% vim: tw=50 % 15/11/2022 11AM \begin{enumerate}[(1)] \setcounter{enumi}{1} \item[] \vspace{-1\baselineskip}$X$ connected if and only if whenever $U, V \subset X$ are open and disjoint with $X = U \cup V$ then $U = \emptyset$ or $V = \emptyset$. \myskip Again, could replace `open' by `closed'. \myskip If $X$ is disconnected, we say the sets $U, V$ in the definition \emph{disconnect} $X$. \item Connectedness is a topological property. \item If $S \subset X$, $X$ a topological space, what does our definition of connectedness say when applied to $S$? Of course as usual $S$ has the subspace topology from $X$ so is a topological space in its own right. \\ $S$ is disconnected if and only if there exist open sets $U, V \subset X$ such that $S \cap U \cap V = \emptyset$ and $S \subset U \cup V$, $S \cap U \neq \emptyset$, $S \cap V \neq \emptyset$. Again, we say $U, V$ disconnect $S$. \begin{warning*} We \emph{don't} necessarily need to have $U \cap V = \emptyset$: for example in $\NN$ with the cofinite topology, the set $\{1, 2\}$ is disconnected in $\NN$ by the open sets $\NN \setminus \{1\}, \NN \setminus \{2\}$. We have \[ (\NN \setminus \{1\}) \cap (\NN \setminus \{2\}) \cap \{1, 2\} = \emptyset \] but \[ (\NN \setminus \{1\}) \cap (\NN \setminus \{2\}) \neq \emptyset .\] Indeed, if $U, V \subset \NN$ are open and non-empty then $U \cap V \neq \emptyset$. \end{warning*} \noindent $S$ connected if and only if whenever $U, V \subset X$ are open and $S \subset U \cap V$ and $S \cap U \cap V = \emptyset$ then either $S \cap U = \emptyset$ or $S \cap V = \emptyset$. \myskip Finally, as in remark 1, could replace `open' with `closed' in these reformulations of the definition. \end{enumerate} \noindent Which subsets of $\RR$ are connected? \begin{flashcard}[interval-in-R] \begin{definition*} A subset $I \subset \RR$ is an \emph{interval} if \cloze{whenever $a < b < c$ with $a, c \in I$ then $b \in I$.} \end{definition*} \end{flashcard} \begin{proposition} Let $I \subset \RR$ with the usual topology. Then $I$ is connected if and only if $I$ is an interval. \end{proposition} \begin{proof} \begin{enumerate} \item[$\Rightarrow$] Suppose $I$ not an interval. Then we can find $a < b < c$ with $a, c \in I$ but $b \not\in I$. Then $(-\infty, b)$ and $(b, \infty)$ disconnect $I$ in $\RR$. \item[$\Leftarrow$] Suppose $I$ is an interval. Work in subspace topology on $I$. Let $S \subset I$ be open, closed and non-empty. Let $a \in S$. \myskip Suppose we have $b \in I \setminus S$. Without loss of generality $b > a$. Let $c = \sup([a, b] \cap S)$. Then we can find a sequence $(x_n)$ in $S$ with $x_n \to c \in I$> But $S$ is closed in $I$ so $c \in S$. In particular, $c \neq b$, so $c < b$. \myskip But also $S$ is open in $I$ so there exists $\delta > 0$ such that $(c - \delta, c + \delta) \subset S$, without loss of generality $\delta < b - c$. Then $c + \frac{\delta}{2} \in S \cap [a, b]$, contradiction to the supremum property. So in fact, $S = I$. So $I$ is connected. \qedhere \end{enumerate} \end{proof} \myskip Another equivalent version of the definition of connectedness: \begin{theorem} Let $X$ be a topological space. Then $X$ connected if and only if every continuous function $f : X \to \ZZ$ (with usual topology) is constant. \end{theorem} \begin{proof} \begin{enumerate} \item[$\Rightarrow$] Suppose $X$ is connected and $f : X \to \ZZ$ continuous. For any $n \in \ZZ$, $\{n\} \subset \ZZ$ is open and closed, so $f^{-1}(\{n\}) \subset X$ is open and closed, so $f^{-1}(\{n\}) = \emptyset$ or $f^{-1}(\{n\}) = X$. So $f$ is constant. \item[$\Leftarrow$] Suppose $U, V$ disconnect $X$. Define $f : X \to \ZZ$ by \[ f(x) = \begin{cases} 0 & x \in U \\ 1 & x \in V \end{cases} \] Then for any $A \subset \ZZ$, $f^{-1}(A) = \emptyset, X, U \text{ or } V$, so $f^{-1}(A)$ is open. So $f$ is continuous and non-constant. \qedhere \end{enumerate} \end{proof} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item Theorem 42 together with Intermediate value theorem can provide an alternative proof of Proposition 41. \item Theorem 42 remains true with same proof if $\ZZ$ is replaced by any discrete topological space $Y$ with $|Y| \ge 2$. \end{enumerate} \begin{flashcard}[ConnectedContImage] \begin{proposition} A continuous image of a connected space is \cloze{connected.} \end{proposition} \end{flashcard} \begin{proof} Let $X$ be a connected topological space, let $Y$ be a topological space and let $f : X \to Y$ be continuous. Suppose $U, V \subset Y$ are open with $f(X) \subset U \cup V$ and $U \cap V \cap f(X) = \emptyset$. As $f$ continuous, $f^{-1}(U), f^{-1}(V) \subset X$ are open. Also $X = f^{-1}(U0 \cup f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. As $X$ connected without loss of generality we have $f^{-1}(U) = \emptyset$. Then $U \cap f(X) = \emptyset$. So $f(X)$ is connected. \end{proof} \begin{flashcard}[ConnectedProduct] \begin{proposition} A product of connected spaces is \cloze{connected.} \end{proposition} \end{flashcard} \begin{hiddenflashcard}[connected-product-is-connected-proof] Proof that product of connected spaces is connected? \\ \cloze{ If $Y = \emptyset$, then $X \times Y = \emptyset$ so trivially connected. So assume $Y \neq \emptyset$. \\ Suppose $U, V$ disconnect $X \times Y$. Fix $x \in X$. Noting that $\{x\} \times Y$ homeomorphic to $Y$ (just check the obvious homeomorphism is in fact a homeomorphism), we have $\{x\} \times Y$ connected, so $\{x\} \times Y \subset U$ or $V$, otherwise $U, V$ disconnect it. \\ Hence we can define \[ A = \{x \in X \mid \{x\} \times Y \subset U\} \] \[ B = \{x \in X \mid \{x\} \times Y \subset V\} \] and the above observation proves $A \cup B = X$. Clearly have $A \cap B = \emptyset$, since $U \cap V = \emptyset$. \\ Suppose $x \in A$. Pick $y \in Y$ (we assumed $Y$ non-empty). Then since $U$ open, there exists open $S \subset X$, $T \subset Y$ such that $(x, y) \in S \times T$. Then for all $x' \in S$, $(x', y) \in U$ hence $x' \in A$. So $x \in T \subset A$, so $A$ is a neighbourhood of $x$. Hence $A$ open. \\ Similarly $B$ open. Since $U$, $V$ disconnect $X \times Y$, they are non-empty, so $A$ and $B$ non-empty, so $A$ and $B$ disconnect $X$, contradiction. } \end{hiddenflashcard} \begin{proof} Let $(X, \tau)$ and $(Y, \sigma)$ be connected topological spaces, and let $\rho$ be the product topology on $X \times Y$. Suppose $U, V \in \rho$ with $U \cap V = \emptyset$ and $U \cap V = X \times Y$. We want to show $U = \emptyset$, $V = X \times Y$ or $U = X \times Y$, $V = \emptyset$. \\ Fix $x \in X$. Then $\{x\} \times Y$ is homeomorphic to $Y$ (Exercise - Example sheet 3). In particular, $\{x\} \times Y$ is connected. Then $\{x\} \times Y \subset U$ or $\{x\} \times Y \subset V$ as otherwise $U, W$ would disconnect $\{x\} \times Y$ in $X \times Y$. So let \[ A = \{x \in X \mid \{x\} \times Y \subset U\} \] and \[ B = \{x \in X \mid \{x\} \times Y \subset V\} \] Clearly $A \cap B = \emptyset$ (as $U \cap V = \emptyset$). And we've just proved $X = A \cup B$. \myskip Suppose $x \in A$. So $\{x\} \times Y \subset U$. Then (assuming $U \neq \emptyset$, which we can do without loss of generality, since if $Y = \emptyset$ then $X \times Y$ is clearly connected) pick any $y \in Y$. Then $(x, y) \in U$. $U$ is open so can find $T \in \tau$, $S \in \sigma$ such that $(x, y) \in T \times S \subset U$. In particular, for all $w \in T$ then $(w, y) \in U$ and so $\{w\} \times Y \subset U$, i.e. $w \in A$. We now have $T \in \tau$ with $x \in T \subset A$ so $A$ is a neighbourhood of $x$ in $X$. Hence $A$ is open. \myskip Similarly $B$ is open. But $X$ is connected, so $A = \emptyset$ giving $U = \emptyset$ or $B = \emptyset$ giving $V = \emptyset$. Hence $X \times Y$ is connected. \end{proof} \begin{example*} Recall $[-1, 0) \cap (0, 1]$ is not connected. But it \emph{is} a disjoint union of connected sets: $[-1, 0) \cup (0, 1]$. Moreover, any proper superset of $[-1, 0)$ or $(0, 1]$ in $[-1, 0) \cup (0, 1]$ is disconnected. \end{example*} \begin{flashcard}[connected-component-defn] \begin{definition*} Let $X$ be a topological space. A \emph{connected component} of $X$ is \cloze{a maximal connected subset of $A$ of $X$: that is to say, $A$ is connected but if $A \subset B \subset X$ with $B$ connected then $A = B$.} \end{definition*} \end{flashcard} \begin{theorem} The connected components of a topological space $X$ form a partition of $X$. \end{theorem} \begin{proof} Define $\sim$ on $X$ by $x \sim y$ if and only if $\exists A \subset X$ connected with $x, y \in A$. Clearly $\sim$ is reflexive ($\{x\}$ is connected) and it is symmetric by the way we defined it. So we want to show $\sim$ is transitive. \myskip Suppose $x, y, z \in X$ with $x \sim y$ and $y \sim z$. Then $\exists A, B \subset X$ connected with $x, y \in A$ and $y, z \in B$. Now $x, z \in A \cup B$. Suppose $U, V$ disconnect $A \cup B$ in $X$. Without loss of generality $y \in U$. Pick $w \in V \cap (A \cup B)$. Without loss of generality $w \in A$. But also $y \in A$ so $U, V$ disconnect $A$. So $A \cup B$ is connected so $x \sim z$. \\ Hence $\sim$ is an equivalence relation. \noindent Suppose $S$ is an equivalence class of $\sim$. Suppose $U, V$ disconnect $S$. Then can find $x \in U \cap S$, $y \in V \cap S$ and $U \cap V \cap S = \emptyset$. Then $x \sim y$ so there is a connected $A \subset X$ with $x, y \in A$. For all $z \in A$, $x, z \in A$ connected so $x \sim z$ so $z \in S$. So $A \subset S$ and so $U \cap V \cap A = \emptyset$ so $U, V$ disconnect $A$, contradiction. So $S$ is connected. \\ Suppose $S \subset T \subset X$ with $T$ connected. Let $x \in S$. Then for all $y \in T$, $x, y \in T$ with $T$ connected so $x \sim y$. Thus $T \subset S$. So $S = T$. So $S$ is a connected component. \myskip Finally, let $R$ be a connected component. Let $x, y \in R$. Then, as $R$ is connected, $x \sim y$. So $R$ is connected in some equivalence class $Q$ of $\sim$. But $R \subset Q$ with $Q$ connected so $R = Q$. \myskip So the equivalence classes of $\sim$ are precisely the connected components. \end{proof}