \to V^*$ $\varphi_L(u): V \to F$ $v \mapsto \varphi(u, v)$ define φ_R similarly.

Lemma. $\mathcal{B} = (e_1, \ldots, e_m)$ basis of $U, B^* = (\varepsilon_1, \ldots, \varepsilon_m)$ dual basis of U^* . $\mathcal{C} = (f_1, \ldots, f_n)$ basis of $V, \mathcal{C}^* = (\eta_1, \ldots, \eta_n)$ dual basis of V^* . Let $A = [\varphi]_{\mathcal{B}, \mathcal{C}}$ then:

$$\begin{split} [\varphi_R]_{\mathcal{C},\mathcal{B}^*} &= A \\ [\varphi]_{\mathcal{B},\mathcal{C}^*} &= A^\top \end{split}$$

Proof.

$$\varphi_L(e_i)(f_j) = \varphi(e_i, f_j) = A_{ij}$$
$$\implies \varphi_L(e_i) = \sum A_{ij} \eta_j$$

similarly for φ_R .

Definition (Degenerate / non degenerate bilinear form). ker φ_L : "left kernel of φ ", ker φ_R : "right kernel of φ ". We say that φ is non-degenerate if

$$\ker \varphi_L = \{0\}$$
 and $\ker \varphi_R = \{0\}$

Otherwise, we say that φ is degenerate.

Lemma. U, V finite dimensional. \mathcal{B} basis of U, \mathcal{C} basis of V. $\varphi : U \times V \to F$ bilinear form, $A = [\varphi]_{\mathcal{B},\mathcal{C}}$. Then φ non degenerate $\iff A$ invertible.

Corollary. φ non degenerate

$$\implies \dim U = \dim V$$

Proof.

$$\varphi$$
 non degenerate $\iff \ker \varphi_L = \{0\}$ and $\ker \varphi_R = \{0\}$
 $\iff n(A^{\top}) = 0$ and $n(A) = 0$
 $\iff r(A^{\top}) = \dim U$ and $r(A) = \dim V$
 $\iff A$ invertible and then: $\dim U = \dim V$

Remark. $\varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ scalar product, then φ is non degenerate, and if we take the usual bases, then $[\varphi]_{\mathcal{B},\mathcal{B}} = I_n$.

Corollary. When U and V are finite dimensional, then choosing a non degenerate bilinear form $\varphi: U \to V \to F$ is equivalent to choosing an isomorphism $\varphi_L: U \to V^*$.

Definition. $T \subset U$, we define:

$$T^{\perp} = \{ v \in V \mid \varphi(t, v) = 0, \forall t \in T \}$$

Similarly define for $S \subset V$

$$^{\perp}S = \{ u \in U, \varphi(u, s) = 0, \forall s \in S \}$$

Change basis for bilinear forms

Proposition. • $\mathcal{B}, \mathcal{B}'$ basis of $U, P = [id]_{\mathcal{B}', \mathcal{B}}$ • $\mathcal{C}, \mathcal{C}'$ basis of $V, Q = [id]_{\mathcal{C}', \mathcal{C}}$. Let $\varphi : U \times V \to F$ bilinear form, then

$$[\varphi]_{\mathcal{B}',\mathcal{C}'} = P^{\top}[\varphi]_{\mathcal{B},\mathcal{C}}Q$$

change of basis formula for bilinear forms.

Proof.

$$\varphi(u, v) = [u]_{\mathcal{B}}^{\top}[\varphi]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{C}}$$
$$= (P[u]_{\mathcal{B}'})^{\top}[\varphi]_{\mathcal{B},\mathcal{C}}(Q[v]_{\mathcal{C}'})$$
$$= [u]_{\mathcal{B}'}^{\top}(P^{\top}[\varphi]_{\mathcal{B},\mathcal{C}}Q)[v]_{\mathcal{C}'}$$

Definition. The rank of φ ($r(\varphi)$) is the rank of any matrix representing φ .

Indeed, $r(P^{\top}AQ) = r(A)$ for any invertible P, Q.

Remark. $r(\varphi) = r(\varphi_R) = r(\varphi_L)$. (we computed matrices in a basis and $r(A) = r(A^{\top})$)

More applications later: scalar product.

1.12 Determinant and Traces

Definition. $A \in \mathcal{M}_n(F) = \mathcal{M}_{n \times n}(F)$ We define the trace of A

$$\operatorname{Tr} A = \sum_{i=1}^{n} A_{ii}$$

 $A = (A_{ij})_{1 \le i,j \le n}$

Remark. $\mathcal{M}_n(F) \to F$ linear form $(A \mapsto \operatorname{Tr} A)$.

Lemma. $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.

Proof.

$$\operatorname{Tr}(AB) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} b_{ji} \right)$$
$$= \cdots$$
$$= \operatorname{Tr}(BA)$$

Start of lecture 11

Corollary. Similar matrices have the same trace

Proof.

$$Tr(P^{-1}AP) = Tr(APP^{-1})$$
$$= Tr(A)$$

Definition. If $\alpha: V \to V$ linear (endomorphism) we can define:

 $\operatorname{Tr} \alpha = \operatorname{Tr}([\alpha]_{\mathcal{B}})$

in any basis \mathcal{B} (does not depend on the choice \mathcal{B}).

Lemma. $\alpha: V \to V, \, \alpha^*: V^* \to V^*$ dual map, then

 $\operatorname{Tr} \alpha = \operatorname{Tr} \alpha^*$

Proof.

$$\operatorname{Tr} \alpha = \operatorname{Tr}([\alpha]_{\mathcal{B}})$$
$$= \operatorname{Tr}([\alpha]_{\mathcal{B}}^{\top})$$
$$= \operatorname{Tr}([\alpha^*]_{\mathcal{B}^*}) \qquad (\text{because } [\alpha]_{\mathcal{B}}^{\top} = [\alpha^*]_{\mathcal{B}^*}) \qquad \Box$$

1.13 Determinants

Permutations and transpositions

• permutation: $S_n =$ group of permutations of $\{1, \ldots, n\}$

$$\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$$

is a bijection. Then σ is a permutation.

- Transposition $k \neq l, \tau_{kl} \in S_n$ just swaps k and l.
- Decomposition: any permutation of σ can be decomposed as a product of transpositions

$$\sigma = \prod_{i=1}^{n\sigma} \tau_i$$

 τ_i transposition.

• Signature: $\varepsilon: S_n \to \{-1, 1\},\$

$$\sigma \mapsto \begin{cases} 1 & \text{if } n_{\sigma} \text{ even} \\ -1 & \text{if } n_{\sigma} \text{ odd} \end{cases}$$

 $\varepsilon(\sigma) = \text{signature of } \sigma$. and ε is a group homomorphism.

Definition (Determinant). $A \in \mathcal{M}_n(F)$ (square matrix),

$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$

We define the determinant of A as:

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n}$$

Example.

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} a_{11}a_{22} - a_{12}a_{21}$$

Lemma. If $A = (a_{ij})$ is an upper (lower) triangular matrix with 0 on the diagonal: $a_{ij} = 0$ for $i \ge j$ (resp $i \le j$)

then $\det A = 0$.

Proof. For $a_{\sigma(1)1} \cdots a_{\sigma(n)n}$ not to be zero, I need $\sigma(j) < j$ for all $j \in \{1, \ldots, n\}$ which is *impossible* for $\sigma \in S_n$. So all the terms are 0, so det A = 0.

Exercise: Show similarly that if instead we allow the diagonal elements to be nonzero, then the determinant is the product of the diagonal elements.

Lemma. det $A = \det(A^{\top})$

Proof.

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n}$$
$$= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i)i}$$
$$= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n a_{j\sigma^{-1}(j)}$$

Now remember $\varepsilon(\sigma\sigma^{-1}) = \varepsilon(\sigma)\varepsilon(\sigma^{-1})$ so since $\varepsilon(\sigma) \in \{-1, 1\}$,

 $\implies \varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\sigma^{-1}(i)}$$
$$= \sum_{\sigma \in S_n} \varepsilon(\sigma^{-1}) \prod_{i=1}^n a_{i\sigma^{-1}}(i)$$
$$= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\sigma(i)}$$
$$= \det(A^{\top})$$

Why this formula for $\det A$?

Definition. A volume form d on F^n is a function

$$\underbrace{F^n \times \cdots \times F^n}_{n \text{ times}} \to F$$

such that

(i) d is multilinear: for any $1 \le i \le n$, for all $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \in F^n$,

 $v \mapsto d(v_1, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_n)$

is linear (i.e. an element of $(F^n)^*$) (linear with respect to all coordinate)

(ii) d alternate: if $v_i = v_j$ for some $i \neq j$, then

 $d(v_1,\ldots,v_n)=0$

We want to show that there is in fact only *one* (up to a multiplicative constant) volume form on $F^n \times \cdots \times F^n$ which is given by the determinant:

$$A = (a_{ij}) = (A^{(1)} | \dots | A^{(n)})$$

(column vectors)

$$\det A = \det(A^{(1)}, \dots, A^{(n)})$$

Lemma. $F^n \times \cdots \times F^n \to F$

$$(A^{(1)},\ldots,A^{(n)}) \mapsto \det A$$

is a volume form.

- *Proof.* (i) multilinear $\sigma \in S_n$, then $\prod_{i=1}^n a_{\sigma(i)i}$ is multilinear: there is only one term from each column appearing in the expression. The sum of multilinear maps is multilinear, so det is multilinear.
- (ii) Alternate: Assume $k \neq l$, $A^{(k)} = A^{(l)}$. I want to show det A = 0. Indeed: let τ be the transposition which swaps k and l. Then since $A^{(k)} = A^{(l)}$ then $a_{ij} = a_{i\tau j}$ for all i, j. We can decompose:

$$S_n = A_n \sqcup \tau A_n$$

then

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\sigma(i)}$$
$$= \sum_{\sigma \in A_n} \prod_{i=1}^n a_{i\sigma(i)} + \sum_{\sigma \in \tau A_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i\tau\sigma(i)}$$
$$= \sum_{\sigma \in A_n} \prod_{i=1}^n a_{i\sigma(i)} - \sum_{\sigma \in A_n} a_{i\tau\sigma(i)}$$
$$= \sum_{\sigma \in A_n} \prod_{i=1}^n a_{i\sigma(i)} - \sum_{\sigma \in A_n} \prod_{i=1}^n a_{i\sigma(i)}$$
$$= 0$$

Lemma. Let d be a volume form. Then swapping two entries changes the sign.

Proof. Equivalent definition of "alternate".

$$0 = d(v_1, \dots, v_i + v_j, \dots, v_i + v_j, \dots, v_n)$$

= $d(v_1, \dots, v_i, \dots, v_i, \dots, v_n) + d(v_1, \dots, v_i, \dots, v_j, \dots, v_n)$
+ $d(v_1, \dots, v_j, \dots, v_i, \dots, v_n) + d(v_1, \dots, v_j, \dots, v_j, \dots, v_n)$
= $0 + d(v_1, \dots, v_i, \dots, v_j, \dots, v_n) + d(v_1, \dots, v_j, \dots, v_i, \dots, v_n)$

Start of lecture 12

Corollary. $\sigma \in S_n$, d volume form, then:

$$d(v_{\sigma(1)},\ldots,v_{\sigma(n)}) = \varepsilon(\sigma)d(v_1,\ldots,v_n)$$

Proof. $\sigma = \prod_{i=1}^{n\sigma} \tau_i$.

Theorem. Let d be a volume form on F^n . Let $A = (A^{(1)}| \cdots |A^{(n)})$. Then $d(A^{(1)}| \cdots |A^{(n)}) d(e_1, \dots, e_n) \det A$

Up to a constant, det is the *only* volume form on F^n .

Proof.

$$d(A^{(1)}, \dots, A^{(n)}) = d\left(\sum_{i=1}^{n} a_{i1}e_i, \dots, A^{(n)}\right)$$

= $\sum_{i=1}^{n} a_{i1}d(e_i, A^{(2)}, \dots, A^{(n)})$
= $\sum_{i=1}^{n} a_{i1}d\left(e_i, \sum_{j=1}^{n} a_{j2}e_j, \dots, A^{(n)}\right)$
= $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i1}a_{j2}d(e_i, e_j, \dots, A^{(n)})$
= $\sum_{\substack{1 \le i_1 \le n \\ 1 \le i_2 \le n}} \left(\prod_{k=1}^{n} a_{i_kk}d(e_{i_1}, e_{i_2}, \dots, e_{i_n})\right)$
 \vdots

The last d term is nonzero only if all the i_k are different, so we can write the i_k as a permutation. This means we can continue and get

$$d(A^{(1)}, \dots, A^{(n)}) = \sum_{\sigma \in S_n} \prod_{k=1}^n a_{\sigma(k)k} d(e_{\sigma(1)}, \dots, e_{\sigma(n)})$$

=
$$\sum_{\sigma \in S_n} \left[\prod_{k=1}^n a_{\sigma(k)k} \right] \varepsilon(\sigma) d(e_1, \dots, e_n)$$

=
$$d(e_1, \dots, e_n) \left[\sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{k=1}^n a_{\sigma(k)k} \right]$$

=
$$d(e_1, \dots, e_n) \det A$$

Corollary. det is the only volume form such that

$$d(e_1,\ldots,e_n)=1$$

1.14 Some properties of determinants

Lemma. $A, B \in \mathcal{M}_n(F)$, then: $\det(AB) = (\det A)(\det B)$ *Proof.* Indeed, pick A. Consider the map:

$$d_A:\underbrace{F^n\times\cdots\times F^n}_n\to F$$

defined by

$$(v_1,\ldots,v_n)\mapsto \det(Av_1,\ldots,Av_n)$$

Then:

- d_A is multilinear: $v_i \mapsto Av_i$ is linear.
- d_A is alternate: if $v_i = v_j$ then $Av_i = Av_j$.

so d_A is a volume form. In particular,

$$d_A(v_1,\ldots,v_n) = C \det(v_1,\ldots,v_n)$$

Now we compute C. $Ae_i = (A)$ so

$$d_A(e_1,\ldots,e_n) = \det(Ae_1,\ldots,Ae_n) = \det(a_1,\ldots,A_n) = \det A$$

 So

$$C = \det A$$

We have proved:

$$d_A(v_1, \dots, v_n) = d(Av_1, \dots, Av_n)$$

= (det A) det(v_1, \dots, v_n)

Now observe:

$$AB = ((AB)_1, \dots, (AB)_n)$$
$$(AB)_i = AB_i$$

 \mathbf{SO}

$$det(AB) = det(AB_1, \dots, AB_n)$$
$$= det(A) det(B_1, \dots, B_n)$$
$$= det(A) det(B)$$

Definition. $A \in \mathcal{M}_n(F)$, we say that:

(i) A is singular if det A = 0

(ii) A is non singular if det $A \neq 0$.

Lemma. A is invertible implies A is non singular.

Proof. A is invertible.

$$\implies \exists A^{-1}, AA^{-1} = A^{-1}A = I_n$$
$$\implies \det(AA^{-1}) = \det(A^{-1}A) = \det I_n = 1$$
$$\implies (\det A)(\det A^{-1}) = 1$$
$$\implies \det A \neq 0$$

Remark. We have proved that

$$\det(A^{-1}) = \frac{1}{\det A}$$

Theorem. Let $A \in \mathcal{M}_n(F)$. Then the following are equivalent:

- (i) A is invertible
- (ii) A is non singular
- (iii) r(A) = n

Proof. (i) \iff (iii) done (rank nullity Theorem). (i) \implies (iii) is lemma above. We need to show (ii) \implies (iii). Indeed, assume r(A) < n. Then

$$\iff \dim \operatorname{span}\{c_1, \dots, c_n\} < n$$
$$\implies \exists (\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)$$
$$\sum_{i=1}^n \lambda_i c_i = 0$$

I pick j such that $\lambda_j \neq 0$

$$\implies c_j = -\frac{1}{\lambda_j} \sum_{i \neq j} \lambda_i c_i$$

$$\implies \det A = \det(c_1, \dots, c_j, \dots, c_n)$$
$$= \det\left(c_1, \dots, -\frac{1}{\lambda_j} \sum_{i \neq j} \lambda_i c_i, \dots, c_n\right)$$
$$= \sum_{i \neq j} -\frac{1}{\lambda_j} \det(c_1, \dots, c_i, \dots, c_n)$$
$$= 0$$

Remark. This gives us the sharp criterion for invertibility of a linear system of n equations with n unknowns:

$$Y \in F^n$$

 $A \in \mathcal{M}_n(F)$
 $AX = Y, X \in F^n$

exists a unique solution if and only if A is invertible, which happens if and only if $\det A \neq 0$.

Determinant of linear maps

Lemma. Conjugate matrices have the same determinant.

Proof.

$$\det(P^{-1}AP) = \det(P^{-1})\det A\det P$$
$$= \frac{1}{\det P}\det A\det P$$
$$= \det A$$

(P invertible implies det $P \neq 0$).

Definition. $\alpha: V \to V$ linear (endomorphism). We define

$$\det \alpha = \det([\alpha]_{\mathcal{B}})$$

 \mathcal{B} is any basis of V. This number does not depend on the choice of the basis!

Theorem. det : $L(V, V) \rightarrow F$ satisfies:

- (i) $\det \operatorname{id} = 1$
- (ii) $det(\alpha \circ \beta) = det(\alpha) det(\beta)$
- (iii) $det(\alpha) \neq 0$ if and only if α is invertible and then

$$\det(\alpha^{-1}) = (\det\alpha)^{-1}$$

Proof. Pick a basis and express in terms of $[\alpha]_{\mathcal{B}}$ and $[\beta]_{\mathcal{B}}$.

Determinant of block matrices

Lemma.
$$A \in \mathcal{M}_k(F), \mathcal{B} \in \mathcal{M}_l(F) \text{ and } C \in \mathcal{M}_{k,l}(F).$$
 Let

$$M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in \mathcal{M}_n(F)$$
 $(n = k + l)$ then

$$\det M = (\det A)(\det B)$$

Proof.

$$\det M = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n m_{\sigma(i)i} \tag{*}$$

Observation:

$$m_{\sigma(i)i} = 0$$

if $i \leq k$, $\sigma(i) > k$. So In (*), we need only sum over $\sigma \in S_n$ such that:

- (i) $\forall j \in [1, k], \, \sigma(j) \in [1, k]$
- (ii) and hence $\forall j \in [k+1,n], \, \sigma(j) \in [k+1,n].$

In other words, we restrict to σ of the form:

$$\sigma_1: \{1, \dots, k\} \to \{1, \dots, k\}$$
$$\sigma_2: \{k+1, \dots, n\} \to \{k+1, \dots, n\}$$

(i) $m_{\sigma(j)j}$ with $1 \le j \le k$, then $\sigma(j) \in \{1, \ldots, k\}$, can be rewritten as

$$m_{\sigma(j)j} = a_{\sigma(j)j} = a_{\sigma_1(j)j}$$

(ii) Similarly, for $k+1 \le j \le n, k+1 \le \sigma(j) \le n$,

$$m_{\sigma(j)j} = b_{\sigma(j)j} = b_{\sigma_1(j)j}$$

Note that

$$\varepsilon(\sigma) = \varepsilon(\sigma_1)\varepsilon(\sigma_2)$$

so then

$$\det M = \sum_{\sigma S_n} \varepsilon(\sigma) \prod_{i=1}^n m_{\sigma(i)i}$$

$$= \sum_{\substack{\sigma_1 \in S_k \\ \sigma_2 \in S_l}} \varepsilon(\sigma_1 \circ \sigma_2) \prod_{i=1}^k a_{\sigma_1(i)i} \prod_{j=k+1}^n b_{\sigma_2(j)j}$$

$$= \sum_{\substack{\sigma_1 \in S_k \\ \sigma_2 \in S_l}} \varepsilon(\sigma_1) \varepsilon(\sigma_2) \prod_{i=1}^k a_{\sigma_1(i)i} \prod_{j=k+1}^n b_{\sigma_2(j)j}$$

$$= \left(\sum_{\substack{\sigma_1 \in S_k \\ \sigma_2 \in S_l}} \varepsilon(\sigma_1) \prod_{i=1}^k a_{\sigma_1(i)i}\right) \left(\sum_{\substack{\sigma_2 \in S_l \\ \sigma_2 \in S_l}} \varepsilon(\sigma_2) \prod_{j=k+1}^n a_{\sigma_2(j)j}\right)$$

$$= (\det A) (\det B) \qquad \square$$

Start of lecture 13

Corollary. A_1, \ldots, A_k are square matrices, then

$$\det \begin{pmatrix} A_1 & * & * & \cdots & * \\ 0 & A_2 & * & \cdots & * \\ 0 & 0 & A_3 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_k \end{pmatrix} = (\det A_1) \cdots (\det A_k)$$

Proof. By induction on k.

In particular, if A is filled with zeros below the diagonal, then det A is the product of the entries on the diagonal. (But this is also quite easy to show directly from the definition of det A).

Warning. In general:

 $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq \det A \det D - \det B \det C$

Remark. In \mathbb{R}^3 , we have that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is a volume form (and represents the volume of a parallelepiped), and in fact, $\det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$.

1.15 Adjugate matrix

Observation: We know that swapping two column vectors flips the sign of the determinant, and we also know that det $A = \det A^{\top}$. So we find that swapping two rows changes the determinant by a factor of -1.

Remark. We could prove properties of determinant using the decomposition of A into elementary matrices.

Column (line) expansion and adjugate matrix

Column expansion is to reduce the computation of $n \times n$ determinants to $(n-1) \times (n-1)$ determinants. Very useful to compute determinants.

Definition. $A \in \mathcal{M}_n(F)$. Pick $i, j \leq n$. We define:

 $A_{\hat{i}i} \in \mathcal{M}_{n-1}(F)$

obtained by removing the i-th row and the j-th column from A.

Example.

$$A = \begin{pmatrix} 1 & 2 & -7 \\ 2 & 1 & 0 \\ -3 & 6 & 1 \end{pmatrix}$$
$$A_{32} = \begin{pmatrix} 1 & -7 \\ 2 & 0 \end{pmatrix}$$

Lemma (Expansion of the determinant). Let $A \in \mathcal{M}_n(F)$.

(i) Expansion with respect to the *j*-th column: pick $1 \le j \le n$, then:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{\hat{i}j}$$
(*)

(ii) Expansion with respect to the *i*-th row: pick $1 \le i \le n$, then

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} \det A_{\hat{i}\hat{j}}$$

Powerful tool to compute determinants.

Example.

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 & 1 \\ 4 & 2 & -7 \end{pmatrix}$$
$$\det A = -(2) \begin{vmatrix} 3 & 1 \\ 4 & -7 \end{vmatrix} + (-1) \begin{vmatrix} 1 & -1 \\ 4 & -7 \end{vmatrix} - 2 \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix}$$

Proof. Expansion with respect to the *j*-th column (row expansion formula follows by taking transpose). Pick $1 \le j \le n$.

•
$$A = (A^{(1)} | A^{(2)} | \dots | A^{(j)} | \dots | A^{(n)})$$

$$A^{(j)} = \sum_{i=1}^{n} a_{ij} e_i, \quad A = (a_{ij})_{1 \le i,j \le n}$$

$$\det A = \det \left(A^{(1)}, \dots, \sum_{i=1}^{n} a_{ij} e_i, \dots, A^{(n)} \right)$$
$$= \sum_{i=1}^{n} a_{ij} \det(A^{(1)}, \dots, e_i, \dots, A^{(n)})$$
$$\det(A^{(1)} \mid \dots \mid e_i \mid \dots \mid A^{(n)}) = (-1)^{j-1} \det(e_i \mid A^{(1)} \mid A^{(j-1)} \mid A^{(j+1)} \mid \dots \mid A^{(n)})$$
$$= (-1)^{i-1} (-1)^{j-1} \det(A_{\hat{ij}})$$
$$= (-1)^{i+j} \det(A_{\hat{ij}})$$

 \mathbf{SO}

•

$$\det A = \sum_{i=1}^{n} a_{ij} \det(A^{(1)}, \dots, a^{(j-1)}, e_i, \dots, A^{(n)})$$
$$= \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det A_{\hat{i}\hat{j}}$$

Definition (Adjugate matrix). Let $A \in \mathcal{M}_n(F)$. The adjugate matrix $\operatorname{adj}(A)$ is the $n \times n$ matrix with (i, j) entry given by

$$(-1)^{i+j} \det(A_{\hat{i}i})$$

Theorem. Let $A \in \mathcal{M}_n(F)$, then

$$\operatorname{adj}(A)A = (\det A)I_n$$

In particular, when A is invertible,

$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$$

Proof. We just proved: (*)

•

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} (\det A_{\hat{i}\hat{j}}) a_{ij}$$
$$= \sum_{i=1}^{n} (\operatorname{adj}(A))_{ji} a_{ij}$$
$$= (\operatorname{adj}(A)A)_{jj}$$

• For $j \neq k$ we have

$$0 = \det(A^{(1)}, \dots, A^{(k)}, \dots, A^{(k)}, \dots, A^{(n)})$$

= $\det\left(a^{(1)}, \dots, \sum_{i=1}^{n} a_{ik}e_i, \dots, A^{(k)}, \dots, A^{(n)}\right)$
= $\sum_{i=1}^{n} a_{ik} \det(A^{(1)}, \dots, e_i, \dots, A^{(n)})$
= $\sum_{i=1}^{n} (\operatorname{adj}(A))_{ji}a_{ik}$
= $(\operatorname{adj}(A)A)_{jk}$
= 0

for $j \neq k$.

So done.

Cramer rule

Proposition. Let $A \in \mathcal{M}_n(F)$ be invertible. Let $b \in F^n$. Then the unique solution to Ax = b is given by:

$$x_o = \frac{1}{\det A} \det(A_{\hat{i}}b)$$

 $1 \leq i \leq n$ where $A_{\hat{i}}b$ is obtained by replacing the i-th column of A by b.

Algorithmically, this avoids computing A^{-1} . TODO: CHECK WHETHER NEEDS EDITING.

1.16 Eigenvectors, eigenvalues and trigonal matrices

First step towards the diagonalisation of endomorphisms.

• V vector space over F, $\dim_F V = n < \infty$. $\alpha : V \to V$ linear (endomorphism of V). General problem: Can we find a basis \mathcal{B} of V such that in this basis,

$$[\alpha]_{\mathcal{B}} = [\alpha]_{\mathcal{B},\mathcal{B}}$$

has a "nice" form.

Reminder: \mathcal{B}' another basis of V, P = change of basis matrix,

$$[\alpha]_{\mathcal{B}'} = P^{-1}[\alpha]_{\mathcal{B}}P$$

Equivalently: given a matrix $A \in \mathcal{M}_n(F)$, is it conjugated to a matrix with a "simple" form?

Definition. (i) $\alpha \in \mathcal{L}(V)$ ($\alpha : V \to V$ linear) is *diagonalisable* if there exists a basis \mathcal{B} of V such that $[\alpha]_{\mathcal{B}}$ in \mathcal{B} is diagonal:

$$[\alpha]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

(ii) $\alpha \in \mathcal{L}(V)$ is *triangulable* if there exists \mathcal{B} basis of V such that $[\alpha]_{\mathcal{B}}$ is triangular:

$$[\alpha]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Remark. A matrix is diagonalisable (respectively triangulable) if and only if it is conjugated to a diagonal (respectively triangular) matrix.

Start of lecture 14

Definition (eigenvalue, eigenvector, eigenspace). (i) $\lambda \in F$ is an eigenvalue of $\alpha \in \mathcal{L}(V)$ if and only if there exists $v \in V \setminus \{0\}$ such that $\alpha(v) = \lambda v$.

- (ii) $v \in V$ is an eigenvector of $\alpha \in \mathcal{L}(v)$ if and only if $v \neq 0$ and there exists $\lambda \in F$ such that $\alpha(v) = \lambda v$.
- (iii) $V_{\lambda} = \{v \in V \mid \alpha(v) = \lambda v\} \leq V$ is the eigenspace associated to $\lambda \in F$.

Remark. Once can write evalue, evectors, espace.

Lemma. $\alpha \in L(v), \lambda \in F$, then

 λ eigenvalue $\iff \det(\alpha - \lambda \mathrm{id}) = 0$

Proof.

$$\begin{aligned} \lambda \text{ eigenvalue } &\iff \exists v \in V \setminus \{0\} \mid \alpha(v) = \lambda v \\ &\iff \exists v \in V \setminus \{0\} \mid (\alpha - \lambda \mathrm{id})(v) = 0 \\ &= \ker(\alpha - \lambda \mathrm{id}) \neq \{0\} \\ &= \alpha - \lambda \mathrm{id not injective} \\ &\iff \alpha - \lambda \mathrm{id not surjective} \\ &\iff \alpha - \lambda \mathrm{id not bijective} \\ &\iff \det(\alpha - \lambda \mathrm{id}) = 0 \end{aligned}$$

Remark. If $\alpha(v_j) = \lambda v_j, v_j \neq 0$. I can complete it to a basis $(v_1, \ldots, v_{j-1}, v_j, \ldots, v_n)$ of V. Then $[\alpha]_{\mathcal{B}} = (|\cdots| (\lambda \text{ in } j\text{-th entry}) |\cdots)$

Elementary facts about polynomials

We will study $P(\alpha)$, P polynomial. $\alpha \in \mathcal{L}(V)$.

• F field,

$$f(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$

 $a_i \in F$. $n \equiv$ the largest exponent such that $a_n \neq 0$, $n = \deg f$.

• $\deg(f+g) \le \max\{\deg f, \deg g\}, \ \deg(fg) = \deg f + \deg g$

- $F[t] = \{ \text{polynomials with coefficients in } F \}$
- λ root of $f(t) \iff f(\lambda) = 0$.

Lemma. λ is a root of f, then $t - \lambda$ divides f:

$$f(t) = (t - \lambda)g(t), \quad g(t) \in F(t)$$

Proof. $f(t) = a_n t^n + \dots + a_1 t + a_0, f(\lambda) = a_n \lambda^n + \dots + a_1 \lambda + a_0 = 0.$

$$f(t) = f(t) - f(\lambda)$$

= $a_n(t^n - \lambda^n) + \dots + a_1(t - \lambda)$
= $a_n(t - \lambda)(t^{n-1} + \lambda t^{n-2} + \dots + \lambda^{n-2}t + \lambda^{n-1}) + \dots$

Corollary. A nonzero polynomial of degree $n \geq 0$ has at most n roots (counted with multiplicity).

Proof. Induction on the degree. (Exercise)

Corollary. f_1, f_2 polynomials of degree $\langle n \rangle$ such that $f_1(t_i) = f_2(t_i), (t_i)_{1 \leq i \leq n} n$ distinct values. Then $f_1 \equiv f_2$.

Proof. $f_1 - f_2$ has degree < n and at least n roots so $f_1 - f_2 \equiv 0$.

Theorem. Any $f \in \mathbb{C}[t]$ of positive degree has a (complex) root (hence exactly deg f roots when counted with multiplicity).

So $f \in \mathbb{C}[t]$,

$$f(t) = c \prod_{i=1}^{\prime} (t - \lambda_i)_i^{\alpha} \quad c, \lambda_i \in \mathbb{C}, \alpha_i \in \mathbb{N}$$

 \rightarrow complex analysis.

Definition (characteristic polynomial). Let $\alpha \in \mathcal{L}(V)$, the characteristic polynomial of α is

$$\chi_{\alpha}(t) = \det(A - tid)$$

Remark. The fact that $det(A - \lambda id)$ is a polynomial in λ follows from the very definition of det.

Remark. Conjugate matrices have the same characteristic polynomial.

$$\det(P^{-1}AP - \lambda \mathrm{id}) = \det(P^{-1}(A - \lambda \mathrm{id})P)$$
$$= \det(A - \lambda \mathrm{id})$$

So we can define

$$\chi_{\alpha}(t) = \det(A - \lambda \mathrm{id})$$

where $A = [\alpha]_{\mathcal{B}}$, and the polynomial does not depend on the choice of basis.

Theorem. $\alpha \in \mathcal{L}(V)$ is triangulable if and only χ_{α} can be written as a product of linear factors over F:

$$\chi_{\alpha}(t) = c \prod_{i=1}^{n} (t - \lambda_i)$$

 \rightarrow If $F = \mathbb{C}$, any matrix is triangulable.

Proof. \Rightarrow Suppose α triangulable, then

$$[\alpha]_{\mathcal{B}} = \begin{pmatrix} a_1 & * & \cdots & * \\ 0 & a_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}$$

 \mathbf{SO}

$$\chi_{\alpha}(t) = \det \begin{pmatrix} a_1 & * & \cdots & * \\ 0 & a_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix} = \prod_{i=1}^n (a_i - t)$$

 \leftarrow We argue by induction on $n = \dim V$.

- n = 1 easy.
- n > 1. By assumption, let $\chi_{\alpha}(t)$ which has a root λ . Then $\chi_{\alpha}(\lambda) = 0$ if and only if λ is an eigenvalue of α . Let $U = V_{\lambda}$ be associated eigenspace. Let (v_1, \ldots, v_k) be a basis of U. We complete to (v_{k+1}, \ldots, v_n) of V

$$\operatorname{span}(v_{k+1},\ldots,v_n) = W$$

 $V = U \oplus W$

• $[\alpha]_{\mathcal{B}} =$

 α induces an endormorphism $\overline{\alpha}: V/U \to V/U,$

$$C = [\overline{\alpha}]_{\overline{\mathcal{B}}}, \overline{\mathcal{B}} = (v_{k+1} + U, \dots, v_n + U)$$

Then: (block product)

$$\det(\alpha - \mathrm{id}) =$$

$$d\ell \downarrow \qquad \begin{pmatrix} (\lambda - \ell) \downarrow d \\ k \\ \end{pmatrix} \downarrow k \\ \hline C - (\ell \downarrow d) \\ = (\lambda - t)^k \det(C - tid) = c \prod_{i=1}^n (t - a_i)$$
$$\implies \det(C - tid) = \tilde{c} \prod_{i=k+1}^n (t - \tilde{a}_i)$$

so use the induction because dim $V/U = \dim V - \dim U < \dim V$. So $\tilde{\mathcal{B}} = (\tilde{v}_{k+1}, \ldots, \tilde{v}_n)$ basis of W where:

$$[C]_W = \begin{pmatrix} \tilde{a}_1 & * & \cdots & * \\ 0 & \tilde{a}_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \tilde{a}_n \end{pmatrix}$$

implies $V = U \oplus W$,

$$\hat{\mathcal{B}} = (v_1, \dots, v_k, \tilde{v}_{k+1}, \dots, \tilde{v}_n)$$

basis of V in which

 \rightarrow triangular form.

Start of lecture 15

Lemma. V n dimensional over $F = \mathbb{R}, \mathbb{C}, \alpha \in \mathcal{L}(V)$. Then $\chi_{\alpha}(t) = (-1)^n t^n + c_{n-1}t^{n-1} + \cdots + c_0, c_0 = \det A = \det \alpha, c_{n-1} = (-1)^{n-1} \operatorname{Tr} A$.

Proof. • $\chi_{\alpha}(t) = \det(\alpha - tid)$

$$\implies \chi_{\alpha}(0) = \det \alpha = c_0$$

Say that F = R or C (if F = R, we can think of is as having complex entries as well). We know that α is triangulable over C, so:

$$\chi_{\alpha}(t) = \det \begin{pmatrix} a_1 - t & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n - t \end{pmatrix}$$
$$= \prod_{i=1}^n (a_i - 1)$$
$$= (-1)^n t^n + c_{n-1} t^{n-1} + \cdots + c_0$$
$$c_{n-1} = (-1)^{n-1} \sum_{i=1}^n (a_i) = \operatorname{Tr} \alpha$$

1.17 Diagonalisation criterion and minimal polynomial

Notation (polynomial of an endomorphism). Pick p(t) polynomial over F

$$p(t) = a_n t^n + \dots + a_1 t + a_0, \quad a_i \in F$$

 $A \in \mathcal{M}_n(F)$, for all $n, A^n \in \mathcal{M}_n(F)$. We define:

$$p(A) = a_n A^n + \dots + a_1 A + a_i \operatorname{id} \in \mathcal{M}_n(F)$$

If $\alpha \in \mathcal{L}(V)$, we define

$$p(\alpha) = a_n \alpha^n + \dots + a_1 \alpha + a_0 \mathrm{id}$$

where $\alpha = \alpha \circ \cdots \circ \alpha \in \mathcal{L}(V)$.

 \rightarrow very useful.

Theorem (Sharp criterion of diagonalisability). • V vector space over F, dim_F $V < \infty$

• $\alpha \in \mathcal{L}(V)$

Then α is diagonalisable if and only if there exists a polynomial p which is the product of *distinct linear factors* such that $p(\alpha) = 0$.

$$\alpha$$
 diagonalisable $\iff \exists (\lambda_1, \dots, \lambda_n) \text{ distinct }, \lambda_i \in F \text{ such that:}$
$$p(t) = \prod_{i=1}^k (t - \lambda_i)$$
and $p(\alpha) = 0$

Proof. \Rightarrow Suppose α is diagonalisable, with $\lambda_1, \ldots, \lambda_k$ the distinct eigenvalues. Let $p(t) = \prod_{i=1}^{k} (t - \lambda_i)$. Let \mathcal{B} be the basis of V made of eigenvectors of α (it is precisely the basis in which $[\alpha]_{\mathcal{B}}$ is diagonal). Then $v \in \mathcal{B}$, then $\alpha(v) = \lambda_i(v)$ for some $i \in \{1, \ldots, k\}$, implies $(a - \lambda_i \operatorname{id})(v) = 0$, implies

$$p(\alpha) = \left[\prod_{j=1}^{k} (\alpha - \lambda_j \mathrm{id})\right](v) = 0$$

but the terms in the product commute, i.e.

$$(\alpha - \lambda_j \mathrm{id})(\alpha - \lambda_k \mathrm{id}) = (\alpha - \lambda_k \mathrm{id})(\alpha - \lambda_j \mathrm{id})$$

so for all $v \in \mathcal{B}$, $p(\alpha)(v) = 0$, so $p(\alpha)(v) = 0$ for all $v \in V$ (since \mathcal{B} is a basis for V). So $p(\alpha) = 0$.

- \Leftarrow (Kernel lemma, Bezout's theorem for prime polynomials)
 - Suppose $p(\alpha) = 0$ for:

$$p(t) = \prod_{i=1}^{k} (t - \lambda_i)$$

$$\lambda_i \neq \lambda_j, \, i \neq j.$$

• Let $V_{\lambda_i} = \ker(\alpha - \lambda_i \operatorname{id})$, we claim:

$$V = \bigoplus_{i=1}^{k} V_{\lambda_i}$$

Indeed let:

$$q_j(t) = \prod_{\substack{i=1\\i\neq j}}^k \left(\frac{t-\lambda_i}{\lambda_j - \lambda_i}\right), \quad 1 \le j \le k$$

Then

$$q_j(\lambda_i) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Hence let us consider:

$$q(t) = \sum_{j=1}^{k} q_j(t)$$

Then deg $q_j \leq k - 1$, so deg $q \leq k - 1$. Also $q(\lambda_j) = 1$ for all $1 \leq j \leq k$. So the polynomial q(t) - 1 has degree $\leq k - 1$ and at least k roots, so for all t, q(t) = 1. So for all t,

$$q_1(t) + \dots + q_k(t) = 1$$

• Let us define the *projector*

$$a_j q_j(\alpha) \in \mathcal{L}(V)$$

Then

$$\sum_{j=1}^{k} \pi_j = \sum_{j=1}^{k} q_j(\alpha)$$
$$= \left(\sum_{j=1}^{k} q_j\right)(\alpha)$$
$$= \mathrm{id}$$

This means for all $v \in V$,

$$v = q(\alpha)(v) = \sum_{j=1}^{k} \pi_j(v) = \sum_{j=1}^{k} q_j(\alpha)(v)$$

Observe: pick $j \in \{1 \dots, k\}$,

$$(\alpha - \lambda_j \mathrm{id})q_j(\alpha)(v) = \frac{1}{\prod_{i \neq j} (\lambda_i - \lambda_j)} p(\alpha)(v) = 0$$

 \mathbf{SO}

$$\forall j \in \{1, \dots, k\}, \quad (\alpha - \lambda_j \mathrm{id}) \pi_j(v) = 0$$
$$\implies \forall j \in \{1, \dots, k\} \pi_j(v) \in V_{\lambda_j}$$

 $(\pi_j \text{ is a projector on } V_{\lambda_j})$ Now for all $v \in V$,

$$v = \sum_{j=1}^{k} \pi_j(v)$$

hence

$$V = \sum_{j=1}^{k} V_{\lambda_j}$$

We need to prove that the sum is *direct*. Indeed, let $v \in V_{\lambda_j} \cap \left(\sum_{i \neq j} V_{\lambda_i}\right)$. - $v \in V_{\lambda_j}$. Then

$$\pi_j(v) = q_j(\alpha)(v)$$

$$= \prod_{i=1, i \neq j}^k \frac{(\alpha - \lambda_i \mathrm{id})}{\lambda_i - \lambda_j}(v)$$

$$= \left[\prod_{i=1, i \neq j}^k \frac{(\lambda_i - \lambda_j)}{\lambda_i - \lambda_j}\right](v)$$

$$= v$$

so $\pi_j \mid_{V_{\lambda_j}} = \mathrm{id}.$

- By assumption $v \in \sum_{i \neq j} V_{\lambda_i}$. Now, $i_0 \neq j, v \in V_{\lambda_{i_0}}, \alpha(v) = \lambda_{i_0} v$,

$$\implies \pi_j(v) = q_j(\alpha)(v)$$
$$= \left[\prod_{i \neq j} \frac{(\alpha - \lambda_i \mathrm{id})}{\lambda_i - \lambda_j}\right](v)$$
$$= \left(\prod_{i \neq j} \frac{\lambda_{i_0} - \lambda_j}{\lambda_i - \lambda_j}\right)$$
$$= 0$$

so $\pi_j \mid_{V_{\lambda_i}} = 0$ for $i \neq j$.

As a conclusion: $v \in V_{\lambda_j} \cap \left(\sum_{i \neq j} V_{\lambda_i}\right)$ (1) $v \in V_{\lambda_i}$, implies $\pi_j(v) = v$

- (2) $v \in \sum_{i \neq j} V_{\lambda_i}$ implies $\pi_j(v) = 0$
- so v = 0. We have proved:

$$V = \bigoplus_{j=1}^{k} V_{\lambda_j}$$
$$\pi_j \mid_{V_{\lambda_j}} = \mathrm{id}$$
$$\pi_i \mid_{V_{\lambda_j}} = 0$$

for $i \neq j$.

Remark. We have proved the following: if $\lambda_1, \ldots, \lambda_k$ are k distinct eigenvalues of α , then

$$\sum_{i=1}^{k} V_{\lambda_i} = \bigoplus_{i=1}^{k} V_{\lambda_i}$$

(always true) (and we know the projectors)

This means that the only way diagonalisation fails is if:

$$\bigoplus_{i=1}^{k} V_{\lambda_i} = \sum_{j=1}^{k} V_{\lambda_j} \neq V$$

Example. $A \in \mathcal{M}_n(F), F = \mathbb{C}$. A has finite order. (there exists $m \in \mathbb{N}$ such that $A^m = \mathrm{id}$). Then A is diagonalisable (over \mathbb{C}). TODO..

Start of lecture 16

Theorem (Simultaneous diagonalisation). • $\dim_F V < \infty$

• $\alpha, \beta \in \mathcal{L}(V)$ diagonalisable Then α, β are simultaneously diagonalisable ($\exists \mathcal{B}$ basis of V in which both $[\alpha]_{\mathcal{B}}$, $[\beta]_{\mathcal{B}}$ are diagonal) if and only if α and β commute.

Proof. \Rightarrow Exists basis \mathcal{B} of V in which

 $[\alpha]_{\mathcal{B}}=D_1$ $[\beta]_{\mathcal{B}}=D_2$ D_1,D_2 both diagonal, then $D_1D_2=D_2D_1$ so $\alpha\beta=\beta\alpha.$ \Leftarrow Suppose α, β are both diagonalisable and $\alpha\beta = \beta\alpha$. Let $\lambda_1, \ldots, \lambda_k$ be the k distinct eigenvalues of α . We have shown:

$$\alpha$$
 diagonalisable $\iff V = \bigoplus_{i=1}^k V_{\lambda_i}$

 V_{λ_i} is the eigenspace associated to λ_i .

Claim: V_{λ_I} stable by β : $\beta(V_{\lambda_i}) \leq V_{\lambda_i}$. Indeed, let $v \in V_{\lambda_i}$, then

$$\alpha\beta(v) = \eta\alpha(v) = \beta(\lambda_i v) = \lambda_i\beta(v)$$

so $\beta(v) \in V_{\lambda_i}$.

• We use criterion for diagonalisability: β is diagonalisable implies that there exists p with distinct linear factors such that $p(\beta) = 0$.

Now $B|_{V_{\lambda_i}}$ endomorphism $(\beta: V_{\lambda_j} \to V_{\lambda_j})$ and

$$p(\beta|_{V_{\lambda_i}}) = 0$$

p has distinct linear factors, so $\beta | V_{\lambda_j}$ is diagonalisable. So there exists \mathcal{B} basis of V_{λ_j} in which $\beta |_{V_{\lambda_j}}$ is diagonal. Then

$$V = \bigoplus_{i=1}^{k} V_{\lambda_i}$$

so $(\mathcal{B}_1, \ldots, \mathcal{B}_k) = \mathcal{B}$ is a basis of V in which both α and β are in diagonal form.

Minimal polynomial of an endormorphism

• Remainder: (Groups, Rings and Modules). Euclidean algorithm for polynomials: a, b polynomials over $F, b \neq 0$, then there exist polynomials q, r over F with:

$$\deg r < \deg b$$
$$a = qb + r$$

Definition (Minimal polynomial). V vector space over F, $\dim_F V < \infty$. Let $\alpha \in \mathcal{L}(V)$. The minimal polynomial m_{α} of α is the (unique up to a constant) non zero polynomial with smallest degree such that

$$m_{\alpha}(\alpha) = 0$$

Existence and uniqueness follow from the following observations:

• dim_F $V = n, \alpha \in \mathcal{L}(V)$. We know:

$$\dim_F \mathcal{L}(V) = n^2$$

$$\implies \text{id}, \alpha, \dots, \alpha^{n^2} \text{ cannot be free}$$
$$\implies a_{n^2} \alpha^{n^2} + \dots + a_1 \alpha + a_0 = 0$$
$$\implies \exists p \in F[t] \mid p(\alpha) = 0, p \neq 0$$

That is, there does exist a polynomial p that kills α .

• Lemma: $\alpha \in \mathcal{L}(V)$, $p \in F[t]$. Then $p(\alpha) = 0$ if and only if m_{α} is a factor of p. Proof: $p \in F[t]$, $p(\alpha) = 0$, m_{α} is minimum polynomial of α . So deg $m_{\alpha} \leq \deg p$. By Euclidean division:

$$p = m_{\alpha}q + r$$

 $\deg r < \deg m_{\alpha}$

Then

$$p(\alpha) = 0 = m_{\alpha}q(\alpha)r(\alpha)$$

so $r(\alpha) = 0$. If $r \neq 0$, then this would contradict the definition of m_{α} . So $r \equiv 0$. So $p = m_{\alpha}q$, that is, m_{α} divides p.

• If m_1, m_2 are both polynomial with smallest degree which kill α then by the above lemma, $m_1 \mid m_2, m_2 \mid m_1$ so $m_2 = cm_1, c \in F$. That is, the minimal polynomial is unique up to a constant.

Example. $V = \mathbb{R}^2$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- Let $p(t) = (t-1)^2$, then p(A) = p(B) = 0. So minimal polynomial is either t-1 or $(t-1)^2$.
- Check: $m_A = t 1$, $m_B = (t 1)^2$. So A is diagonalisable but B is not.

1.18 Cayley Hamiton Theorem and multiplicity of eiganvalues

Theorem (Cayley Hamilton). Let V be an F vector space, $\dim_F V < \infty$. Let $\alpha \in \mathcal{L}(V)$ with characteristic polynomial $\chi_{\alpha}(t) = \det(\alpha - tid)$. Then $\chi_{\alpha}(\alpha) = 0$.

Corollary. $m_{\alpha} \mid \chi_{\alpha}$.

Proof. $F = \mathbb{C}$ (general proof is in the notes). $\alpha \in \mathcal{L}(V)$, $n = \dim_{\mathbb{C}} V$. Exists basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ such that

$$[\alpha]_{\mathcal{B}} = \begin{pmatrix} a_1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n \end{pmatrix}$$

(triangulable). Let $U_j = \langle v_1, \ldots, v_j \rangle$. Then because of the triangular form, $(\alpha - a_j \mathrm{id})U_j \leq U_{j-1}$.

$$\chi_{\alpha}(t) = \prod_{i=1}^{n} (a_i - t)$$
$$(\alpha - a_1 \mathrm{id}) \cdots (\alpha - a_{n-1} \mathrm{id}) (\alpha - a_n \mathrm{id}) V$$
$$\leq (\alpha - a_1 \mathrm{id}) \cdots (\alpha - a_{n-1} \mathrm{id}) U_{n-1}$$
$$\vdots$$
$$\leq 0$$

So $\chi_{\alpha}(\alpha) = 0$. For the general case, see the notes.

Definition (algebraic / geometric multiplicity). dim_F $V < \infty$, $\alpha \in \mathcal{L}(V)$. Let λ eigenvalue of α . Then

$$\chi_{\alpha}(t) = (t - \lambda)^{a_{\lambda}} q(t)$$
$$q \in F[t], \quad q(\lambda) \neq 0$$

- a_{λ} is the algebraic multiplicity of λ .
- g_{λ} is the geometric multiplicity of λ , and $g_{\lambda} = \dim \ker(\alpha \lambda id)$.

Remark. λ eigenvalue $\iff \alpha - \lambda \iff \text{singular} \iff \det(\alpha - \lambda \operatorname{id}) = \chi_{\alpha}(\lambda) = 0$

Lemma. λ eigenvalue of $\alpha \in \mathcal{L}(V)$, then $1 \leq g_{\lambda} \leq a_{\alpha}$.

Proof. • $g_{\lambda} = \dim \ker(\alpha - \lambda \operatorname{id}) \ge 1$ since λ is an eigenvalue.

• Let us show that $g_{\lambda} \leq a_{\lambda}$. Indeed, let $(v_1, \ldots, v_{g_{\lambda}})$ basis of $V_{\lambda} = \ker(\alpha - \lambda id)$, and compute $\mathcal{B} = (v_1, \ldots, v_{\lambda_g}, v_{g_{\lambda}+1}, \ldots, v_n)$ of V. Then

$$[\alpha]_{\mathcal{B}} = \begin{pmatrix} \lambda \mathrm{id}_{g_{\lambda}} & * \\ 0 & A_1 \end{pmatrix}$$

$$\implies \det[\alpha - t\mathrm{id}] = \det \begin{pmatrix} (\lambda - t)\mathrm{id}_{g_{\lambda}} & * \\ 0 & A_1 - t\mathrm{id} \end{pmatrix} = (\lambda - t)^{g_{\lambda}}\chi_{A_1}(t)$$
$$\implies g_{\lambda} \le a_{\lambda}$$

Lemma. λ eigenvalue of $\alpha \in \mathcal{L}(V)$. Let:

 $c_{\lambda} \equiv$ multiplicity of λ as a root of m_{α} (minimal polynomial)

Then $1 \leq c_{\lambda} \leq a_{\lambda}$.

Proof. • Cayley-Hamilton implies $m_{\alpha} \mid \chi_{\alpha}$. So $c_{\lambda} \leq a_{\lambda}$.

• $c_{\lambda} \geq 1$. Indeed, there exists $b \neq 0$ such that $\alpha(v) = \lambda v$ so then for all $p \in F[t]$, $p(\alpha)(v) = (p(\lambda))v \ (\alpha^n(v) = \lambda^n v)$ so $m(\alpha)(v) = (m(\lambda))v$ so $m(\lambda) = 0$ so $c_{\lambda} \geq 1$.

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

 $m_A?$

- $\chi_A(t) = (t-1)^2(t-2)$
- So m_{α} is either $(t-1)^2(t-2)$ or (t-1)(t-2). Check (A-I)(A-2I) = 0, so $m_{\alpha} = (t-1)(t-2)$ so A is diagonalisable.

Start of lecture 17

Example (Jordan block).

$$J_{\lambda} = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & \lambda \end{pmatrix} \in \mathcal{M}_{n}(F)$$

Check $g_{\lambda} = 1, a_{\lambda} = n, c_{\lambda} = n$

Lemma (characterisation of diagonalisable endomorphisms over $F = \mathbb{C}$). $F = \mathbb{C}$, $\dim_{\mathbb{C}} V = n < \infty, \alpha \in \mathcal{L}(V)$. The following are equivalent:

- (i) α diagonalisable
- (ii) $\forall \lambda$ eigenvalue of α , $a_{\lambda} = g_{\lambda}$
- (iii) $\forall \lambda$ eigenvalue of α , $c_{\lambda} = 1$.

Proof. (i) \iff (iii) done. We need (i) \iff (ii). Indeed, let $(\lambda_1, \ldots, \lambda_k)$ be the *distinct* eigenvalues of α . We showed:

$$\alpha$$
 diagonalisable $\iff V = \bigoplus_{i=1}^k V_{\lambda_i}$

$$\dim V = n = \deg \chi_{\alpha}$$
$$= \sum_{i=1}^{k} a_{\lambda_i}$$
$$(\chi_{\alpha}(t) = (-1)^n \prod_{i=1}^{k} (t - \lambda_i)^{a_i})$$

 \mathbf{SO}

$$\alpha$$
 diagonalisable $\iff \sum_{i=1}^{k} a_{\lambda_i} = \sum_{i=1}^{k} g_{\lambda_i}$ (*)

We know: $\forall 1 \leq i \leq k, \ g_{\lambda_i} \leq a_{\lambda_i}$. Hence (*) holds $\iff \forall 1 \leq i \leq k, \ a_{\lambda_i} = g_{\lambda_i}$. \Box

1.19 Jordan normal form

Note. In this subsection, $F = \mathbb{C}$.

Definition (Jordan normal form). Let $A \in \mathcal{M}_n(\mathbb{C})$, we say that A is in Jordan Normal Form (JNF) if it is a block diagonal matrix:

$$A = \begin{pmatrix} J_{n_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{n_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{n_k}(\lambda_k) \end{pmatrix}$$

where:

- $k \ge 1, k$ integer
- n_1, \ldots, n_k integers
- $\sum_{i=1}^k n_i = n$
- $\lambda_i \in \mathbb{C}, 1 \leq i \leq k$: they need *not* be distinct
- $m \in \mathbb{N}, m \neq 0, \lambda \in \mathbb{C}, J_m(\lambda) = \lambda$ if m = 1,

Example. n = 3,

$$A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} J_1(\lambda & 0 & 0 \\ 0 & J_1(\lambda) & 0 \\ 0 & 0 & J_1(\lambda) \end{pmatrix}$$

so this is in Jordan Normal Form.

Theorem. Every matrix $A \in \mathcal{M}_n(\mathbb{C})$ is similar to a matrix in Jordan Normal Form, which is unique up to reordering the Jordan block.

Proof. Non examinable (in Groups, Rings and Modules class). (Proof is in lecturer's notes). \Box

Example. n = 2, possible JNF in this case?

$$\begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix} \quad m = (t - \lambda_1)(t - \lambda_2), \quad \lambda_1 \neq \lambda_2$$

$$\begin{pmatrix} \lambda & 0\\ 0 & \lambda \end{pmatrix} \quad m = (t - \lambda)$$

$$\begin{pmatrix} \lambda & 1\\ 0 & \lambda \end{pmatrix} \quad m = (t - \lambda)^2$$

Example. n = 3, $\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{pmatrix} \quad (t - \lambda_1)(t - \lambda_2)(t - \lambda_3) \quad \lambda_1, \lambda_2, \lambda_3 \text{ distinct}$ $\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_2 \end{pmatrix} \quad (t - \lambda_1)(t - \lambda_2)$ $\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 1\\ 0 & 0 & \lambda_2 \end{pmatrix} \quad (t - \lambda_1)(t - \lambda_2)^2$ $\begin{pmatrix} \lambda & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & \lambda \end{pmatrix} \quad (t - \lambda)$ $\begin{pmatrix} \lambda & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & \lambda \end{pmatrix} \quad (t - \lambda)^2$ $\begin{pmatrix} \lambda & 1 & 0\\ 0 & \lambda & 1\\ 0 & 0 & \lambda \end{pmatrix} \quad (t - \lambda)^3$

Useful observation: which explains why JNF is unique. \rightarrow we can directly compute in the JNF the quantities $a_{\lambda}, g_{\lambda}, c_{\lambda}$. Indeed, let $M \geq 2$ and let $J_m(\lambda)$. Then

By induction we can show:

$$\left(J_m - \lambda I_n \right)^k = \left(\begin{array}{c} O & I_m \\ O & O \end{array} \right)$$

for $k \leq m$, and is 0 for k = m. We say that the matrix $(J_m - \lambda id)$ is *nilpotent* of order m. $(u^m = 0 \text{ and } u^{m-1} \neq 0)$. So

 $a_{\lambda} \equiv$ sum of sizes of blocks with eigenvalue $\lambda \equiv$ number of λ on the diagonal

 $g_{\lambda} = \dim \ker(A - \lambda \mathrm{id}) = \mathrm{number} \text{ of blocks with eigenvalue } \lambda$

$$c_{\lambda}J_m(\lambda) \to (t-\lambda)^m$$
kills it

(because $(J_m - \lambda id)$ is nilpotent of order exactly m) so

 $c_{\lambda} \equiv$ size of the largest block with eigenvalue λ

Example.

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$$

Find a basis in which A is Jordan Normal Form?

 $\chi_A(t) = (t-1)^2$ eigenvalue $\lambda = 1$. $A - \mathrm{id} \neq 0$ implies $m_A(t) = (t-1)^2$, and Jordan Normal Form $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

$$A - \mathrm{id} = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$$

 $\ker(A - \mathrm{id}) = \langle v_1 \rangle, v_1 = (1, -1)^{\top}$. I look for a (non-unique!) v_2 such that

$$(A - \mathrm{id})v_2 = v_1$$

 $v_2 = (-1, 0)^{\top}$ works.

$$[A]_{\mathcal{B}} = J_1(1)$$

for $\mathcal{B} = (v_1, v_2)$.

$$P^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}$$
$$A = \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}}_{P^{-1}} \underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{J} \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}}_{P}^{-1}$$

Exercise:

$$A = \begin{pmatrix} 3 & -2 & 0\\ 1 & 0 & 0\\ 1 & 0 & 1 \end{pmatrix}$$

Find a basis in which A is JNF.

Theorem (Generalised eigenspace decomposition). • $\dim_{\mathbb{C}} V = n < \infty$

- $\alpha \in \mathcal{L}(V).$
- $m_{\alpha}(t) = (t \lambda_1)^{c_1} \cdots (t \lambda_k)^{c_k}$
- $\lambda_1, \ldots, \lambda_k$ distinct eigenvalues of α . Then

$$V = \bigoplus_{j=1}^{k} V_j$$

$$V_j = \ker[(\alpha - \lambda \mathrm{id})^{c_j}]$$

 $(V_j \text{ is generalised eigenspace})$

Remark. α diagonalisable, $c_j = 1$. Then V_j eigenspace associated to λ_j .

 $\mathit{Proof.}\,$ projectors onto V_j are $\mathit{explicit.}\,$ Indeed, let

$$p_j(t) = \prod_{i \neq j} (t - \lambda_i)^{c_i}$$

Then the p_j have no common factor, so by Euclid's algorithm, we can find q_1, \ldots, q_k polynomials such that

$$\sum_{i=1}^{k} p_i q_i = 1 \tag{(*)}$$

We define

$$\pi_j = q_j p_j(\alpha)$$

(i) By (*),

$$id = \sum_{j=1}^{k} q_j p_j(\alpha) = \sum_{j=1}^{k} \pi_j$$
$$\implies \forall v \in V, v = \sum_{j=1}^{k} \pi_j(v)$$

(ii)
$$m_{\alpha}(\alpha) = 0, \ m_{\alpha} = \prod_{j=1}^{k} (t - \lambda_j)^{c_j}$$

 $\implies (\alpha - \lambda_j \mathrm{id})^{c_j} \pi_j = (\alpha - \lambda_j \mathrm{id})^{c_j} q_j p_j(\alpha) = 0$
 $\implies \forall v \in V, \pi(v) \in V_j$
 $V_j = \ker(\alpha - \lambda_j \mathrm{id})^{c_j}$

Hence $\forall v \in V$

$$v = \sum_{j=1}^{k} \pi_j(v)$$
$$\implies V = \sum_{j=1}^{k} V_{\lambda_j}$$

(iii) Show that:

$$\sum_{j=1}^{k} V_{\lambda_j} = \bigoplus_{j=1}^{k} V_{\lambda_j}$$

Indeed, $\pi_i \pi_j = 0$ if $i \neq j$ and so $\pi_i = \pi_i \left(\sum_{j=1}^k \pi_j \right) = \pi_i^2$. $\implies \pi_i|_{V_{\lambda_i}} = \mathrm{id}$

 \implies direct sum projection follows:

$$v = V_{\lambda_i} \cap \left(\sum_{i \neq j} V_{\lambda_i}\right)$$
$$v = \sum_{i \neq j} v_j, \quad v_j \in V_{\lambda_j}$$

If apply π_i and use:

$$\pi_i|_{V_{\lambda_i}} = \mathrm{id}$$

$$\pi_i|_{V_{\lambda_i}} = 0 \text{ for } j \neq i$$

so v = 0.

By definition

 $(\alpha - \lambda_i \mathrm{id})|_{V_{\lambda_i}}$

is nilpotent, since

$$(\alpha - \lambda_i \mathrm{id})^{c_{\lambda_i}}|_{V_{\lambda_i}} = 0$$

 \implies all I need to do is to find JNF nilpotent endomorphism.

• $\alpha \in \mathcal{L}(V)$, dim_C V = n, $a^k = 0$, $a^{k-1} \neq 0$. $\xrightarrow{?}$ JNF with blocks $J_m(0)$. \rightarrow By induction on the dimension.

$$\alpha^{k} = 0, \alpha^{k-1} \neq 0$$
$$\implies \exists x \in V, (x, \alpha(x), \dots, \alpha^{k-1}(x))$$

free.

Question: $F = \operatorname{span}\langle x, \alpha(x), \dots, \alpha^{k-1}(x) \rangle$. Can I find G such that:

 $V = F \oplus G$

 $\begin{array}{l} G \text{ stable by } \alpha? \\ \rightarrow \text{ done.} \end{array}$

Start of lecture 18

1.20 Bilinear Forms

Bilinear form: $\varphi: V \times V \to F$.

- $\dim_F V < \infty$, \mathcal{B} basis of V.
- $[\varphi]_{\mathcal{B}} = [\varphi]_{\mathcal{B},\mathcal{B}} = (\varphi(e_i, e_j))_{1 \le i,j \le n}$. $\mathcal{B} = (e_i)_{1 \le i \le n}$.

Lemma. $\varphi: V \times V \to F$ bilinear, $\mathcal{B}, \mathcal{B}'$ two basis of $V, P = [id]_{\mathcal{B}', \mathcal{B}}$ then $[\varphi]_{\mathcal{B}'} = P^{\top}[\varphi]_{\mathcal{B}}P$

Proof. Special case of the general formula \rightarrow Lecture 10.

Definition (Congruent matrices). $A, B \in \mathcal{M}_n(F)$, we say that A and B are *con*gruent if and only if there exists P invertible such that

 $A = P^{\top} B P$

Remark. This defines an equivalence relation.

Definition (Symmetric). A bilinear form φ on V is symmetric if:

 $\varphi(u,v) = \varphi(v,u) \quad \forall (u,v) \subset V \times V$

Remark. • $A \in \mathcal{M}_n(F)$, we say that A is symmetric if and only if $A = A^{\top}$

$$\iff A = (a_{ij})_{1 \le i,j \le n}, a_{ij} = a_{ji}$$

• φ symmetric $\iff [\varphi]_{\mathcal{B}}$ is symmetric in *any* basis \mathcal{B} of V.

Remark. To be able to represent φ by a diagonal matrix, then φ must be symmetric $P^{\top}AP = D \implies D^{\top}P^{\top}A^{\top}P$ $\implies A = A^{\top}$

Definition (Quadratic form). A map $Q: V \to F$ is a *quadratic form* if and only if there exists a bilinear form $\varphi: V \times V \to F$ such that $\forall u \in V$,

$$Q(u) = \varphi(u, u)$$

Remark.
$$\mathcal{B} = (e_i)_{1 \le i \le n}, A = [\varphi]_{\mathcal{B}} = (\underbrace{\varphi(e_i, e_j)}_{a_{ij}})_{1 \le i,j \le n}$$
. Then
$$u = \sum_{i=1}^n x_i e_i, x = (x_1, \dots, x_n)^\top$$

Then

$$Q(u) = \varphi(u, u)$$

= $\varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{i=1}^{n} x_i e_i\right)$
= $\sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \underbrace{\varphi(e_i, e_j)}_{a_{ij}}$
= $\sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j a_{ij}$
= $x^{\top} A x$

 \mathbf{SO}

$$Q(u) = x^{\top} A x$$

Observation:

$$x^{\top}Ax = \sum_{i,j=1}^{n} a_{ij}x_ix_j$$
$$= \sum_{i,j=1}^{n} a_{ji}x_ix_j$$
$$= \frac{1}{2}\sum_{i,j=1}^{n} (a_{ij} + a_{ji})x_ix_j$$
$$= \frac{1}{2}x^{\top}(A + A^{\top})x$$

and $\frac{1}{2}(A + A^{\top})$ is symmetric.

Proposition. If $Q: V \to F$ is a quadratic form, then there exists a *unique symmetric* bilinear form $\varphi: V \times V \to F$ such that:

$$\forall u \in V, Q(u) = \varphi(u, u)$$

Proof. Let ψ bilinear form on V such that

$$\forall u, Q(u) = \psi(u, u)$$

Let

$$\varphi(u,v) = \frac{1}{2}(\psi(u,v) + \psi(v,u))$$

- φ symmetric
- $\varphi(u, u) = \psi(u, u) = Q(u).$

 \rightarrow existence of φ symmetric. Now uniqueness. Let φ be a symmetric bilinear form such that $\varphi(u, u) = Q(u) \forall u \in V$. Then

$$Q(u + v) = \varphi(u + v, u + v)$$

= $\varphi(u, u) + \varphi(v, u) + \varphi(v, u) + \varphi(v, v)$
= $Q(u) + 2\varphi(u, v) + Q(v)$

 \mathbf{SO}

$$\varphi(u, v) = \frac{1}{2}[Q(u+v) - Q(u) - Q(v)]$$

 \equiv POLARIZATION IDENTITY.

Theorem (Diagonalisation of symmetric bilinear forms). Let $\varphi : V \times V \to F$ be a symmetric bilinear form $(\dim_F V < \infty)$. Then there exists a basis \mathcal{B} of V such that:

 $[\varphi]_{\mathcal{B}}$ is diagonal

 \implies extensions to infinite dimensional cases.

Proof. • dim_F $V < \infty$.

- Induction on the dimension n.
- n = 0, 1 are clear.
- Suppose that the theorem holds for all dimensions < n.
 - (1) Let $\varphi : V \times V \to F$ be a symmetric bilinear form. If $\varphi(u, u) = 0, \forall u \in V, \varphi$ is identically zero. (polarization identity).

$$\implies \exists u \in V \setminus \{0\} \mid \varphi(u, u) \neq 0$$

(because $\varphi \neq 0$).

(2) Let us call $u = e_1$. $(e_1 \neq 0, \, \varpi(e_1, e_1) \neq 0)$. Let us define

$$U = (\langle e_1 \rangle)^{\perp}$$

= { $v \in V \mid \varphi(e_1, v) = 0$ }
= ker{ $\varphi(e_1, \bullet) : V \to F, v \mapsto \varphi(e_1, v)$ }

(linear because φ is bilinear). Now rank nullity:

 $\dim V = n = 1 + \dim U$

 $(r(\varphi(e_1, \bullet)) = 1 \ \varphi(e_1, e_1) \neq 0)$ So dim U = n - 1.

(3) Claim $U + \langle e_1 \rangle = U \oplus \langle e_1 \rangle$. Indeed, $v \in \langle e_1 \rangle \cap U$ then $v = \lambda e_1, \lambda \in F$.

 $\varphi(e_1, v) = 0 \quad (v \in U)$

so $0 = \varphi(e_1, \lambda e_1) = \lambda \varphi(e_1, e_1)$ so $\lambda = 0$, so v = 0.

- (4) Conclusion $V = \langle e_1 \rangle \oplus U$, by counting dimensions.
- (5) Complete (e_2, \ldots, e_n) basis of U. So $\mathcal{B} = (e_1, e_2, \ldots, e_n)$ basis of V. And:

$$(\varphi(e_j, e_1) = \varphi(e_1, e_j) = 0 \text{ for } 2 \le j \le n).$$

$$A' = (\varphi(e_i, e_k))_{2 \le i, j \le n}$$

Then $(A')^{\top} = A'$ since φ symmetric.

$$\implies \varphi|_U : U \times U \to F$$

bilinear symmetric with matrix A'. By the induction hypotheses, I can find $\mathcal{B}' = (e'_2, \ldots, e'_n)$ basis of U in which $[\varphi|_U]_{\mathcal{B}'}$ is diagonal. Then

 $[\varphi]_{(e_1,e'_2,\ldots,e'_n)}$

diagonal form.

Remark. $\varphi(e_1, e_1) \neq 0$

$$\implies V = \langle e_1 \rangle \oplus U$$
$$U = \langle e_1 \rangle^{\perp}$$

Example. $V = \mathbb{R}^3$

• $Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3 = x^\top Ax$ where

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

- Diagonalise: Two ways.
 - (1) Follow the proof of diagonalisation \rightarrow algorithm.
 - (2) "Complete the square"

$$Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$

= $(x_1 + x_2 + x_3)^2 + x_3^2 - 4x_2x_3$
= $\underbrace{(x_1 + x_2 + x_3)}_{x_1'} + \underbrace{(x_3 - 2x_2)}_{x_2'} - \underbrace{(2x_2)}_{x_3'}$
P,
$$P^{\top}AP = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

- To find P, remember:

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & 0 \end{pmatrix} = P^{-1}$$

Start of lecture 19

1.21 Sylvester's law / Sesquilinear forms

Recall:

Theorem. dim_{*F*} $V < \infty$, $\varphi : V \times V \to F$ is a *symmetric* bilinear form \implies there exists \mathcal{B} basis of V in which $[\varphi]_{\mathcal{B}}$ is diagonal.

Remark. We take $F = \mathbb{R}$ or \mathbb{C} in this subsection.

Corollary. $F = \mathbb{C}$, dim_{\mathbb{C}} $V < \infty$, φ symmetric bilinear form on V. Then there exists basis of V such that

$$[\varphi]_{\mathcal{B}} = \left(\begin{array}{c|c} I_r & 0\\ \hline 0 & 0 \end{array}\right), \qquad r = \operatorname{rank}(\varphi)$$

Proof. Pick a basis $\mathcal{E} = (e_1, \ldots, e_n)$ such that

$$[\varphi]_{\mathcal{E}} = \begin{pmatrix} a_1 & 0 & \cdots & 0\\ 0 & a_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & a_n \end{pmatrix}$$

Reorder e_i such that $a_i \neq 0$ for $1 \leq i \leq r$, $a_i = 0$ for i > r. For $i \leq r$, I let $\sqrt{a_i}$ be a choice of complex root of a_i , we define:

$$v_i = \begin{cases} \frac{e_i}{\sqrt{a_i}} & \text{for } 1 \le i \le r\\ e_i & \text{for } i < r \end{cases}$$

 $\mathcal{B} = (v_1, \ldots, v_r, e_{r+1}, \ldots, e_n), \mathcal{B}$ basis of V

$$\implies [\varphi]_{\mathcal{B}} = \left(\begin{array}{c|c} I_r & 0\\ \hline 0 & 0 \end{array}\right) \qquad \qquad \square$$

Corollary. Every symmetric matrix of $\mathcal{M}_n(\mathbb{C})$ is congruent to a UNIQUE matrix of the form:

$$\left(\begin{array}{c|c} I_r & 0\\ \hline \\ 0 & 0 \end{array}\right)$$

We want to address the same problem with $F = \mathbb{R}$. \rightarrow we cannot take complex roots this time.

Corollary. $F = \mathbb{R}$, dim_{\mathbb{R}} $V < \infty$, φ symmetric bilinear form on V. Then there exists $\mathcal{B} = (v_1, \ldots, v_n)$ basis of V such that

 $p,q \ge 0, p+q = r(\varphi).$

Proof. $\mathcal{E} = (e_1, \ldots, e_n)$ basis of V such that

$$[\varphi]_{\mathcal{E}} = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix} \qquad a_i \in \mathbb{R}$$

Reorder a_i so that:

- $a_i > 0$ for $1 \le i \le p$
- $a_i < 0$ for $p+1 \le i \le q$
- $a_i = 0$ for $i \ge q+1$

We define:

$$v_i = \begin{cases} \frac{e_i}{\sqrt{a_i}} & 1 \le i \le p\\ \frac{e_i}{\sqrt{|a_i|}} & p+1 \le i \le q\\ e_i & i \ge q+1 \end{cases}$$

Then let $\mathcal{B} = (v_1, \ldots, v_n)$ and then $[\varphi]_{\mathcal{B}}$ has the announced form.

Definition (signature). We define (under the assumptions above)

$$s(\varphi) = p - q \equiv \text{signature of } \varphi$$

(we also speak of the signature of the associated quadratic form $Q(u)=\varphi(u,u))$

This definition makes sense:

Theorem (Sylvester's law of inertia). $F = \mathbb{R}$, dim_{\mathbb{R}} $V < \infty$, φ symmetric bilinear form on V. If φ is represented by:

with $\mathcal{B}, \mathcal{B}'$ bases of V. Then p = p' and q = q'.

Definition. φ be a symmetric bilinear form on a real valued vector space $(F = \mathbb{R})$. We say that:

(i) φ is positive definite

$$\iff \forall u \in V \setminus \{0\}, \quad \varphi(u, u) > 0$$

(ii) φ is positive semi definite

$$\iff \forall u \in V, \quad \varphi(u, u) \ge 0$$

(iii) φ is negative definite

$$\iff \forall u \in V \setminus \{0\}, \quad \varphi(u, u) < 0$$

(iv) φ is negative semi definite

$$\iff \forall u \in V, \quad \varphi(u, u) \le 0$$

Example.

$$\left(\begin{array}{c|c} I_p & 0\\ \hline 0 & 0 \end{array}\right)$$

positive definite for p = n

• positive semi definite for $p \leq n$.

Proof. (Of Sylvester's law of inertia)

In order to prove that p is independent of the choice of the basis, we show that p has a geometric interpretation:

Claim: p is the largest dimension of subspace on which φ is positive definite. Proof:

Say $\mathcal{B} = (v_1, \ldots, v_n)$ in which:

(1) Let $X = \langle v_1, \ldots, v_p \rangle$. Then φ is positive definite on X. Indeed, $u = \sum_{i=1}^p \lambda_i v_i$,

$$\begin{aligned} Q(u) &= \varphi(u, u) \\ &= \varphi\left(\sum_{i=1}^{p} \lambda_i v_i, \sum_{i=1}^{p} \lambda_i v_i\right) \\ &= \sum_{i,j=1}^{n} \lambda_i \lambda_j \varphi(v_i, v_j) \\ &= \sum_{i=1}^{p} \lambda_i^2 \qquad > 0 \qquad \text{for } u \neq 0 \end{aligned}$$

dim $X = p, \varphi|_{X \times X}$ is positive definite.

(2) Suppose that φ is definite positive when restricted to another subspace X'. Let $X = \langle v_1, \ldots, v_p \rangle$, $Y = \langle v_{p+1}, \ldots, v_n \rangle$, $\mathcal{B} = (v_1, \ldots, v_n)$. Then

⇒ We know that φ is negative semi definite on Y. So $Y \cap X' = \{0\}$. Indeed, if $u \in Y \cap X'$ and $u \neq 0$, then $u \in Y$ so $\varphi(u, u) \leq 0$, but $u \in X'$ so $\varphi(u, u) > 0$. So $Y \cap X' = \{0\}$. So $Y + X' = Y \oplus X'$, so dim $Y + \dim X' \leq n$, and dim Y = n - p so dim $X' \leq p$.

So now we know that p has a geometric interpretation / is unique. Then by considering $-\varphi$, we find that q is unique too.

Remark. Similarly, q is the largest dimension of a subset on which φ is negative definite.

Definition. $K = \text{kernel of a bilinear form } \varphi = \{v \in V \mid \forall u \in V, \varphi(u, v) = 0\}.$

Remark. dim $K + r(\varphi) = n$

Remark. $F = \mathbb{R}$. One notices that there is a subspace T of dimension $n - (p + q) + \min\{p,q\}$ such that $\varphi|_T = 0$. Indeed: $\mathcal{B} = (v_1, \ldots, v_n)$,

$$T = \langle \underbrace{v_1 + v_{p+1}, \dots, v_q + v_{p+q}}_q, \underbrace{v_{p+q+1}, \dots, v_n}_{n-(p+q)} \rangle \text{ (if } p \ge q). \text{ Check } \varphi|_T = 0 \ (\forall (u, v) \in T \times T, \varphi(u, v) = 0). \text{ Moreover, one can show that this is the largest dimension of a subspace } T' \text{ on which } \varphi|_{T' \times T'} = 0$$

Sesquilinear Forms

- $F = \mathbb{C}$
- Standard inner product on \mathbb{C}^n is $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$. In particular,

$$||x||^{2} = \langle x, x \rangle = \underbrace{\sum_{i=1}^{n} |x_{i}|^{2}}_{\in \mathbb{R}^{+}}$$

Warning. $\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$

$$(x,y) \mapsto \langle x,y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$$

is *not* a bilinear form: $\lambda \in \mathbb{C}$,

$$\langle \lambda x, y \rangle = \sum_{i=1}^{n} \lambda x_i \overline{y_i} = \lambda \langle x, y \rangle$$
$$\langle x, \lambda y \rangle = \sum_{i=1}^{n} x_i \overline{\lambda y_i} = \overline{\lambda} \langle x, y \rangle$$

 \rightarrow antilinear with respect to the second coordinate.

Definition. $V, W \mathbb{C}$ vector spaces. A sesquilinear form φ is a function $\varphi : V \times W \to \mathbb{C}$ such that:

- (i) $\varphi(\lambda_1 v_1 + \lambda_2 v_2, w) = \lambda_1 \varphi(v_1, w) + \lambda_2 \varphi(v_2, w)$ (linear with respect to the first coordinate)
- (ii) $\varphi(v, \lambda_1 w_1 + \lambda_2 w_2) = \overline{\lambda_1} \varphi(v, w_1) + \overline{\lambda_2} \varphi(v, w_2)$ (antilinear with respect to the second coordinate).

Start of lecture 20

- $\dim_{\mathbb{C}} W < \infty$, $\dim_{\mathbb{C}} V < \infty$, φ sesquilinear, $V \times W \to \mathbb{C}$
- linear first variable: $\varphi(\lambda u, v) = \lambda \varphi(u, v)$
- multilinear second variable $\varphi(u, \lambda v) = \overline{\lambda} \varphi(u, v)$

Definition. $\mathcal{B} = (v_1, \ldots, v_m)$ basis of $V, \mathcal{C} = (w_1, \ldots, w_n)$ basis of W.

$$[\varphi]_{\mathcal{B},\mathcal{C}} = (\varphi(v_i, w_j))$$

 $m \times n$ matrix.

Lemma. $\varphi(v, w) = [v]_{\mathcal{B}}^{\top}[\varphi]_{\mathcal{B}, \mathcal{C}}\overline{[w]_{\mathcal{B}}}$

Proof. Exercise.

Lemma.
$$\mathcal{B}, \mathcal{B}'$$
 basis for $V, P = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}}, \mathcal{C}, \mathcal{C}'$ basis for $W, Q = [\mathrm{id}]_{\mathcal{C}',\mathcal{C}}$. Then
$$[\varphi]_{\mathcal{B}',\mathcal{C}'} = P^{\top}[\varphi]_{\mathcal{B},\mathcal{C}}\overline{Q}$$

Proof. Exercise.

1.22 Hermitian Forms / $\mathbb C$, Skew Symmetric forms / $\mathbb R$

Hermitian form

 $\dim_{\mathbb{C}} V < \infty, \, \varphi : V \times V \to \mathbb{C} \text{ sesquilinear } (W = V).$

Definition (Hermitian form). A sesquilinear form $\varphi : V \times V \to \mathbb{C}$ is called *Hermitian* if $\forall (u, v) \in V \times V, \quad \varphi(u, v) = \overline{\varphi(v, u)}$

Remark. φ Hermitian

$$\implies \varphi(u, u) = \varphi(u, u)$$
$$\implies \forall u \in V, \varphi(u, u) \in \mathbb{R}$$

Allows us to speak of positive / negative (semi) definite Hermitian form.

Lemma. A sesquilinear form $\varphi: V \times V \to \mathbb{C}$ is Hermitian if and only if $\forall \mathcal{B}$ basis of V,

$$[\varphi]_{\mathcal{B}} = [\varphi]_{\mathcal{B}}^{\top}$$

 $\frac{Proof. \ A = [\varphi]_{\mathcal{B}} = (a_{ij})_{1 \le i,j \le n}, \ a_{ij} = \varphi(e_i, e_j). \ \text{Then} \ a_{ij} = \varphi(e_i, e_j), \ a_{ji} = \varphi(e_j, e_i) = \overline{\varphi(e_i, e_j)} = \overline{a_{ij}}.$

$$\implies [\varphi]_{\mathcal{B}}^{\top} = \overline{[\varphi]}_{\mathcal{B}}$$

Conversely $[\varphi]_{\mathcal{B}} = A, A = \overline{A^{\top}}$

$$u = \sum_{i=1}^{n} \lambda_i e_i$$
$$v = \sum_{i=1}^{n} \mu_i e_i$$

 $\mathcal{B} = (e_1, \ldots, e_n)$

$$\varphi(u, v) = \varphi\left(\sum_{i=1}^{n} \lambda_i e_i, \sum_{i=1}^{n} \mu_i e_i\right)$$
$$= \sum_{i,j=1}^{n} \lambda_i \overline{\mu_j} \varphi(e_i, e_j)$$
$$= \sum_{i,j=1}^{n} \lambda_i \overline{\mu_j} a_{ij}$$

Then

$$\overline{\varphi(v,u)} = \overline{\varphi\left(\sum_{i=1}^{n} \mu_i e_i, \sum_{i=1}^{n} \lambda_i e_i\right)}$$
$$= \overline{\sum_{i=1}^{n} \mu_i \overline{\lambda_j} \varphi(e_i, e_j)}$$
$$= \sum_{i,j=1}^{n} \overline{\mu_i} \lambda_j \overline{a_{ij}}$$
$$= \sum_{i,j=1}^{n} \lambda_i \overline{\mu_j} \overline{a_{jj}}$$
$$= \sum_{i,j=1}^{n} \lambda_i \overline{\mu_j} \overline{a_{ij}}$$
$$= \varphi(u, v)$$

Polarization identity

A Hermitian form φ on a complex vector space V is *entirely determined* by: $Q: V \to \mathbb{R}$, $u \mapsto \varphi(u, u)$ via the formula:

$$\varphi(u,v) = \frac{1}{4} [Q(u+v) - Q(u-v) + iQ(u+iv) - iQ(u-iv)]$$

= polarization identity for Hermitian forms

Proof. Exercise (just check).

Theorem (Sylvester's law of inertia for Hermitian forms). dim_{\mathbb{C}} $V < \infty$, $\varphi : V \times V \to \mathbb{C}$ a Hermitian form on V. Then $\exists \mathcal{B} = (v_1, \ldots, v_n)$ basis of V:

where P and q depend only on φ .

Proof. (Sketch: nearly identical to the real case of symmetric forms).

• Existence: $\varphi \equiv 0$, done. Assume $\varphi \neq 0$, then the polarization identity ensures that there exists $e_1 \neq 0$ such that

$$\varphi(e_1, e_1) \neq 0$$

Rescale:

$$v_1 = \frac{e_1}{\sqrt{|\varphi(e_1, e_1)|}}$$

 $\implies \varphi(v_1, v_1) = \pm 1$. Then we consider the orthogonal:

$$W = \{ w \in V \mid \varphi(v_1, w) = 0 \}$$

and we check (verbatim like in the real case)

$$V = \langle v_1 \rangle \oplus W$$

(dim W = n - 1). Now argue by induction on the dimension on V by considering $\varphi \mid_W$ which is Hermitian on $W \times W$.

• Uniqueness of *p*: As in the real case,

 $p \equiv$ maximal dimension of a subspace on which φ is definite positive ($\varphi(u, u) \in \mathbb{R}$) Similarly for q.

Skew Symmetric Real Valued Forms

 $F = \mathbb{R}, V$ vector space over \mathbb{R} .

Definition (skew symmetric). A bilinear form $\varphi : V \times V \to \mathbb{R}$ is skew symmetric if: $\varphi(u, v) = -\varphi(v, u) \quad \forall (u, v) \in V \times V$

This is also often called antisymmetric.

Remark. (i) $\varphi(u, u) = -\varphi(u, u)$ so $\varphi(u, u) = 0$. $\forall u \in V$. (ii) $\forall \mathcal{B}$ basis of V, $[\varphi]_{\mathcal{B}} = -[\varphi]_{\mathcal{B}}^{\top}$. (iii) $A \in \mathcal{M}_n(\mathbb{R})$, $A = \frac{1}{2}(A + A^{\top}) + \frac{1}{2}(A - A^{\top})$ i.e. decomposition into symmetric and antisymmetric / skew symmetric parts.

Theorem (Sylvester for skew symmetric form). • V vector space over \mathbb{R} , dim_{\mathbb{R}} $V < \infty$

• $\varphi: V \times V \to \mathbb{R}$ skew symmetric bilinear form. Then there exists \mathcal{B} basis of V,

$$\mathcal{B} = (v_1, w_1, v_2, w_2, \dots, v_m, w_m, v_{2m+1}, v_{2m+2}, \dots, v_n)$$

such that

Corollary. Skew symmetric matrices have an even rank.

Proof. (Sketch). Induction on the dimension of V.

- $\varphi \equiv 0$ then done.
- $\varphi \neq 0 \implies \exists (v_1, v_w) \in V \times V \text{ such that } \varphi(v_1, w_1) \neq 0.$
- $v_1 \neq 0, w_1 \neq 0$, after scaling:

$$\varphi(v_1, w_1) = 1$$
$$\implies \varphi(w_1, v_1) = -1$$

since skew symmetric.

• (v_1, w_1) linearly independent.

$$\varphi(v_1, \lambda v_1) = \lambda \varphi(v_1, v_1) = 0$$

since skew symmetric.

• Define $U = \langle v_1, w_1 \rangle$.

$$W = \{ v \in V \mid \varphi(v_1, v) = \varphi(w_1, v) = 0 \}$$

Exercise: show that $V = U \oplus W$.

• Now apply the induction hypothesis to $\varphi|_{W \times W}$ skew symmetric.

Inner Product Spaces

- definite positive bilinear forms:
 - \rightarrow Scalar product
 - \rightarrow Norm (distance)

 \implies SPECTACULAR generalisation / application to infinite dimensional spaces:

Hilbert Spaces

 \rightarrow part II (linear analysis, analysis of functions).

Definition (Inner product). Let V be a vector space over \mathbb{R} (respectively \mathbb{C}). An *inner product* is a positive definite symmetric (respectively Hermitian) bilinear form φ on V.

Notation. $\varphi(u, v) = \langle u, v \rangle$.

If such a bilinear form exists, V is called a real (respectively complex) inner product space.

 $\overline{i=1}$

Example. (i)
$$\mathbb{R}^n$$
, $x = (x_1, \dots, x_n)^\top$, $y = (y_1, \dots, y_n)^\top$,
 $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$

 \rightarrow inner product.

(ii) \mathbb{C}^n , $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i} \to \text{inner product.}$ (iii) $V = \mathcal{C}([0, 1], \mathbb{C})$ $\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} dt$ "L² scalar product"

One can check that (i), (ii), (iii) are inner products.

$$\langle u, u \rangle = 0 \implies u = 0$$

 \rightarrow definite positive assumption.

Start of lecture 21

1.23 Gram Schmidt and orthogonal complement

• V vector space over \mathbb{R} (or \mathbb{C}). An inner product is a *positive definite* symmetric (or Hermitian) bilinear form on V.

Notation. $\varphi(u, v) = \langle u, v \rangle$.

• Norm: $||v|| = \sqrt{\langle v, v \rangle}$ (the norm). Then $||v|| \ge 0$ and $||v|| = 0 \iff v = 0$.

 \rightarrow associated notion of length.

Lemma (Cauchy-Schwartz).

$$|\langle v, v \rangle| \le \|u\| \|v\|$$

More over, equality holds if and only if u and v are proportional.

Proof. $f = \mathbb{R}$ or \mathbb{C} . Let $t \in F$, then

$$0 \le ||tu - v||^2$$

= $\langle tu - v, tu - v \rangle$
= $t\bar{t}\langle u, u \rangle - t\langle v, v \rangle - \bar{t}\langle v, u \rangle + ||v||^2$
= $|t|^2 ||u||^2 - 2\operatorname{Re}(t\langle v, u \rangle) + ||v||^2$

Explicitly: the minimum is taken at $t = \frac{\overline{\langle u, v \rangle}}{\|u\|^2}$

$$\implies 0 \leq \frac{|\langle u, v \rangle|^2}{\|u\|^2} \|u\|^2 - 2\operatorname{Re}\left(\frac{|\langle u, v \rangle|^2}{\|u\|^2}\right) + \|v\|^2$$
$$\implies 0 \leq \|v\|^2 - \frac{|\langle u, v \rangle|^2}{\|u\|^2}$$
$$\implies |\langle u, v \rangle|^2 \leq \|u\|^2 \|v\|^2$$

Exercise: equality $\implies u$ and v are proportional.

Corollary (Triangle inequality). $\|u+v\| \leq \|u\| + \|v\| \tag{(*)}$

 \rightarrow key to show that $\| \bullet \|$ is a norm.

Proof.

$$||u + v||^{2} = \langle u + v, u + v \rangle$$

= $||u||^{2} + 2 \operatorname{Re}(\langle u, v \rangle) + ||v||^{2}$
 $\leq ||u||^{2} + 2||u|||v|| + ||v||^{2}$
= $(||u|| + ||v||)^{2}$

Definition. A set (e_1, \ldots, e_k) of vectors of V is

- (i) Orthogonal: if $\langle e_i, e_j \rangle = 0$ if $i \neq j$.
- (ii) Orthonormal: if $\langle e_i, e_i \rangle = \delta_{ij}$ where

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Lemma. If (e_1, \ldots, e_k) is orthogonal, then

- (i) The family is free
- (ii) $v = \sum_{j=1}^{k} \lambda_j e_j$, then

Proof. (i) $\sum_{j=1}^{k} \lambda_j e_j = 0$

$$\implies 0 = \left\langle \sum_{j=1}^{k} \lambda_j e_j, e_i \right\rangle = \sum_{j=1}^{k} \lambda_j \langle e_j, e_i \rangle = \lambda_i$$

 $\lambda_j = \frac{\langle v, e_j \rangle}{\|e_j\|^2}$

so the family is free.

(ii)
$$v = \sum_{i=1}^{\kappa} \lambda_i e_i.$$

 $\implies \langle v, e_j \rangle = \lambda_j \langle e_j, e_j \rangle = \lambda ||e_j||^2$
 $\implies \lambda_j = \frac{1}{||e_j||^2} \langle v, e_j \rangle$

Lemma (Parseval's Identity). If V is a finite dimensional inner product space and (e_1, \ldots, e_n) is an *orthonormal* basis, then

$$\langle u, v \rangle = \sum_{i=1}^{n} \langle u, e_i \rangle \overline{\langle v, e_i \rangle}$$

In particular, in an orthonormal basis,

$$\|v\|^{2} = \langle v, v \rangle = \sum_{i=1}^{n} |\langle v, e_{i} \rangle|^{2}$$
$$v = \sum_{i=1}^{n} \langle v, e_{i} \rangle e_{i}$$

 $(||e_i|| = 1)$

Proof. $u = \sum_{i=1}^{n} \langle e, e_i \rangle e_i, ||e_1|| = 1, v = \sum_{i=1}^{n} \langle v, e_i \rangle e_i$

$$\implies \langle u, v \rangle \left\langle \sum_{i=1}^{n} \langle u, e_i \rangle e_i, \sum_{i=1}^{n} \langle v, e_i \rangle e_i \right\rangle = \sum_{i=1}^{n} \langle u, e_i \rangle \overline{\langle v, e_i \rangle} \qquad \Box$$

Theorem (Gram-Schmidt orthogonalisation process). V inner product space let I countable (finite) est and $(v_i)_{i \in I}$ linearly independent. Then there exists a sequence $(e_i)_{i \in I}$ of orthonormal vectors such that

$$\operatorname{span}\langle v_1,\ldots,v_k\rangle = \operatorname{span}\langle e_1,\ldots,e_k\rangle$$

 $\forall k \geq 1.$

 \rightarrow if dim $V < \infty$, then we have existence of an *orthonormal* basis.

Proof. We construct the $(e_i)_{i \in I}$ family by induction on k.

- $k = 1, v_1 \neq 0 \implies e_1 = \frac{v_1}{\|v_1\|}.$
- Say we found (e_1, \ldots, e_k) , we look for e_{k+1} .

We define:

$$e'_{k+1} = v_{k+1} - \sum_{i=1}^{k} \langle v_{k+1}, e_i \rangle e_i$$

• $e'_{k+1} \neq 0$. Indeed, otherwise,

$$v_{k+1} \in \langle e_1, \dots, e_k \rangle = \langle v_1, \dots, v_k \rangle$$

which would contradict the fact that $(v_i)_{i \in I}$ is free.

• Pick $1 \le j \le k$:

$$\langle e'_{k+1}, e_j \rangle = \left\langle v_{k+1} - \sum_{i=1}^k \langle v_{k+1}, e_i \rangle e_i, e_j \right\rangle$$
$$= \langle v_{k+1}, e_j \rangle - \langle v_{k+1}, e_j \rangle$$
$$= 0$$

•
$$\langle v_1, \dots, v_{k+1} \rangle = \langle e_1, \dots, e_k, e'_{k+1} \rangle$$

• We take $e_{k+1} = \frac{e'_{k+1}}{\|e'_{k+1}\|}$

 \implies Gram Schmidt designs an algorithm to compute e_k for all k.

Corollary. V finite dimensional inner product space. Then any orthonormal set of vectors can be extended to an orthonormal basis of V.

Proof. Pick (e_1, \ldots, e_k) orthonormal. Then they are linearly independent, so we can extend $(e_1, \ldots, e_k, v_{k+1}, \ldots, v_n)$ basis of V. Apply Gram-Schmidt to this set noticing that there is no need to modify the first k vectors.

$$\implies (e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$$

orthonormal basis of V.

Note. $A \in \mathcal{M}_n(\mathbb{R})$, then A has *orthonormal* column vectors if and only if

 $A^{\top}A = \mathrm{id} \qquad (\mathbb{R})$

 $A^{\top}\overline{A} = \mathrm{id} \qquad (\mathbb{C})$

Definition. (i) $A \in \mathcal{M}_n(\mathbb{R})$ is orthogonal if:

$$A^{\top}A = \mathrm{id} \qquad (\iff A^{-1} = A^{\top})$$

(ii) $A \in \mathcal{M}_n(\mathbb{C})$ is unitary if:

$$A^{\top}\overline{A} = \mathrm{id} \qquad (\iff A^{-1} = \overline{A^{\top}})$$

Proposition. $A \in \mathcal{M}_n(\mathbb{R})$ (respectively $\mathcal{M}_n(\mathbb{C})$), then A can be written A = RT where:

- T is upper triangular
- *R* is orthogonal (respectively unitary)

Proof. Exercise: apply Gram Schmidt to the (c_1, \ldots, c_n) column vectors of A.

Orthogonal complement and projection

Definition. • V inner product space
• V₁, V₂ ≤ V. We say that V is the orthogonal direct sum of V₁ and V₂ if:
(i) V = V₁ ⊕ V₂
(ii) ∀v₁, v₂) ∈ V₁ × V₂, ⟨v₁, v₂⟩ = 0

Notation. $V = V_1 \stackrel{\perp}{\oplus} V_2 \ (V = V_1 + V_2) \ \text{TODO...}$

Remark. $v \in V_1 \cap V_2$, $||v||^2 = \langle v, v \rangle = 0 \implies v = 0$.

Definition (orthogonal). V inner product space, $W \leq V$.

$$W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \ \forall w \in W \} = \text{orthogonal of } W$$

Lemma. V inner product space, dim $V < \infty$, $W \leq V$. Then

$$V = W \stackrel{\perp}{\oplus} W^{\perp} \tag{(*)}$$

Start of lecture 22

1.24 Orthogonal complement and adjoint map

Definition. Suppose $V = U \oplus W$ (U is a complement of W in V). We define $\pi: V \to W, v = u + w \mapsto w$. Then

- π is linear
- $\pi^2 = \pi$

We say that π is the *projector operator* onto W.

Remark. $\operatorname{id} \pi \equiv \operatorname{projection}$ onto $U \to V$ inner product space, W finite dimensional, then we can chose $U = W^{\perp}$ and π is explicit.

Lemma. • Let V be an inner product space

• Let $W \leq V$, W finite dimensional. Let (e_1, \ldots, e_k) be an orthonormal basis of W (given by Gram-Schmidt). Then

(i)
$$\pi(v) = \sum_{i=1}^{k} \langle v, e_i \rangle e_i \ \forall v \in V \text{ and } V = W \stackrel{\perp}{\oplus} W^{\perp}$$

(ii) $\forall v \in V, \forall w \in W$,

$$||v - \pi(v)|| \le ||v - w||$$

with equality if and only if $w = \pi(v)$ (that is $\pi(v)$ is the point in W closest to v).

Remark. Infinite dimensional generalisation:

- V inner product space \rightarrow V Hilbert space
- W finite dimensional $\rightarrow W$ closed (completeness)
- \rightarrow part II class "Linear Analysis".

Proof. (i) $W = \operatorname{span}\langle e_1, \ldots, e_k \rangle$, $(e_i)_{1 \le i \le k}$ orthogonal. Let us define

$$\pi(v) = \sum_{i=1}^{k} \langle v, e_i \rangle e_i$$

Observation:

$$v = \underbrace{\pi(v)}_{\in W} + \underbrace{v - \pi(v)}_{\text{claim: } \in W^{\perp}}$$

Indeed

$$v - \pi(v) \in W^{\perp} \iff \forall w \in W, \langle v - \pi(v)w \rangle = 0$$
$$\iff \forall 1 \le j \le k, \langle v - \pi(v), e_j \rangle = 0$$

We compute:

$$\langle v - \pi(v), e_j \rangle = \left\langle v - \sum_{i=1}^k \langle v, e_i \rangle e_i, e_j \right\rangle$$
$$= \langle v, e_j \rangle - \langle v, e_j \rangle$$
$$= 0$$

We have shown $v - \pi(v) \in W^{\perp}$ Hence

$$v = \underbrace{\pi(v)}_{\in W} + \underbrace{(v - \pi(v))}_{\in W^{\perp}}$$
$$\implies V = W + W^{\perp}$$

And $v \in W \cap W^{\perp}$

$$\implies \|v\|^2 = \langle \underbrace{v}_{\in W}, \underbrace{v}_{\in W^{\perp}} \rangle = 0$$
$$\implies v = 0$$

 So

$$V=W \stackrel{\perp}{\oplus} W^{\perp}$$

(ii) Indeed, let $w \in W$, then

$$\|v - w\|^{2} = \|\underbrace{v - \pi(v)}_{\in W^{\perp}} + \underbrace{\pi(v) - w}_{\in W}\|^{2}$$

= $\langle v - \pi(v) + \pi(v) - w, v - \pi(v) + \pi(v) - w \rangle$
= $\|v - \pi(v)\|^{2} + \|\pi(v) - w\|^{2}$
 $\geq \|v - \pi(v)\|^{2}$

With equality if and only if $w = \pi(w)$. PYTHAGORAS.

Adjoint map

Definition. Let V, W be finite dimensional inner product spaces, let $\alpha \in \mathcal{L}(V, W)$. Then there exists a *unique* linear map

$$\alpha^*: W \to W$$

such that $\forall (v, w) \in V \times W$,

$$\langle \alpha(v), w \rangle = \langle v, \alpha^*(w) \rangle$$

Moreover, if \mathcal{B} is an orthonormal basis of V and \mathcal{C} is an orthonormal basis of W then

$$[\alpha^*]_{\mathcal{C},\mathcal{B}} = [\alpha]_{\mathcal{B},\mathcal{C}}^+$$

Proof. Computation: $\mathcal{B} = (v_1, \ldots, v_n), \mathcal{C} = (w_1, \ldots, w_m), A = [\alpha]_{\mathcal{B}, \mathcal{C}} = (a_{ij}).$ Existence

$$[\alpha^*]_{\mathcal{C},\mathcal{B}} = \overline{A}^\top = C = (c_{ij})$$

 $c_{ij} = \overline{a_{ji}}$. We compute:

$$\left\langle \alpha \left(\sum_{i} \lambda_{i} v_{i} \right), \sum_{j} \mu_{j} w_{j} \right\rangle = \left\langle \sum_{i,k} \lambda_{i} a_{ki} w_{k}, \sum_{j} \mu_{j} w_{j} \right\rangle$$
$$= \sum_{i,j} \lambda_{i} a_{ji} \overline{\mu_{j}} \qquad (orthonormal)$$

Then

$$\left\langle \sum_{i} \lambda_{i} v_{i}, \alpha^{*} \left(\sum_{j} \mu_{j} w_{j} \right) \right\rangle = \left\langle \sum_{i} \lambda_{i} v_{i}, \sum_{j,k} \mu_{j} c_{kj} v_{k} \right\rangle$$
$$= \sum_{i,j} \lambda_{i} \overline{c_{ij} \mu_{j}}$$

So the expressions are equal because $\overline{c_{ij}} = a_{ji}$. So this proves existence. Uniqueness follows by computing $\alpha^*(w_j) \rightarrow$ exercise.

Remark. We are using the same notation α^* for the adjoint of α and the dual of α . V, W are real product spaces, $\alpha \in \mathcal{L}(V, W)$,

$$\psi_{R,V}: V \xrightarrow{\simeq} V^*$$
$$v \mapsto \langle \bullet, v \rangle$$
$$\psi_{R,W}: W \xrightarrow{\simeq} W^*$$
$$w \mapsto \langle \bullet, w \rangle$$

Then the adjoint map of α is given by:

$$W \xrightarrow{\psi_{R,W}} W^* \xrightarrow{\mathrm{dual of } \alpha} V^* \xrightarrow{\psi_{R,V}^{-1}} V$$

Self adjoint maps and isometries

Definition. V inner product space finite dimensional $\alpha \in \mathcal{L}(V)$, $\alpha^* \in \mathcal{L}(V)$ the adjoint map. Then:

- $\langle \alpha v, w \rangle = \langle v, \alpha w \rangle \ \forall (v, w) \in V \times V \iff \alpha = \alpha^*$. We call such a map self adjoint. ($\mathbb{R} \alpha$ symmetric, $\mathbb{C} \alpha$ Hermitian).
- $\langle \alpha v, \alpha w \rangle = \langle v, w \rangle \ \forall (v, w) \in V \times V \iff \alpha^* = \alpha^{-1}$ we call an isometry. ($\mathbb{R} \ \alpha$ orthogonal, $\mathbb{C} \ \alpha$ unitary).

Proof. Check the equivalence that preserving the scalar product

$$(\langle \alpha v, \alpha w \rangle = \langle v, w \rangle \qquad \forall (v, w) \in V \times V)$$

is equivalent to (α invertible and $\alpha^* = \alpha^{-1}$)

 $\Rightarrow \langle \alpha v, \alpha w \rangle = \langle v, w \rangle \; \forall (v, w) \in V \times V. \text{ Use } v = w:$

$$\|\alpha v\|^2 = \langle \alpha v, \alpha v \rangle = \langle v, v \rangle = \|v\|^2$$

(α preserves the norm: isometry) So ker $\alpha = \{0\}$, so α bijective, α^{-1} well defined. (since finite dimensional). $\alpha \in \mathcal{L}(V)$, Then $\forall (v, w) \in V \times V$,

TODO

$$\implies \forall v \in V, \langle v, \alpha^* w \rangle = \langle v, \alpha^{-1} w \rangle$$
$$\implies \forall v \langle v, \alpha^* w - \alpha^{-1} w \rangle = 0$$

I take $v = \alpha^* w - \alpha^{-1} \omega$

$$\implies \alpha^* w = \alpha^{-1} w \ \forall w \in V$$
$$\implies \alpha^* = \alpha^{-1}$$

1. $\alpha \in \mathcal{L}(V), \, \alpha^* = \alpha^{-1}$, then

$$\langle \alpha v, \alpha w \rangle = \langle v, \alpha^* \alpha w \rangle = \langle v, w \rangle \qquad \Box$$

TODO

 α isometry $(\alpha=\alpha^{-1})$

$$\iff \forall (v, w) \in V \times V \langle \alpha v, \alpha w \rangle = \langle v, w \rangle$$
$$\iff \forall v \in V, \|\alpha(v)\| = \|v\|$$

(preservation of scalar product \iff preservation of the norm)

Lemma. V finite dimensional real (complex) inner product space. Then $\alpha \in \mathcal{L}(V)$ is:

- (i) Self adjoint if and only if in *any* orthonormal basis of V, $[\alpha]_{\mathcal{B}}$ is symmetric (Hermitian).
- (ii) An isometry if and only if in *any* orthonormal basis of V, $[\alpha]_{\mathcal{B}}$ is orthogonal (unitary).

Proof. \mathcal{B} orthonormal basis,

$$[\alpha^*]_{\mathcal{B}} = \overline{[\alpha]_{\mathcal{B}}^{\top}}$$

• Self adjoint
$$[\alpha^*]_{\mathcal{B}}^{\top} = [\alpha]_{\mathcal{B}}$$

• Isometry $\overline{[\alpha]_{\mathcal{B}}^{\top}} = [\alpha]_{\mathcal{B}}^{-1}$.

Definition. V finite dimensional inner product space.

•
$$F = \mathbb{R},$$

 $\theta(V) = \{ \alpha \in \mathcal{L}(V), \alpha \text{ isometry} \} \equiv \text{orthogonal group of } V$

• $F = \mathbb{C}$,

$$U(V) = \{ \alpha \in L(V), \alpha \text{ isometry} \} \equiv \text{ unitary group of } V$$

Remark. V finite dimensional, $\{e_1, \ldots, e_n\}$ orthonormal basis.

- $F = \mathbb{R}, \theta(V) \leftrightarrow \{\text{orthonormal basis of } V\}, \alpha \mapsto (\alpha(e_1, \dots, \alpha(e_n))).$
- $F = \mathbb{C}, U(V) \leftrightarrow \{ \text{orthonormal basis of } V \}, \alpha \mapsto (\alpha(e_1, \dots, \alpha(e_n))).$

Start of lecture 23

1.25 Spectral theory for self adjoint maps

- Spectral theory \equiv study of the spectrum of operators
 - \rightarrow mathematics
 - \rightarrow physics (QUANTUM MECHANICS)
 - ⇒ INFINITE DIMENSIONAL. Finite dimension → infinite dimension. Linear maps → Hilbert space / compact operator.
- Adjoint operator: V, W finite dimensional inner product spaces, $\alpha \in \mathcal{L}(V, W)$, then the adjoint $\alpha^* \in \mathcal{L}(W, V)$ such that $\forall (v, w) \in V \times W$,

$$\langle \alpha(v), w \rangle_W = \langle v, \alpha^*(w) \rangle_V$$

We defined:

- Self adjoint maps, V = W, $\alpha = \alpha^*$,

$$\iff \forall (v,w) \in V \times V, \quad \langle \alpha v, w \rangle = \langle v, \alpha w \rangle$$

- isometries $V = W, \, \alpha^* = \alpha^{-1}$

$$\iff \forall (v, w) \in V \times V, \quad \langle \alpha v, \alpha w \rangle = \langle v, w \rangle$$

- $-\mathbb{R}$: orthogonal group
- $-\mathbb{C}$: unitary group.

Spectral theory for self adjoint operators

Lemma. Let V be a finite dimensional inner product space. Let $\alpha \in \mathcal{L}(V)$ be self adjoint: $(\alpha = \alpha^*)$. Then:

- (i) α has real eigenvalues
- (ii) eigenvectors of α with respect to *different* eigenvalues are orthogonal.

Proof. (i) $v \in V \setminus \{0\}, \lambda \in \mathbb{C}$ such that $\alpha v = \lambda v$. Then

$$\lambda \|v\|^2 = \langle \lambda v, v \rangle$$
$$= \langle \alpha v, v \rangle$$
$$= \langle v, \alpha^* v \rangle$$
$$= \langle v, \alpha v \rangle$$
$$= \langle v, \lambda v \rangle$$
$$= \overline{\lambda} \|v\|^2$$

So $(\lambda - \overline{\lambda}) \|v\|^2 = 0$. But $\|v\|^2 \neq 0$ since $v \neq 0$ so $\lambda = \overline{\lambda}$ so $\lambda \in \mathbb{R}$.

(ii) $\alpha v = \lambda v, \lambda \in \mathbb{R}, v \neq 0. \ \alpha w = \mu w, \mu \in \mathbb{R}, w \neq 0.$ Also $\lambda \neq \mu$. Then

$$\begin{split} \lambda \langle v, w \rangle &= \langle \lambda v, w \rangle \\ &= \langle \alpha v, w \rangle \\ &= \langle v, \alpha^* w \rangle \\ &= \langle v, \alpha w \rangle \\ &= \langle v, \mu w \rangle \\ &= \overline{\mu} \langle v, w \rangle \\ &= \mu \langle v, w \rangle \end{split}$$

So $(\lambda - \mu) \langle v, w \rangle = 0$. But $\lambda \neq \mu$ so $\langle v, w \rangle = 0$.

Theorem. Let V be a finite dimensional inner product space. Let $\alpha \in \mathcal{L}(V)$ be self adjoint $(\alpha = \alpha^*)$. Then V has an *orthonormal* basis made of eigenvectors of α .

 \rightarrow We also say: α can be diagonalised in an orthonormal basis for V.

Proof. $F = \mathbb{R}$ or \mathbb{C} . We argue by induction on the dimension of V, dim_F V = n.

- $n = 1 \rightarrow \text{trivial}.$
- $n-1 \rightarrow n$. \mathcal{B} any orthonormal basis of V say $A = [\alpha]_{\mathcal{B}}$. By the fundamental Theorem of Algebra, we know that $\chi_A(t)$ (\equiv characteristic polynomial of A) has a *complex* root. This root is an eigenvalue of α and $\alpha = \alpha^* \implies$ this root is *real*. Let us call $\lambda \in \mathbb{R}$ this eigenvalue, pick an eigenvector $v_1 \in V \setminus \{0\}$ such that $||v_1|| = 1, \alpha v_1 = \lambda v_1$. Let $U = \langle v_1 \rangle^{\perp} \leq V$. Then KEY OBSERVATION: U stable by α , i.e. $\alpha(U) \leq U$. Indeed, let $u \in U$, then:

$$\begin{aligned} \langle \alpha u, v_1 \rangle &= \langle u, \alpha v_1^* \rangle \\ &= \langle u, \alpha v_1 \rangle \\ &= \langle u, \lambda v_1 \rangle \\ &= \lambda \langle u, v_1 \rangle \\ &= 0 \end{aligned}$$

So $\alpha(u) \in U$. This implies: we may consider $\alpha|_U \in \mathcal{L}(U)$ and self adjoint, and then $n = \dim V = \dim U + 1$, so $\dim U = n - 1$ so by induction hypothesis there exists (v_2, \ldots, v_n) orthonormal basis of eigenvectors for $\alpha|_U$. Then $V = \langle v_1 \rangle \stackrel{\perp}{\oplus} U$ so (v_1, \ldots, v_n) orthonormal basis of V made of eigenvectors of α .

Remark. If you want to think in terms of matrices for the proof of (ii), then the choice of U means that [A] is written as

Corollary. V finite dimensional inner product space. If $\alpha \in \mathcal{L}(V)$ is self adjoint, then V is the *orthogonal direct sum* of all the eigenspaces of α .

Spectral theory for unitary maps

Lemma. V be a *complex* inner product space (Hermitian sesquilinear structure). Let $\alpha \in \mathcal{L}(V)$ be unitary $(\alpha^* = \alpha^{-1})$. Then

- (i) all the eigenvalues of α lie on the unit circle
- (ii) eigenvectors corresponding to *distinct* eigenvalues are *orthogonal*.

Proof. (i) $\alpha v = \lambda v, v \neq 0, \lambda \in \mathbb{C}$.

- $\lambda \neq 0$: α unitary implies α invertible.
- •

$$\begin{split} \lambda \|v\|^2 &= \lambda \langle v, v \rangle \\ \langle \lambda v, v \rangle \\ &= \langle \alpha v, v \rangle \\ &= \langle v, \alpha^* v \rangle \\ &= \langle v, \alpha^{-1} v \rangle \\ &= \left\langle v, \frac{1}{\lambda} v \right\rangle \\ &= \frac{1}{\overline{\lambda}} \|v\|^2 \end{split}$$

So $\lambda \|v\|^2 = \frac{1}{\overline{\lambda}} \|v\|^2$ so since $v \neq 0$, $\lambda \overline{\lambda} = 1$, i.e. $|\lambda| = 1$.

• $\alpha v = \lambda v, \ \alpha w = \mu w, \ \lambda, \mu \neq 0, \ \mu \neq \lambda$. Then

$$\begin{split} \lambda \langle v, w \rangle &= \langle \lambda v, w \rangle \\ &= \langle \alpha v, w \rangle \\ &= \langle v, \alpha^* w \rangle \\ &= \langle v, \alpha^{-1} w \rangle \\ &= \left\langle v, \frac{1}{\mu} w \right\rangle \\ &= \frac{1}{\overline{\mu}} \langle v, w \rangle \\ &= \mu \langle v, w \rangle \end{split}$$

(by (i)). So $(\lambda - \mu)\langle v, w \rangle = 0$. But $\lambda \neq \mu$ so $\langle v, w \rangle = 0$.

Theorem (Spectral theory for unitary maps). Let V be a finite dimensional *complex* inner product space. Let $\alpha \in \mathcal{L}(V)$ be unitary $(\alpha^* = \alpha^{-1})$. Then V has an orthonormal basis made of eigenvectors of α .

 \rightarrow Equivalently, α unitary on V Hermitian can be diagonalised in an orthonormal basis.

Proof. Pick \mathcal{B} any orthonormal basis of V. $A = [\alpha]_{\mathcal{B}}$. Then $\chi_A(t)$ (\equiv characteristic polynomial of A) has a *complex* root. So α has a *complex* eigenvalue. Fix $v_1 \in V \setminus \{0\}$ with $||v_1|| \neq 0$, $\alpha v_1 = \lambda v_1$. Let $U = \langle v_1 \rangle^{\perp}$. Then: KEY OBSERVATION: $\alpha(U) \leq U$. Indeed: $u \in U$, then

$$\langle \alpha u, v_1 \rangle = \langle u, \alpha^* v_1 \rangle$$

$$= \langle u, \alpha^{-1} v_1 \rangle$$

$$= \left\langle u, \frac{1}{\lambda} v_1 \right\rangle$$

$$= \frac{1}{\overline{\lambda}} \langle u, v_1 \rangle$$

$$= 0$$

 $\implies \alpha u \in U$, so $\alpha(U) \leq U$. We argue by induction on $\dim_{\mathbb{C}} V = n$. We consider $\alpha|_U \in \mathcal{L}(U)$ which is unitary, and by the induction hypothesis, $\alpha|_U$ is diagonalisable in an orthonormal basis (v_2, \ldots, v_n) of $U \implies (v_1, \ldots, v_n)$ is an orthonormal basis of V, made of eigenvectors of α .

Warning. We used the complex structure to make sure that there is an eigenvalue (which is a priori complex valued).

In general, a real valued orthonormal matrix $(AA^{\top} = id)$ cannot be diagonalised over \mathbb{R} .

Example (Rotation map in \mathbb{R}^2).

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

$$\chi_A(\lambda) = (\cos \alpha - \lambda)^2 + \sin^2 \alpha$$

Then the eigenvalues are $\lambda = e^{\pm i\alpha}$ (\notin generally). (Hence diagonalisable in \mathbb{C} but not \mathbb{R}).

Start of lecture 24

1.26 Application to bilinear forms

Diagonalisation of self adjoint / unitary operators.

Theorem 1. Let V be a finite dimensional inner product space (over \mathbb{R} or \mathbb{C}). Let $\alpha \in \mathcal{L}(V)$ be *self adjoint* ($\alpha = \alpha^*$). Then there exists an *orthonormal* basis of V made of *eigenvectors* of α .

Theorem. Let V be a finite dimensional *complex* inner product space. Let $\alpha \in \mathcal{L}(V)$ be unitary $(\alpha^* = \alpha^{-1})$. Then there exists an *orthonormal* basis of V made of *eigenvectors* of α .

These theorems are so important we stated them twice!

• Translate these statements for bilinear forms.

Corollary. let $A \in \mathcal{M}_n(\mathbb{R})$ (respectively \mathbb{C}) be a symmetric (respectively Hermitian) matrix. Then there is an orthogonal (respectively unitary) matrix such that $P^{\top}AP$ (respectively $P^{\dagger}AP$) is diagonal with real valued entries.

Remark. $P^{\dagger} = \overline{P}^{\top}$

Proof. $F = \mathbb{R}$ (\mathbb{C}). Let \langle, \rangle be the standard inner product over \mathbb{R}^n . Then $A \in \mathcal{L}(F^n)$ is self adjoint, hence we can find an orthonormal (for the standard inner product) basis of F^n such that A is diagonal in this basis, say (v_1, \ldots, v_n) . Let $P = (v_1 | \cdots | v_n)$

$$(v_1, \ldots, v_n)$$
 orthonormal basis $\iff P$ orthogonal (unitary)
 $\iff P^\top P = \mathrm{id}(P^\dagger P = \mathrm{id})$

So $P^{-1}AP = P^{\top}AP = D$, and we know λ_i are real, they are the eigenvalues of a symmetric operator.

Corollary. Let V be a finite dimensional real (complex) inner product space. Let $\varphi : V \times V \to F$ be a symmetric (Hermitian) bilinear form. Then there is an orthonormal basis of V such that φ in this basis is represented by a diagonal matrix.

Proof. Let $\mathcal{B} = \{v_1, \ldots, v_n\}$ be any orthonormal basis of V. Let $A = [\varphi]_{\mathcal{B}}$. Then since φ is symmetric (Hermitian), $A^{\top} = A$ ($^{\dagger} = A$), hence there is an orthogonal (unitary) matrix P such that $P^{\top}AP$ ($P^{\dagger}AP$) is diagonal, say D. Let v_i be the *i*-th row of P^{\top} (P^{\dagger}), then $\{v_1, \ldots, v_n\}$ is an orthonormal basis say \mathcal{B}' of V and $[\varphi]_{\mathcal{B}'} = D$. (We are using the change of basis for bilinear forms).

Remark. Diagonal entries of $P^{\top}AP$ ($P^{\dagger}AP$) are exactly the eigenvalues of A. Moreover:

 $\Delta(\varphi) = \#$ (positive eigenvalues of A) – #(negative eigenvalues of A)

(recall Δ is the signature of a bilinear form)

Important corollary

Corollary (Simultaneous diagonalisation of Hermitian forms). Let V be a finite dimensional real (complex) vector space. Let:

$$\varphi, \psi: V \times V \to F$$

 φ, ψ are bilinear symmetric (Hermitian) forms. And suppose φ is positive definite. Then there exists (v_1, \ldots, v_n) basis of V with respect to which *both* bilinear forms are represented by a diagonal matrix.

Proof. φ is positive definite so φ induces a scalar product on V, V equipped with φ is a finite dimensional inner product space:

 $\langle u,v\rangle=\varphi(u,v)$

Hence there exists an *orthonormal* (for the φ induced scalar product) basis of V in which ψ is represented by a diagonal matrix. Observe that φ in this basis is represented by the Identity matrix (because the basis orthonormal for φ : $\mathcal{B} = (v_1, \ldots, v_n), \langle v_i, v_j \rangle = \delta_{ij} = \varphi(v_i, v_j)$) So both matrices of φ and ψ in \mathcal{B} are diagonal.

Corollary (Matrix reformulation of simultaneous diagonalisation). Let $A, B \in \mathcal{M}_n(\mathbb{R})$ (respectively $\mathcal{M}_n(\mathbb{C})$), both symmetric (respectively Hermitian). Assume $\forall x \neq 0, \overline{x}^\top A x > 0$. Then there exists $Q \in \mathcal{M}_n(\mathbb{R})$ (respectively $\mathcal{M}_n(\mathbb{C})$) invertible such that both $Q^\top A Q$ (respectively $Q^\dagger A Q$) and $Q^\top B Q$ (respectively $Q^\dagger B Q$) are diagonal.

Proof. Direct consequence of the simultaneous diagonalisation Theorem.