% vim: tw=50 % 10/11/2022 11AM \subsection{Products} Have $\RR$ with the usual topology. Would like $\RR \times \RR$ to be $\RR^2$ with the Euclidean topology. In general, if $(X, \tau)$ and $(Y, \sigma)$ are topological spaces, what sensible topology can we put on $X \times Y$? \\ In general, $\tau \times \sigma$ is not going to be a topology. For example, $\RR \times \RR$ \begin{center} \includegraphics[width=0.6\linewidth] {images/58d40c5660e911ed.png} \end{center} Open ball not in $\tau \times \sigma$, but each point in ball \emph{is} in some set in $\tau \times \sigma$ confined in the ball. But open ball \emph{is} union of some sets in $\tau \times \sigma$. \myskip In general, the product topology from $\tau, \sigma$ is going to be collection of all unions of sets in $\tau \times \sigma$. \begin{definition*} A \emph{$\pi$-system} on a set $X$ is a non-empty subset $\Pi \subset \mathcal{P} X$ such that $A, B \in \Pi \implies A \cap B \in \Pi$. \end{definition*} \begin{proposition} Let $\Pi$ be a $\pi$-system on a set $X$. Then \[ \tau = \left\{ \bigcup_{A \in \Sigma} A \mid \Sigma \subset \Pi \right\} \cup \{\emptyset, X\} \] is a topology on $X$. \end{proposition} \begin{proof} Clearly $\emptyset, X \in \tau$ and it's closed under arbitrary unions. Now suppose $G, H \in \tau$. If $G = \emptyset, X$ or $H = \emptyset, X$, then $G \cap H \in \tau$ trivially. Otherwise, $G = \bigcup_{A \in \Phi} A$, $H = \bigcup_{B \in \Theta} B$ for some $\Phi, \Theta \subset \Pi$. Then \[ G \cap H = \bigcup_{\substack{A \in \Phi\\B \in \Theta}} (A \cap B) = \bigcup_{C \in \Sigma} C \] where $\Sigma = \{A \cap B \mid A \in \Phi, B \in \Theta\} \subset \Pi$. \end{proof} \myskip We call $\tau$ the topology \emph{generated by} $\Pi$. \begin{proposition} Let $(X, \tau), (Y, \sigma)$ be topological spaces. Then $\tau \times \sigma$ is a $\pi$-system on $X \times Y$. \end{proposition} \begin{proof} $\emptyset = \emptyset \times \emptyset \in \tau \times \sigma$. So $\tau \times \sigma \neq \emptyset$. Now suppose $A, B \in \tau \times \sigma$. Then $A = G \times H$, $B = K \times L$ for some $G, K \in \tau$ and some $H, L \in \sigma$. So \[ A \cap B = (G \cap K) \times (H \cap L) \in \tau \times \sigma \qedhere \] \end{proof} \begin{flashcard}[product-topology-defn] \begin{definition*} Let $(X, \tau), (Y, \sigma)$ be topological spaces. The \emph{product topology} on $X \times Y$ is the topology generated be the $\pi$-system \[ \cloze{\{U \times V : U \in \tau, V \in \sigma\}} \] \end{definition*} \end{flashcard} \noindent Exercise: If $X = Y = \RR$, $\tau = \sigma = \text{usual topology}$. Then the product topology on $\RR^2$ is the Euclidean topology. (Example sheet 3 with guidance). \begin{flashcard}[product-hausdorff-compact] \begin{theorem} \begin{enumerate}[(a)] \item A product of \cloze{Hausdorff} spaces is \cloze{Hausdorff}. \item A product of \cloze{compact} spaces is \cloze{compact}. \end{enumerate} \end{theorem} \end{flashcard} \begin{hiddenflashcard}[product-hausdorff-is-hausdorff-proof] Proof that product of Hausdorff spaces is Hausdorff? \\ \cloze{ Let $(x, y), (z, w) \in X \times Y$ with $(x, y) \neq (z, w)$. WLOG $x \neq z$. Pick $G, H$ open in $X$ with $x \in G$, $z \in H$, $G \cap H = \emptyset$. Then $G \times Y, H \times Y$ are non-intersecting open sets in $X \times Y$ containing $(x, y)$ and $(z, w)$ respectively. } \end{hiddenflashcard} \begin{hiddenflashcard}[product-compact-is-compact-proof] Proof that product of compact spaces is compact? \\ \cloze{ Let $\mathcal{C}$ be an open cover of $X \times Y$. For each $x \in X$ define the following: \begin{itemize} \item For each $y$ pick some $G_{(x, y)} \in \mathcal{C}$ containing $(x, y)$. Then pick $U_{(x, y)}$, $V_{(x, y)}$ open in $X$ and $Y$ respectively with $(x, y) \in U_{(x, y)} \times V_{(x, y)} \subset G_{(x, y)}$. \item Note $V_{(x, y)}$ is an open cover of $Y$. Take a finite subcover, $V_{(x, y_i)}$. Let $U_x = \bigcap_{i=1}^n U_{(x, y_i)}$. Then $U_x$ open in $X$ and \[ U_x \times Y \subset \bigcup_{i = 1}^n (U_{(x, y_i)} \times V_{(x, y_i)}) \subset \bigcup_{i = 1}^n G_{(x, y_i)} \] \end{itemize} Now $U_x$ forms an open cover of $X$, so take a finite subcover, $U_{x_i}$. Then \[ X \times Y \subset \bigcup_{i = 1}^n (U_{x_i} \times Y) \subset \bigcup_{i = 1}^n \bigcup_{j = 1}^n G_{(x_i, y_j)} \] so we have found a finite subcover. } \end{hiddenflashcard} \begin{proof} Let $(X, \tau), (Y, \sigma)$ be topological spaces and let $\rho$ be the product topology on $X \times Y$. \begin{enumerate}[(a)] \item Suppose $X, Y$ Hausdorff. Let $(x, y), (z, w) \in X \times Y$ with $(x, y) \neq (z, w)$. WLOG $x \neq z$. As $X$ is Hausdorff, can find $G, H \in \tau$ with $G \cap H = \emptyset$, $x \in G$, $z \in H$. Then $G \times Y, H \times Y \in \rho$ with $(G \times Y) \cap (H \times Y) = \emptyset$ and $(x, y) \in G \times Y$, $(z, w) \in H \times Y$. So $X \times Y$ is Hausdorff. \item Suppose $X, Y$ compact. Let $\mathcal{C} \subset \rho$ be an open cover of $X \times Y$. Fix $x \in X$. For each $y \in Y$, there is some $G_y \in \mathcal{C}$ such that $(x, y) \in G_y$. Hence we can find $U_y \in \sigma$ and $V_y \in \tau$ such that $(x, y) \in U)y \times V_y \subset G_y$. In particular, we have $x \in U_y$ and $y \in V_y$. Thus $\{V_y \mid y \in Y\} \subset \sigma\}$ is an open cover of $Y$. So, as $Y$ is compact, it has a finite subcover $\{V_{y_1}, \dots, V_{y_n}\}$, say. Let $W = \bigcap_{i = 1}^n U_{y_i}$. Then $W$ is open in $X$ and $x \in W$. Moreover, \[ W \times Y \subset \bigcup_{i = 1}^n (U_{y_i} \times V_{y_i}) \subset \bigcup_{i = 1}^n G_{y_i} \] Now, do this for each $x \in X$ to obtain $W_x = W$, $n_x = n$ and \[ G_{y_i}^{(x)} = G_{y_i} \] ($1 \le i \le n_x$) as above. Then $\{W_x \mid x \in X\} \subset \tau$ is an open cover of $X$. So, as $X$ is compact, it has a finite subcover, $\{W_{x_1}, \dots, W_{x_m}\}$, say. Now $X = \bigcup_{j = 1}^m W_{x_j}$ and, for each $j$, \[ W_{x_J} \times Y \subset \bigcup_{i = 1}^{n_{x_j}} G_{y_i} ^{(x_j)} \] Thus $\{G_{y_1}^{(x_j)} \mid 1 \le j \le m, 1 \le i \le n_{x_j}\}$ is an open cover of $X \times Y$ and hence a finite subcover of $\mathcal{C}$. Thus $X \times Y$ is compact. \end{enumerate} \end{proof} \subsection{Quotients} Consider the surface of a torus in $\RR^3$: \begin{center} \includegraphics[width=0.6\linewidth] {images/427a6a0a60ed11ed.png} \end{center} We might be interested in for example the set of continuous functions $T \to T$. Analysis is likely to be unpleasant, for example what is the equation defining $T$? What do we care about? Continuity and convergence. So if we replace $T$ by a space homemorphic to $T$ then we're happy, particularly if the new space is analytically easier to work with. For example, take closed unit square $[0, 1] \times [0, 1]$ with Euclidean topology. Glue $(x, 0)$ to $(x, 1)$ for each $x$ and glue $(0, y)$ to $(1, y)$ for each $y$. \begin{center} \includegraphics[width=0.6\linewidth] {images/c48a385860ee11ed.png} \end{center} This seems to give us $T$. More formally, defined an equivalence relation on $[0, 1] \times [0, 1]$, $\sim$ say, with equivalence classes: \[ \{(x, y)\} \quad (0 < x, y < 1) \] \[ \{(x, 0), (x, 1)\} \quad (0 < x < 1) \] \[ \{(0, y), (1, y)\} \quad (0 < y < 1) \] \[ \{(0,0),(0,1),(1,0),(1,1)\} \] Essentially, we could define $T = [0, 1]^2 / \sim$, the set of equivalence classes. Maybe better way to do this? \begin{center} \includegraphics[width=0.6\linewidth] {images/0423ad5a60ef11ed.png} \end{center} Instead we could define an equivalence relation $\sim$ on $\RR^2$ by $(x, y) \sim (z, w) \iff x - z \in \ZZ$ and $y - w \in \ZZ$. Again, hopefully could define $T = \RR^2 / \sim$. \\ But: What is the topology?