% vim: tw=50 % 06/10/2022 11AM \iffalse Plan for the contents: SECTION I: GENERALIZING CONTINUITY AND CONVERGENCE Chapter 1: Three Examples of Convergence (a) Convergence in \RR (b) Convergence in \RR^2 (c) Convergence of functions (main part of chapter) Chapter 2: Metric Spaces Do convergence in a more general setting Chapter 3: Topological Spaces Even more general SECTION II: GENERALIZING DIFFERENTIATION Only look at functions \RR^n \to \RR^m \fi \mychapter{Generalizing continuity and convergence} \newpage \section{Three Examples of Convergence} \subsection{Convergence in $\RR$} Recall from IA: \begin{definition*}[Convergence in $\RR$] Let $(x_n)$ be a sequence in $\RR$ and $x \in \RR$. We say that $(x_n)$ converges to $x$ and write $x_n \to x$ if \[ \forall\,\, \eps > 0 \,\, \exists N \,\, \forall \,\, n \ge N \,\, |x_n - x| < \eps \] \end{definition*} \noindent Useful fact: for all $a, b \in \RR$, \[ |a + b| \le |a| + |b| \] (triangle inequality) \myskip Recall two key theorems: \begin{theorem*}[Bolzano-Weierstrass] A bounded sequence in $\RR$ must have a convergent subsequence. (proof is by interval bisection). \end{theorem*} \noindent Recall: \begin{definition*} A sequence $(x_n)$ in $\RR$ is \emph{Cauchy} if \[ \forall \,\, \eps > 0 \,\, \exists \,\, N \,\, \forall m, n \ge N \quad |x_m - x_n| , \eps \] \end{definition*} \noindent Easy exercise: prove that convergent implies Cauchy. \\ General principle of convergence: Any Cauchy sequence in $\RR$ converges. (outline proof: If $(x_n)$ Cauchy then $(x_n)$ bounded so by Bolzano-Weierstrass it has a convergent subsequence, say $x_{n_j} \to x$. But since Cauchy, $x_n \to x$.) \subsection{Convergence in $\RR^2$} \begin{remark*} This all works in $\RR^n$. \end{remark*} \noindent Let $(z_n)$ be a sequence in $\RR^2$ and $z \in \RR^2$. What should $z_n \to z$ mean? \myskip In $\RR$: ``As $n$ gets large, $z_n$ gets arbitrarily close to $z$''. \myskip What does `close' mean in $\RR^2$? \myskip In $\RR$: $a, b$ close if $|a - b|$ small. \\ In $\RR^2$: replace $| \bullet |$ by $\| \bullet \|$. \myskip Recall: If $z = (x, y)$ then $\|z\| = \sqrt{x^2 + y^2}$. \myskip Triangle inequality: If $a, b \in \RR^2$ then \[ \|a + b\| \le \|a\| + \|b\| \] \begin{definition*} Let $(z_n)$ be a sequence in $\RR^2$ and $z \in \RR^2$. We say $(z_n)$ converges to $z$ and write $z_n \to z$ if \[ \forall \,\, \eps > 0 \,\, \exists \,\, N \,\, \forall \,\, n \ge N \quad \|z_n - z\| < \eps .\] Equivalently, $z_n \to z$ if and only if $\|z_n - z\| \to 0$. \end{definition*} \begin{example*} Let $(z_n), (w_n)$ be sequences in $\RR^2$ with $z_n \to z$, $w_n \to w$. Then $z_n + w_n \to z + w$. \end{example*} \begin{proof} \[ \|(z_n + w_n) - (z + w)\| \le \|z_n - z\| + \|w_n - w\| \to 0 + 0 = 0 \] (by results from IA) \end{proof} \myskip In fact, given convergence in $\RR$, convergence in $\RR^2$ is easy: \begin{proposition} Let $(z_n)$ be a sequence in $\RR^2$ and let $z \in \RR^2$. Write $z_n = (x_n, y_n)$ and $z = (x, y)$. Then $z_n \to z$ if and only if $x_n \to x$ and $y_n \to y$. \end{proposition} \begin{proof} \begin{enumerate} \item[$\Rightarrow$] $|x_n - x|, |y_n - y| \le \|z_n - z\|$. So if $\|z_n - z\| \to 0$, then $|x_n - x| \to 0$ and $|y_n - y| \to 0$. \item[$\Leftarrow$] If $|x_n - x| \to 0$ and $|y_n - y| \to 0$ then \[ \|z_n - z\| = \sqrt{(x_n - x)^2 + (y_n - y)^2} \to 0 \] by results in $\RR$. \end{enumerate} \end{proof} \begin{definition*} A sequence $(z_n)$ in $\RR^2$ is bounded if $\exists \,\, M \in \RR$ such that for all $n$, $\|z_n\| \le M$. \end{definition*} \begin{hiddenflashcard}[bolzano-weierstrass-in-Rn] Proof of Bolzano Weierstrass in $\RR^n$? \\ \cloze{ Take subsequence which is convergent in first coordinate, take subsequence of this which is convergent in second coordinate etc\ldots } \end{hiddenflashcard} \begin{theorem}[Bolzano Weierstrass in $\RR^2$] A bounded sequence in $\RR^2$ must have a convergent subsequence. \end{theorem} \begin{proof} Let $(z_n)$ be a bounded sequence in $\RR^2$. Write $z_n = (x_n, y_n)$. Now for all $n$, $|x_n| \le \|z_n\|$ so $(x_n)$ is a bounded sequence in $\RR$. So by Bolzano Weierstrass, it has a convergent subsequence, say $x_{n_j} \to x \in \RR$. Similarly, $(y_{n_j})$ is a bounded sequence in $\RR$ so has a convergent subsequence $y_{n_{j_k}} \to y$. Now also $x_{n_{j_k}} \to x$. Hence $z_{n_{j_k}} \to z = (x, y)$. \end{proof} \begin{definition*} A sequence $(z_n)$ in $\RR^2$ is \emph{Cauchy} if \[ \forall \,\, \eps > 0 \,\, \exists \,\, N \,\, \forall \,\, m, n \ge N \quad \|x_m - x_n\| < \eps \] \end{definition*} \noindent Easy exercise: Convergent implies Cauchy. \begin{theorem}[General Principle of Convergence for $\RR^2$] Any Cauchy sequence in $\RR^2$ converges. \end{theorem} \begin{proof} Let $(z_n)$ be a Cauchy sequence in $\RR^2$. Write $z_n = (x_n, y_n)$. For all $m, n$, $|x_m - x_n| \le \|z_m - z_n\|$ so $(x_n)$ is Cauchy sequence in $\RR$, so converges by General Principle of Convergence. Similarly for $(y_n)$. So by proposition 1, $(z_n)$ converges. \end{proof}