% vim: tw=50 % 08/10/2022 11AM \subsection{Convergence of Functions} Let $X \subset \RR$, let $f_n : X \to \RR$ ($n \ge 1$) and let $f : X \to \RR$. What does it mean for $(f_n)$ to converge to $f$? \myskip (Mostly can think of $X = \RR$ or some interval). \myskip Obvious idea: \begin{definition*}[Convergence of functions] Say $(f_n)$ \emph{converges pointwise} to $f$ and write $f_n \to f$ pointwise if $\forall~x \in X$, $f_n(x) \to f(x)$ as $n \to \infty$. \end{definition*} \noindent Advantages: \begin{itemize} \item Simple \item Easy to check \item Defined in terms of convergence in $\RR$. \end{itemize} Disadvantages: \begin{itemize} \item Doesn't preserve `nice' properties. \item `Doesn't feel right'. \end{itemize} \subsubsection*{Examples} In all three examples, have $X = [0, 1]$, $f_n \to f$ pointwise. \begin{example*}[Limit of continuous functions not continuous] Consider: \[ f(x) = \begin{cases} 0 & x = 0 \\ 1 & x > 0 \end{cases} \] and \[ f_n(x) = \begin{cases} nx & x \le \frac{1}{n} \\ 1 & x > \frac{1}{n} \end{cases} \] \begin{center} \begin{tsqx} ! size(2.5cm); (-0.5,0)--(1.5,0) EndArrow (0,-0.5)--(0,1.5) EndArrow label 1 @ (-0.3,1) label 1 @ (1,-0.3) label $\frac{1}{n}$ @ (0.25,-0.3) (0,0)--(0.25,1)--(1,1) label $f_n$ @ (1.2,1.2) (0.25,0)--(0.25,1) dotted (1,0)--(1,1) dotted \end{tsqx} \end{center} Clearly $f_n$ continuous for all $n$ but $f$ not continuous. \myskip Proving that $f_n \to f$: \begin{itemize} \item If $x = 0$, then $\forall~n, f_n(0) = 0 = f(0)$. \item If $x > 0$, for sufficiently large $n$, $f_n(x) = 1 = f(x)$, so $f_n(x) \to f(x)$. \end{itemize} \end{example*} \begin{example*}[Limit of integrable not integrable] \begin{note*} As in IA, ``integrable'' means ``Riemann integrable''. \end{note*} Consider \[ f(x) = \begin{cases} 1 & x \in \QQ \\ 0 & x \not\in \QQ \end{cases} \] Enumerate the rationals in $[0, 1]$ as $q_1, q_2, \dots$. For $n \ge 1$, set \[ f_n(x) = \begin{cases} 1 & x = q_1, \dots, q_n \\ 0 & \text{otherwise} \end{cases} \] \end{example*} \begin{example*}[Functions and limit are integrable, but integral doesn't converge] Let $f(x) = 0$ for all $x$, so $\int_0^1 f = 0$. Define $f_n$ such that $\int_0^1 f_n = 1$ for all $n$: \[ f_n(x) = \begin{cases} n & 0 < x < \frac{1}{n} \\ 0 & \text{otherwise} \end{cases} \] Now $f_n \to f$ but clearly $\int_0^1 f_n \not\to \int_0^1 f$. \end{example*} \noindent Now we try to make a ``better'' definition so that more of these properties might be able to hold. \begin{definition*} Let $X \subset \RR$, $f_n : X \to \RR$ ($n \ge 1$), $f : X \to \RR$. We say $(f_n)$ \emph{converges uniformly} to $f$ and write $f_n \to f$ uniformly if \[ \forall\eps > 0 ~\exists N ~\forall x ~\in X ~\forall n \ge N \quad |f_n(x) - f(x)| < \eps \] \end{definition*} \noindent The definition for pointwise convergence can be restated as: \[ \forall \eps > 0 ~ \forall x \in X ~ \exists N ~ \forall n \ge N \quad |f_n(x) - f(x)| < \eps \] In particular $f_n \to f$ uniformly $\implies$ $f_n \to f$ pointwise. \begin{center} \includegraphics[width=0.6\linewidth] {images/416ab3d046f411ed.png} \end{center} Equivalently, $f_n \to f$ uniformly if for sufficiently large $n$ $f_n - f$ is bounded and \[ \sup_{x \in X} |f_n(x) - f(x)| \to 0 \] \begin{theorem} Let $X \subset \RR$, let $f_n : X \to \RR$ be continuous $(n \ge 1)$ and let $f_n \to f : X \to \RR$ uniformly. Then $f$ is continuous. \end{theorem} \noindent ``A uniform limit of continuous functions is continuous.'' \begin{proof} Let $x \in X$. Let $\eps > 0$. As $f_n \to f$ uniformly, can find $N$ such that $\forall n \ge N$, $\forall y \in X$, $|f_n(y) - f(y)| < \eps$. In particular, $\forall y \in X$, $|f_N(y) - f(y)| < \eps$. As $f_N$ is continuous, can find $\delta > 0$ such that $\forall y \in X$, \[ |y - x| < \delta \implies |f_N(y) - f_N(x)| < \eps \] Now let $y \in X$ with $|y - x| < \delta$. Then \begin{align*} |f(y) - f(x)| &\le |f(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)| \\ &< \eps + \eps + \eps \\ &= 3\eps \end{align*} But $3\eps$ can be made arbitrarily small by taking $\eps$ arbitrarily small. Hence $f$ is continuous. \end{proof} \begin{remark*} This is often called a ``$3\eps$ proof'' (or an ``$\frac{\eps}{3}$ proof'' if written in a different style). \end{remark*} \begin{flashcard}[uniform-limit-of-integrable-is-integrable] \begin{theorem} Let $f_n : [a, b] \to \RR$ ($n \ge 1$) be integrable and let $f_n \to f : [a, b] \to \RR$ uniformly. Then $f$ is integrable and \[ \int_a^b f_n \to \int_a^b f \] as $n \to \infty$. \end{theorem} \prompt{ \begin{proof} \cloze{ Show $f$ is bounded since $f = (f - f_n) + f_n$, and $f_n$ bounded since integrable, and $f - f_n$ bounded for $n$ sufficiently large. \\ Now show $f$ integrable by Riemann's criterion: \[ S(f_N, \mathcal{D}) - s(f_N, \mathcal{D}) < \eps \] (slightly long calculation for this step). \\ Now show \[ \left| \int_a^b f_n - \int_a^b f \right| \le (b - a) \sup_{x \in [a, b]} |f_n(x) - f(x)| \to 0 \] } \end{proof} } \end{flashcard} \begin{proof} As $f_n \to f$ uniformly, can pick a sufficiently large $n$ such that $f_n - f$ is bounded. Also, $f_n$ is bounded (as integrable). So by triangle inequality, \[ f = (f - f_n) + f_n \] is bounded. \myskip Let $\eps > 0$. As $f_n \to f$ uniformly there is some $N$ such that $\forall n \ge N$, $\forall x \in [a, b]$ we have $|f_n(x) - f(x)| < \eps$. In particular, $\forall x \in [a, b]$, $|f_N(x) - f(x)| < \eps$. By Riemann's criterion, there is some dissection $\mathcal{D}$ of $[a, b]$ for which \[ S(f_N, \mathcal{D}) - s(f_N, \mathcal{D}) < \eps .\] Let $\mathcal{D} = \{x_0, x_1, \dots, x_k\}$, where $a = x_0 < x_1 < \cdots < x_k = b$. Now \begin{align*} S(f, \mathcal{D}) &= \sum_{i = 1}^k (x_i - x_{i - 1}) \sup_{x \in [x_{i - 1}, x_i]} f(x) \\ &\le \sum_{i = 1}^k (x_i - x_{i - 1}) \sup_{x \in [x_{i - 1}, x_i]} (f_N(x) + \eps) \\ &= \sum_{i = 1}^k (x_i - x_{i - 1}) ((\sup_{x \in [x_{i - 1}, x_i]} f_N(x)) + \eps) \\ &= \sum_{i = 1}^k (x_i - x_{i - 1}) \sup_{x \in [x_{i - 1}, x_i]} f_N(x) + \sum_{i = 1}^k (x_i - x_{i - 1}) \eps \\ &= S(f_N, \mathcal{D}) + (b - a)\eps \end{align*} That is, \[ S(f, \mathcal{D}) \le S(f_N, \mathcal{D}) + (b - a)\eps \] Similarly \[ s(f, \mathcal{D}) \ge s(f_N, \mathcal{D}) - (b - a)\eps \] Hence \begin{align*} S(f, \mathcal{D}) - s(f, \mathcal{D}) &\le S(f_N, \mathcal{D}) - s(f_N, \mathcal{D}) + 2(b - a) \eps \\ &< (2(b - a) + 1)\eps \end{align*} But $(2(b - a) + 1)\eps$ can be made arbitrarily small by taking $\eps$ small. Hence by Riemann's criterion, $f$ is integrable over $[a, b]$. \myskip Now, for any $n$ sufficiently large such that $f_n - f$ is bounded, \begin{align*} \left| \int_a^b f_n - \int_a^b f \right| &= \left| \int_a^b (f_n - f) \right| \\ &\le \int_a^b \left| f_n - f \right| \\ &\le (b - a) \sup_{x \in [a, b]} |f_n(x) - f(x)| \\ &\to 0 \end{align*} as $n \to \infty$ since $f_n \to f$ uniformly. \end{proof}