% vim: tw=50 % 03/11/2022 11AM \begin{flashcard}[TopCloseOpen] \begin{definition*} Let $(X, \tau)$ be a topological space. We say $G \subset X$ is \emph{open} if \cloze{$G \in \tau$}. We say $F$ is \emph{closed} if \cloze{$X \setminus F \in \tau$}. \end{definition*} \end{flashcard} \begin{flashcard}[TopNbd] \begin{definition*} Let $(X, \tau)$ be a topological space. A subset $\mathcal{N} \subset X$ is a \emph{neighbourhood} of $a \in X$ if \cloze{there exists $G \subset X$ open with $a \in G \subset \mathcal{N}$.} \end{definition*} \end{flashcard} \begin{flashcard}[TopCtsFn] \begin{definition*} Let $(X, \tau)$ and $(Y, \sigma)$ be topological spaces. Let $f : X \to Y$. We say $f$ is \emph{continuous} if \cloze{whenever $G \subset Y$ is open then $f^{-1}(G) \subset X$ is open; that is, $f$ is continuous if $\forall G \in \sigma$, $f^{-1}(G) \in \tau$.} \end{definition*} \end{flashcard} \begin{flashcard}[TopCtsFnAtA] \begin{definition*} Let $(X, \tau)$ and $(Y, \sigma)$ be topological spaces. We say $f$ is \emph{continuous at $a \in X$} if \cloze{whenever $\mathcal{N} \subset Y$ is a neighbourhood of $f(a)$ then $f^{-1}(\mathcal{N}) \subset X$ is a neighbourhood of $a$.} \end{definition*} \end{flashcard} \begin{flashcard}[TopHomeomorphismDefn] \begin{definition*} Let $(X, \tau)$, $(Y, \sigma)$ be topological spaces. We say $f$ is a \emph{homeomorphism} and $X$, $Y$ are \emph{homeomorphic} if \cloze{$f$ is a bijection and both $f$ and $f^{-1}$ are continuous.} \end{definition*} \end{flashcard} \begin{flashcard}[TopologicalProperty] \begin{definition*} Let $(X, \tau)$, $(Y, \sigma)$ be topological spaces. We say that a property is \emph{topological} if \cloze{it is preserved by homomorphisms; that is to say, if $X, Y$ are homeomorphic then $X$ has the property if and only if $Y$ does.} \end{definition*} \end{flashcard} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item If $\tau$ is induced by a metric then this is all consistent with the metric space definitions of these concepts. \item Given our definition: $G$ is open if and only if $G \in \tau$, often don't need to explicitly name the topology. For example, let $X = \RR$ with the usual topology and $G \subset X$ be open. Other times more convenient to specify $\tau$, write `$G \in \tau$' etc. \item Homeomorphism is an ``equivalence relation''. \item If $a \in G$ and $G$ open then $G$ is a neighbourhood of $a$, however, neighbourhoods need not be open in general. A set $G \subset X$ is open if and only if $G$ is a neighbourhood of each of its points. \end{enumerate} \begin{proposition} Let $X, Y$ be topological spaces and let $f : X \to Y$. Then $f$ is continuous if and only if for all $a \in X$, $f$ is continuous at $a$. \end{proposition} \begin{proof} \begin{enumerate} \item[$\Rightarrow$] Suppose $f$ continuous and let $a \in X$. Let $\mathcal{N} \subset Y$ be a neighbourhood of $f(a)$. Then there is an open set $G \subset Y$ with $a \in G \subset \mathcal{N}$. As $f$ continuous, $f^{-1}(G) \subset X$ open. Now $a \in f^{-1}(G) \subset f^{-1}(\mathcal{N})$ with $f^{-1}(G)$ open. \item[$\Leftarrow$] Suppose for all $a \in X$ we have $f$ continuous at $a$. Let $G \subset Y$ be open. Let $a \in f^{-1}(G)$. Then $f(a) \in G$, but $G$ is open so $G$ is a neighbourhood of $f(a)$. Now $f$ is continuous at $a$ so $f^{-1}(G)$ is a neighbourhood of $a$ in $X$. But $a$ was arbitrary so $f^{-1}(G)$ is a neighbourhood of each of its points. That is, $f^{-1}(G) \subset X$ is open. Hence $f$ is continuous. \end{enumerate} \end{proof} \begin{proposition} Let $(X, \tau)$, $(Y, \sigma)$, $(Z, \rho)$ be topological spaces, let $f : X \to Y$ be continuous and let $g : Y \to Z$ be continuous. Then $g \circ f : X \to Z$ is continuous. \end{proposition} \begin{proof} Let $G \in \rho$. As $g$ is continuous, $g^{-1}(G) \in \sigma$. As $f$ continuous, $f^{-1}(g^{-1}(G)) \in \tau$. That is, $(g \circ f)^{-1}(G) \in \tau$. So $g \circ f$ is continuous. \end{proof} \subsubsection*{Examples} \begin{enumerate}[(1)] \item The discrete topology: Let $X$ be any set and $\tau = \mathcal{P}(X)$. `Every set is open'. However, this is not new: it is induced by the discrete metric \[ d(x, y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases} \] Now in $(X, d)$, for any $x \in X$ then $\{x\} = B_1(x)$ is open and so if $G \subset X$ then $G = \bigcup_{x \in G} \{x\}$ is open. \begin{hiddenflashcard}[discrete-topology] Discrete topology? \\ \[ \cloze{\tau = \mathcal{P}(X)} \] \end{hiddenflashcard} \item The indiscrete topology: Let $X$ be any set and $\tau = \{\emptyset, X\}$. `Only open sets are $\emptyset$ and the whole space'. This is genuinely new: $\tau$ cannot be induced by a metric (if $|X| \ge 2$). Indeed, suppose $|X| \ge 2$ and that $\tau$ is induced by a metric $d$. Let $x, y \in X$ with $x \neq y$, so $d(x, y) = \delta > 0$, say. Then $B_\delta(x)$ is open with $x \in B_\delta(x)$ and $y \not\in B_\delta(x)$, contradiction. \begin{hiddenflashcard}[indiscrete-topology] Indiscrete topology? \\ \[ \cloze{\tau = \{\emptyset, X\}} \] \end{hiddenflashcard} \item The cofinite topology: Let $X$ be any infinite set and let \[ \tau = \{G \subset X \mid X \setminus G \text{ is finite}\} \cup \{\emptyset\} \] Check this is a topology: \begin{enumerate}[(i)] \item $\emptyset \in \tau$, $X \setminus X = \emptyset$ is finite so $X \in \tau$. \item Let $\sigma \in \tau$. If $\sigma$ is empty or contains $\emptyset$ then $\bigcup_{G \in \sigma} G = \emptyset \in \tau$. Otherwise, pick $H \in \sigma$ with $H \neq \emptyset$. Then $X \setminus H$ is finite so \[ \left( X \setminus \bigcup_{G \in \sigma} G \right) = \bigcap_{G \in \sigma} (X \setminus G) \subset X \setminus H \] is finite. So $\bigcup_{G \in \sigma} G \in \tau$. \item Let $G, H \in \tau$. If $G = \emptyset$ or $H = \emptyset$ then $G \cap H = \emptyset \in \tau$. Otherwise $X \setminus G$, $X \setminus H$ are finite and then \[ (X \setminus (G \cap H)) = (X \setminus G) \cup (X \setminus H) \] is finite. So $G \cap H \in \tau$. \end{enumerate} So the cofinite topology is indeed a topology. \\ Is it induced by a metric $d$? No: observe first that if $G, H$ are open and non-empty then $G \cap H \neq \emptyset$. Now suppose $x, y \in X$ with $x \neq y$. Then $d(x, y) = \delta > 0$ so $B_{\frac{\delta}{2}}(x)$, $B_{\frac{\delta}{2}}(y)$ are non-empty disjoint open sets. So $d$ doesn't induce $\tau$. \item The cocountable topology: Let $X$ be any uncountable set and let \[ \tau = \{G \subset X \mid X \setminus G \text{ countable}\} \cup \{\emptyset\} \] Then, very similarly to (3), this is a topology that is not induced by any metric. \end{enumerate} \subsection{Sequences and Hausdorff spaces} \begin{flashcard}[TopConvergentSeq] \begin{definition*} Let $X$ be a topological space, let $(x_n)$ be a sequence in $X$ and let $x \in X$. We say $(x_n)$ \emph{converges} to $x$ and write $x_n \to x$ if \cloze{whenever $\mathcal{N} \subset X$ is a neighbourhood of $x$ then there exists $N$ such that for all $n \ge N$, $x_n \in \mathcal{N}$.} \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(1)] \item Let $X$ be an uncountable set with the cocountable topology. Which sequences converge in $X$? Suppose $x_n \to x$. Then let \[ \mathcal{N} = (X \setminus \{x_n \mid n \in \NN\}) \cup \{x\} \] Then $\mathcal{N}$ is open and $x \in \mathcal{N}$ so $\mathcal{N}$ is a neighbourhood of $x$. So there exists $N$ such that for all $N \ge N$, $x_n \in \mathcal{N}$. So there exists $N$ such that for all $n \ge N$, $x_n = x$. Obviously if there exists $N$ such that for all $n \ge N$, $x_n = x$ then $x_n \to x$. So the only convergent sequences in this space are eventually constant. \begin{hiddenflashcard}[topology-only-convergent-sequences-are-eventually-constant] Example of a topology for which all convergent sequences are eventually constant? \\ \cloze{ \fcemph{Cocountable topology} on an uncountable set $X$ (we don't need the uncountableness, but uncountable makes it so that the space is not induced by any metric). } \end{hiddenflashcard} \item Let $X = \{1, 2, 3\}$ with the indiscrete topology. Let $x_n = i \in X$ with $i \equiv n \pmod{3}$. So the sequence is $1, 2, 3, 1, 2, 3, 1, 2, 3, \dots$. Then we claim that $x_n \to 2$. Let $\mathcal{N}$ be a neighbourhood of 2. Then there exists $G$ open such that $2 \in G \subset \mathcal{N}$. But the only open sets are $\emptyset$ or $\{1, 2, 3\}$. So $G = \{1, 2, 3\}$. So $\mathcal{N} = \{1, 2, 3\}$ so for all $n$, $x_n \in \mathcal{N}$. So $x_n \to 2$. Similarly $x_n \to 1$ and $x_n \to 3$. So: \begin{warning*} LIMITS OF CONVERGENT SEQUENCES NEED NOT BE UNIQUE. \\ So we can't write $\lim_{n \to \infty} x_n$, unless we prove that the limit exists \emph{and} is unique. \\ Note the above proof shows that in any indiscrete space every sequence converges to every point of the space. \end{warning*} \end{enumerate}