% vim: tw=50 % 17/11/2022 11AM \begin{remark*} This is what tells us connected components exist. \end{remark*} \noindent Another concept of connectedness: \begin{flashcard}[PathConnectedTop] \begin{definition*} A \emph{path} from $x$ to $y$ in a topological space $X$ is \cloze{a continuous function $\varphi : [0, 1] \to X$ with $\varphi(0) = x$, $\varphi(1) = y$.} \\ $X$ is \emph{path-connected} if \cloze{for all $x, y \in X$ there is a path from $x$ to $y$.} \end{definition*} \end{flashcard} \begin{proposition} A path-connected space $X$ is connected. \end{proposition} \begin{proof} Suppose $U, V$ disconnect $X$. Pick $a \in U$, $b \in V$. Let $\varphi$ be a path in $X$ from $a$ to $b$. Then $U, V$ disconnect $\varphi([0, 1])$. \end{proof} \myskip However, the converse is not true in general. \begin{example*} Consider \begin{center} \includegraphics[width=0.6\linewidth] {images/d103e7a269d411ed.png} \end{center} Let $A = \{(0, y) \mid -1 \le y \le 1\}$ and $B = \{(x, \sin \frac{1}{x} \mid 0 < x \le 1\}$. Let $X = a \cup B \subset \RR^2$. \\ $X$ connected: Clearly $A$, $B$ path-connected hence connected. Suppose $U, V$ disconnect $X$ in $\RR^2$. Then WLOG $A \subset U$, $B \subset V$. So $(0, 0) \in A \subset U$. $U$ open so have some $\delta > 0$ such that $B_\delta((0,0)) \subset U$. Pick $n$ such that $\frac{1}{2n\pi} < \delta$. Then $\left( \frac{1}{2n\pi}, 0\right) \in U \cap B$, contradiction. \\ $X$ not path-connected: Suppose $\varphi$ is a path from $(0,0)$ to $(1, \sin 1)$ in $X$. Let $\sigma = \sup \{t \in [0, 1] \mid \varphi_1(t) = 0\}$. Let $y = \varphi_2(\sigma)$. Then, as $\varphi$ continuous, \[ \varphi(\sigma) = (0, y) \] Choose $\delta > 0$ such that $|\sigma - t| < \delta$ implies $\|\varphi(\sigma) - \varphi(t)\| < 1$. WLOG $\delta < 1 - \sigma$. By definition of $\sigma$, $\varphi_1 \left( \sigma + \frac{\delta}{2} \right) = x > 0$. Choose $w \in (0, x)$ such that $\left| \sin \frac{1}{w} - y \right| \ge 1$. Then by IVT, there is some $t \in \left( \sigma, \sigma + \frac{\delta}{2} \right)$ such that $\varphi_1(t) = w$. Then $|\sigma - t| < \delta$, but \[ \|\varphi(\sigma) - \varphi(t)\| \ge |\varphi_2(\sigma) - \varphi_2(t)| = \left| \sin \frac{1}{w} - y \right| \ge 1 \] contradiction. \end{example*} \noindent BUT: \begin{proposition} An open, connected subset of Euclidean space is path-connected. \end{proposition} \begin{proof} Let $X \subset \RR^n$ be open and connected. If $X = \emptyset$ then done. So assume $X \neq \emptyset$. Fix $a \in X$. Let \[ U = \{x \in X \mid \exists \text{ path in $X$ from $a$ to $x$}\} \] \begin{itemize} \item $U \neq \emptyset$ since $a \in U$ (constant path from $a$ to $a$) \item $U$ open in $X$. Suppose $b \in U$. $X$ open so can pick $\delta > 0$ such that $B_\delta(b) \subset X$. Let $\varphi$ be a path from $a$ to $b$ in $X$ and let $x \in B_\delta(b)$. Then $\theta$ is a path in $X$ from $a$ to $x$ where \[ \theta(t) = \begin{cases} \varphi(2t) & 0 \le t \le \half \\ b + 2\left( t - \half \right) (x - b) & \half \le t \le 1 \end{cases} \] \item $U$ closed in $X$, i.e. $X \setminus U$ open in $X$. Let $b \in X \setminus U$. Choose $\delta > 0$ such that $B_\delta(b) \subset X$. Suppose $x \in B_\delta(b) \cap U$. Let $\varphi$ be a path in $X$ from $a$ to $x$. Then \[ t \mapsto \begin{cases} \varphi(2t) & 0 \le t \le \half \\ x + 2\left( t - \half \right) (b - x) & \half \le t \le 1 \end{cases} \] is a path from $a$ to $b$ in $X$. So $B_\delta(b) \subset X \setminus U$. \end{itemize} Hence, as $X$ is connected, $U = X$. But the point $a$ was arbitrary. So $X$ is path-connected. \end{proof} \begin{remark*} Recall that don't always specify the topology when defining a topological space - should always assume it's standard one. In particular: \begin{itemize} \item $\RR$ comes with the usual topology. \item $\RR^n$ comes with the Euclidean topology. \end{itemize} $X \subset \RR, \RR^n$ comes with the subspace topology from the above. Products, quotients come with the product / quotient topology respectively. \end{remark*} \newpage \mychapter{Differentiation} \renewcommand*{\theHsection}{ch2.\the\value{section}} \setcounter{section}{1} \setcounter{customtheorem}{0} \setcounter{customlemma}{0} \setcounter{customproposition}{0} Recall: $f : \RR \to \RR$ is \emph{differentiable} at $a \in \RR$ with \emph{derivative} $A$ if \[ \frac{f(a + h) - f(a)}{h} \to A \] as $h \to 0$. We write $f'(a) = A$. \\ Want to generalise to $f : \RR^n \to \RR^m$. \\ Easy: $n = 1$. Exactly same definition works. \\ Problem: if $n \ge 2$, dividing by $b \in \RR^n$ makes no sense. \begin{definition*} If $f : \RR^n \to \RR^m$, the \emph{$i$-th partial derivative} of $f$ at $a \in \RR^n$ is \[ D_i f(a) = \lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h} \] where this limit exists, where $e_1, \dots, e_n$ is standard basis of $\RR^n$. \end{definition*} \begin{example*} $f : \RR^2 \to \RR$. \begin{center} \includegraphics[width=0.6\linewidth] {images/558923e669d711ed.png} \end{center} \[ f(x, y) = \begin{cases} 0 & x = 0 \text{ or } y = 0 \\ 1 & x \neq 0 \text{ and } y \neq 0 \end{cases} \] Both partial derivatives exist at $(0, 0)$: \[ D_1 f(0,0) = 0 \qquad D_2 f(0,0) = 0 \] But $f$ not continuous at $(0,0)$. \end{example*} \noindent Better definition? Return to $f : \RR \to \RR$: \begin{align*} f'(a) = A &\iff \frac{f(a + h) - f(a)}{h} \to A \text{ as $h \to 0$} \\ &\iff \frac{f(a + h) - f(a)}{h} = A + \eps(h) \text{ where $\eps(h) \to 0$ as $h \to 0$} \\ &\iff f(a + h) = f(a) + A h + \eps(h) h \text{ where $\eps(h) \to 0$ as $h \to 0$} \end{align*} \begin{center} \includegraphics[width=0.6\linewidth] {images/b81819f469d711ed.png} \end{center} `small changes in $a$ produce approximately linear changes in $f(a)$' \begin{flashcard}[RnDifferentiation] \begin{definition*} Let $f : \RR^n \to \RR^m$, and $a \in \RR^n$. We say $f$ is \emph{differentiable} at $a$ \cloze{if there is a linear map $\alpha \in \mathcal{L}(\RR^n, \RR^m)$ with \[ f(at + h) = f(a) + \alpha(h) + \eps(h) \|h\| \tag{$*$} \] where $\eps(h) \to 0$ as $h \to 0$.} \end{definition*} \end{flashcard} \begin{proposition} Suppose $f : \RR^n \to \RR^m$, $a \in \RR^n$, $\alpha, \beta \in \mathcal{L}(\RR^n, \RR^m)$ and \[ f(a + h) = f(a) + \alpha(h) + \eps(h) \|h\| \] \[ f(a + h) = f(a) + \beta(h) + \eta(h) \|h\| \] with $\eps(h), \eta(h) \to 0$ as $h \to 0$. Then $\alpha = \beta$. \end{proposition} \begin{definition*} Once we've proved Proposition 1, we know the $\alpha$ in ($*$) is unique. We say $\alpha$ is the \emph{derivative} of $f$ at $a$, and write $D f |_a = \alpha$. So if $f$ differentiable at $a$, \[ f(a + h) = f(a) + D f|_a(h) + \eps(h)\|h\| \] where $\eps(h) \to 0$ as $h \to 0$. \end{definition*} \begin{remark*} If $f : \RR \to \RR^m$, \[ D f|_a (h) = f'(a)h \] \end{remark*}