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1. Three Examples of Convergence

1.1. Convergence in R

Recall from IA:

Definition (Convergence in R). Let (xn) be a sequence in R and x ∈ R. We say
that (xn) converges to x and write xn → x if

∀ ε > 0 ∃N ∀ n ≥ N |xn − x| < ε

Useful fact: for all a, b ∈ R,
|a+ b| ≤ |a|+ |b|

(triangle inequality)

Recall two key theorems:

Theorem (Bolzano-Weierstrass). A bounded sequence in R must have a convergent
subsequence. (proof is by interval bisection).

Recall:

Definition. A sequence (xn) in R is Cauchy if

∀ ε > 0 ∃ N ∀m,n ≥ N |xm − xn|, ε

Easy exercise: prove that convergent implies Cauchy.
General principle of convergence: Any Cauchy sequence in R converges. (outline proof:
If (xn) Cauchy then (xn) bounded so by Bolzano-Weierstrass it has a convergent subse-
quence, say xnj → x. But since Cauchy, xn → x.)

1.2. Convergence in R2

Remark. This all works in Rn.

Let (zn) be a sequence in R2 and z ∈ R2. What should zn → z mean?

In R: “As n gets large, zn gets arbitrarily close to z”.

What does ‘close’ mean in R2?

In R: a, b close if |a− b| small.
In R2: replace | • | by ∥ • ∥.
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Recall: If z = (x, y) then ∥z∥ =
√

x2 + y2.

Triangle inequality: If a, b ∈ R2 then

∥a+ b∥ ≤ ∥a∥+ ∥b∥

Definition. Let (zn) be a sequence in R2 and z ∈ R2. We say (zn) converges to z
and write zn → z if

∀ ε > 0 ∃ N ∀ n ≥ N ∥zn − z∥ < ε.

Equivalently, zn → z if and only if ∥zn − z∥ → 0.

Example. Let (zn), (wn) be sequences in R2 with zn → z, wn → w. Then zn+wn →
z + w.

Proof.
∥(zn + wn)− (z + w)∥ ≤ ∥zn − z∥+ ∥wn − w∥ → 0 + 0 = 0

(by results from IA)

In fact, given convergence in R, convergence in R2 is easy:

Proposition 1. Let (zn) be a sequence in R2 and let z ∈ R2. Write zn = (xn, yn)
and z = (x, y). Then zn → z if and only if xn → x and yn → y.

Proof. ⇒ |xn − x|, |yn − y| ≤ ∥zn − z∥. So if ∥zn − z∥ → 0, then |xn − x| → 0 and
|yn − y| → 0.

⇐ If |xn − x| → 0 and |yn − y| → 0 then

∥zn − z∥ =
√
(xn − x)2 + (yn − y)2 → 0

by results in R.

Definition. A sequence (zn) in R2 is bounded if ∃ M ∈ R such that for all n,
∥zn∥ ≤M .
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Theorem 2 (Bolzano Weierstrass in R2). A bounded sequence in R2 must have a
convergent subsequence.

Proof. Let (zn) be a bounded sequence in R2. Write zn = (xn, yn). Now for all n, |xn| ≤
∥zn∥ so (xn) is a bounded sequence in R. So by Bolzano Weierstrass, it has a convergent
subsequence, say xnj → x ∈ R. Similarly, (ynj ) is a bounded sequence in R so has a
convergent subsequence ynjk

→ y. Now also xnjk
→ x. Hence znjk

→ z = (x, y).

Definition. A sequence (zn) in R2 is Cauchy if

∀ ε > 0 ∃ N ∀ m,n ≥ N ∥xm − xn∥ < ε

Easy exercise: Convergent implies Cauchy.

Theorem 3 (General Principle of Convergence for R2). Any Cauchy sequence in
R2 converges.

Proof. Let (zn) be a Cauchy sequence in R2. Write zn = (xn, yn). For all m,n, |xm −
xn| ≤ ∥zm − zn∥ so (xn) is Cauchy sequence in R, so converges by General Principle of
Convergence. Similarly for (yn). So by proposition 1, (zn) converges.

Start of
lecture 2 1.3. Convergence of Functions

Let X ⊂ R, let fn : X → R (n ≥ 1) and let f : X → R. What does it mean for (fn) to
converge to f?

(Mostly can think of X = R or some interval).

Obvious idea:

Definition (Convergence of functions). Say (fn) converges pointwise to f and write
fn → f pointwise if ∀ x ∈ X, fn(x)→ f(x) as n→∞.

Advantages:

� Simple

� Easy to check

� Defined in terms of convergence in R.
Disadvantages:

� Doesn’t preserve ‘nice’ properties.

� ‘Doesn’t feel right’.

6
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Examples

In all three examples, have X = [0, 1], fn → f pointwise.

Example (Limit of continuous functions not continuous). Consider:

f(x) =

{
0 x = 0

1 x > 0

and

fn(x) =

{
nx x ≤ 1

n

1 x > 1
n

1

11
n

fn

Clearly fn continuous for all n but f not continuous.

Proving that fn → f :

� If x = 0, then ∀ n, fn(0) = 0 = f(0).

� If x > 0, for sufficiently large n, fn(x) = 1 = f(x), so fn(x)→ f(x).

Note. As in IA, “integrable” means “Riemann integrable”.

Consider

f(x) =

{
1 x ∈ Q
0 x ̸∈ Q

Enumerate the rationals in [0, 1] as q1, q2, . . . . For n ≥ 1, set

fn(x) =

{
1 x = q1, . . . , qn

0 otherwise

7



Example (Functions and limit are integrable, but integral doesn’t converge). Let
f(x) = 0 for all x, so

∫ 1
0 f = 0. Define fn such that

∫ 1
0 fn = 1 for all n:

fn(x) =

{
n 0 < x < 1

n

0 otherwise

Now fn → f but clearly
∫ 1
0 fn ̸→

∫ 1
0 f .

Now we try to make a “better” definition so that more of these properties might be able
to hold.

Definition. Let X ⊂ R, fn : X → R (n ≥ 1), f : X → R. We say (fn) converges
uniformly to f and write fn → f uniformly if

∀ε > 0 ∃N ∀x ∈ X ∀n ≥ N |fn(x)− f(x)| < ε

The definition for pointwise convergence can be restated as:

∀ε > 0 ∀x ∈ X ∃N ∀n ≥ N |fn(x)− f(x)| < ε

In particular fn → f uniformly =⇒ fn → f pointwise.

Example (Limit of integrable not integrable).

Equivalently, fn → f uniformly if for sufficiently large n fn − f is bounded and

sup
x∈X
|fn(x)− f(x)| → 0

Theorem 4. Let X ⊂ R, let fn : X → R be continuous (n ≥ 1) and let fn → f :
X → R uniformly. Then f is continuous.
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“A uniform limit of continuous functions is continuous.”

Proof. Let x ∈ X. Let ε > 0. As fn → f uniformly, can find N such that ∀n ≥ N ,
∀y ∈ X, |fn(y) − f(y)| < ε. In particular, ∀y ∈ X, |fN (y) − f(y)| < ε. As fN is
continuous, can find δ > 0 such that ∀y ∈ X,

|y − x| < δ =⇒ |fN (y)− fN (x)| < ε

Now let y ∈ X with |y − x| < δ. Then

|f(y)− f(x)| ≤ |f(y)− fN (y)|+ |fN (y)− fN (x)|+ |fN (x)− f(x)|
< ε+ ε+ ε

= 3ε

But 3ε can be made arbitrarily small by taking ε arbitrarily small. Hence f is continuous.

Remark. This is often called a “3ε proof” (or an “ ε
3 proof” if written in a different

style).

Theorem 5. Let fn : [a, b] → R (n ≥ 1) be integrable and let fn → f : [a, b] → R
uniformly. Then f is integrable and∫ b

a
fn →

∫ b

a
f

as n→∞.

Proof. As fn → f uniformly, can pick a sufficiently large n such that fn− f is bounded.
Also, fn is bounded (as integrable). So by triangle inequality,

f = (f − fn) + fn

is bounded.

Let ε > 0. As fn → f uniformly there is some N such that ∀n ≥ N , ∀x ∈ [a, b] we have
|fn(x)−f(x)| < ε. In particular, ∀x ∈ [a, b], |fN (x)−f(x)| < ε. By Riemann’s criterion,
there is some dissection D of [a, b] for which

S(fN ,D)− s(fN ,D) < ε.
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Let D = {x0, x1, . . . , xk}, where a = x0 < x1 < · · · < xk = b. Now

S(f,D) =
k∑

i=1

(xi − xi−1) sup
x∈[xi−1,xi]

f(x)

≤
k∑

i=1

(xi − xi−1) sup
x∈[xi−1,xi]

(fN (x) + ε)

=
k∑

i=1

(xi − xi−1)(( sup
x∈[xi−1,xi]

fN (x)) + ε)

=
k∑

i=1

(xi − xi−1) sup
x∈[xi−1,xi]

fN (x) +
k∑

i=1

(xi − xi−1)ε

= S(fN ,D) + (b− a)ε

That is,
S(f,D) ≤ S(fN ,D) + (b− a)ε

Similarly
s(f,D) ≥ s(fN ,D)− (b− a)ε

Hence

S(f,D)− s(f,D) ≤ S(fN ,D)− s(fN ,D) + 2(b− a)ε

< (2(b− a) + 1)ε

But (2(b−a)+1)ε can be made arbitrarily small by taking ε small. Hence by Riemann’s
criterion, f is integrable over [a, b].

Now, for any n sufficiently large such that fn − f is bounded,∣∣∣∣∫ b

a
fn −

∫ b

a
f

∣∣∣∣ = ∣∣∣∣∫ b

a
(fn − f)

∣∣∣∣
≤
∫ b

a
|fn − f |

≤ (b− a) sup
x∈[a,b]

|fn(x)− f(x)|

→ 0

as n→∞ since fn → f uniformly.

Start of
lecture 3 What about differentiation?

Here, even uniform convergence is not enough.
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Example. fn : [−1, 1] → R, each function differentiable, fn → f uniformly but f
not differentiable. We will let f(x) = |x|. Consider:

fn(x) =

{
|x| |x| ≥ 1

n
n
2x

2 +
(
1
n −

1
2n2

)
|x| < 1

n

By straightforward calculations, fn → f uniformly, and all the fn are differentiable.

In fact we need uniform convergence of the derivatives.

Theorem 6 (Limit of differentiable functions). Let fn : (u, v) → R (n ≥ 1) and
f : (u, v)→ R with fn → f pointwise. Suppose further each function is continuously
differentiable and that f ′

n → g uniformly. Then f is differentiable with f ′ = g.

Proof. Fix a ∈ (u, v). Let x ∈ (u, v). By Fundamental theorem of calculus we have
each f ′

n is integrable over [a, x] and
∫ x
a f ′

n = fn(x)− fn(x). But f
′
n → g uniformly so by

Theorem 5, g is integrable over [a, x] and
∫ x
a g = limn→∞

∫ x
a f ′

n(x) = f(x)− f(a). So we
have shown that for all x ∈ (u, v),

f(x) = f(a) +

∫ x

a
g.

By Theorem 4, g is continuous so by Fundamental theorem of calculus, f is differentiable
with f ′ = g.

Remark. It would have sufficed to assume fn(x) → f(x) at a single value of x
rather than fn → f pointwise.

Definition. LetX ⊂ R and let fn : X → R for each n ≥ 1. We say (fn) is uniformly
Cauchy if

∀ε > 0 ∃N ∀m,n ≥ N ∀x ∈ X |fm(x)− fn(x)| < ε

Exercise: uniformly convegent =⇒ uniformly Cauchy.

Theorem 7 (General Principle of Uniform Convergence). Let (fn) be a uniformly
Cauchy sequence of functions X → R (X ⊂ R). Then (fn) is uniformly convergent.

Proof. Let x ∈ X. Let ε > 0. Then

∃N ∀m,n ≥ N ∀y ∈ X |fm(y)− fn(y)| < ε.

11



In particular, ∀m,n ≥ N , |fm(x)− fn(x)| < ε. So (fn(x))n≥1 is a Cauchy sequence in R
so by general principle of convergence it converges, say fn(x)→ f(x) as n→∞.
We have now constructed f : X → R such that fn → f pointwise.
Let ε > 0. Then we can find an N such that

∀m,n ≥ N ∀y ∈ X |fm(y)− fn(y)| < ε.

Fix y ∈ X, keep m ≥ N fixed and let n→∞:

|fm(y)− f(y)| ≤ ε.

So we have shown that ∀m ≥ N , |fm(y)− f(y)| ≤ ε. But y was arbitrary so

∀x ∈ X ∀m ≥ N |fm(x)− f(x)| ≤ ε.

So fn → f uniformly.

Definition. Let X ⊂ R and let fn : X → R for each n ≥ 1. We say (fn) is pointwise
bounded if ∀x ∃M ∀n, |fn(x)| ≤M . We say (fn) is uniformly bounded if ∃M ∀x ∀n,
|fn(x)| ≤M .

What would uniform Bolzano Weierstrass say? “If (fn) is a uniformly bounded sequence
of functions then it has a uniformly convergent subsequence.”
But this is not true.

Example. fn : R→ R defined by

fn(x) =

{
1 x = n

0 x ̸= n

Obviously uniformly bounded (by 1). However, if m ̸= n, then fm(m) = 1 and
fn(m) = 0 so |fm(m)− fn(m)| = 1 so no subsequence can be uniformly convergent.

Application to power series

Recall that if
∑

n anx
n is a real power series with radius of convergence R > 0 then can

differentiate / integrate it term-by-term within (−R,R).

Definition. Let fn : X → R (X ⊂ R) for each n ≥ 0. We say the series
∑∞

n=0 fn
converges uniformly if the sequence of partial sums (Fn) does, where Fn =

∑n
m=0 fm.

Can apply theorem 4 to 6 to get for example if conditions hold with fn continuously
differentiable and uniform convergence then

∑
fn has derivative

∑
f ′
n.

We hope to prove that
∑

anx
n converges uniformly on (−R,R) then hit it with earlier

theorems, but this is not quite true.
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Example.
∑∞

n=0 x
n with radius of convergence 1. This does not converge uniformly

on (−1, 1). Let f(x) =
∑∞

n=0 x
n and Fn(x) =

∑n
m=0 x

m. Note f(x) = 1
1−x →∞ as

x → 1. However, ∀x ∈ (−1, 1), |Fn(x)| ≤ n + 1. Fix any n. We can find a point
x ∈ (−1, 1) where f(x) ≥ n+2 and so |f(x)−Fn(X)| ≥ 1. So clearly we can’t have
that Fn → f uniformly.

Back up plan: it does work if we look at smaller interval. New plan: show if 0 < r < R,
then we do have uniform convergence on (−r, r).

Given x ∈ (−R,R) there’s some r with |x| < r < R: use uniform convergence on (−r, r)
to check everything nice at x. ‘Local uniform convergence of power series.’

Start of
lecture 4 Lemma 8. Let

∑
anx

n be a real power series with radius of convergence R > 0.
Let 0 < r < R. Then

∑
anx

n converges uniformly on (−r, r).

Proof. Define f, fm : (−r, r) → R by f(x) =
∑∞

n=0 anx
n and fm(x) =

∑m
n=0 anx

n.
Recall that

∑
anx

n converges absolutely for all x ∈ (−r, r). Then

|f(x)− fm(x)| =

∣∣∣∣∣
∞∑

n=m+1

anx
n

∣∣∣∣∣
≤

∞∑
n=m+1

|an||x|n

≤
∞∑

n=m+1

|an|rn

which converges by absolute convergence at r. Hence if m sufficiently large, f − fm is
bounded and

sup
x∈(−r,r)

|f(x)− fm(x)| ≤
∞∑

n=m+1

|an|rn → 0

as m→∞ by absolute convergence at r.

Theorem 9. Let
∑

anx
n be a real power series with radius of convergence R > 0.

Define f : (−R,R) by f(x) =
∑∞

n=0 anx
n. Then

(i) f is continuous;

(ii) for any x ∈ (−R,R) f is integrable over [0, x] with∫ x

0
f =

∞∑
n=0

an
n+ 1

xn+1

13

https://notes.ggim.me/AT#lecturelink.4


Proof. Let x ∈ (−R,R). Pick r such that x < r < R. By Lemma 8,
∑

any
n converges

uniformly on (−r, r). But the partial sum functions y 7→
∑m

n=0 any
n (m ≥ 0) are all

continuous functions on (−r, r). Hence by Theorem 4, f(−r,r) is continuous. Hence f is
continuous at x. Thus f is a continuous function on (−R,R). More over, [0, x] ⊂ (−r, r)
so also have

∑
any

n converges uniformly on [0, x]. Each partial sum function on [0, x]
is a polynomial so can be integrated with∫ x

0

m∑
n=0

any
ndy =

m∑
n=0

∫ x

0
any

ndy =
m∑

n=0

an
n+ 1

xn+1

Hence by Theorem 5, f is integrable over [0, x] with∫ x

0
f = lim

m→∞

∫ x

0

m∑
n=0

any
ndy

= lim
m→∞

m∑
n=0

an
n+ 1

xn+1

=

∞∑
n=0

an
n+ 1

xn+1

For differentiation, need technical lemma:

Lemma 10. Let
∑

anx
n be a real power series with radius of convergence R > 0.

Then the power series
∑

n≥1 nanx
n−1 has radius of convergence at least R.

Proof. Let x ∈ R, 0 < x < R. Pick w with x < w < R. Then
∑

anw
n is absolutely

convergent, so anw
n → 0 so ∃M such that ∀n, |anwn| ≤M . For each n,

|nanxn−1| = |anwn|
∣∣∣ x
w

∣∣∣n 1

|x|
n

Fix n. Let α =
∣∣ x
w

∣∣ < 1. Let c = M
|x| be a constant. Then |nanxn−1| ≤ cnαn. By

comparison test, sufficient to show
∑

nan converges. Note∣∣∣∣(n+ 1)αn+1

nαn

∣∣∣∣ = (1 + 1

n

)
α→ α < 1

as n→∞ so done by ratio test.

Theorem 11. Let
∑

anx
n be a real power series with radius of convergence R > 0.

Let f : (−R,R)→ R be defined by f(x) =
∑∞

n=0 anx
n. Then f is differentiable and

∀x ∈ (−R,R), f ′(x) =
∑∞

n=1 nanx
n−1.
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Proof. Let x ∈ (−R,R). Pick r with |x| < r < R. Then
∑

any
n converges uniformly

on (−r, r). Moreover, the power series
∑

n≥1 nany
n−1 has radius of convergence at

least R and so also converges uniformly on (−r, r). The partial sum functions fm(y) =∑m
n=0 any

n are polynomials so differentiable with f ′
m(y) =

∑m
n=1 nany

n−1.
We now have f ′

m converging uniformly on (−r, r) to the function g(y) =
∑∞

n=1 nany
n−1.

Hence by Theorem 6, f(−r,r) is differentiable and ∀y ∈ (−r, r), f ′(y) = g(y). In particular,
f is differentiable at x with f ′(x) = g(x). Hence f is a differentiable function on (−R,R)
with derivative g as described.

1.4. Uniform Continuity

Let X ⊂ R. Let f : X → R. (May as well think of X = R or X = (a, b)). Recall that f
is continuous if

∀ε > 0 ∀x ∈ X ∃δ > 0 ∀y ∈ X |x− y| < δ =⇒ |f(x)− f(y)| < ε

Definition (Uniform continuity). We say that f is uniformly continuous if

∀ε > 0 ∃δ > 0 ∀x, y ∈ X |x− y| < δ =⇒ |f(x)− f(y)| < ε

Remark. Clearly if f is uniformly continuous then f is continuous.

We would suspect that f is continuous doesn’t imply that f is uniformly continuous.

Example. A function f : R→ R that is continuous but not uniformly continuous.
Consider f(x) = x2. We know f is continuous (as it’s a polynomial). Suppose δ > 0.
Then

f(x+ δ)− f(x) = (x+ δ)2 − x2 = 2δx+ δ2 →∞

as x→∞. So in particular, ∀δ > 0, ∃x, y ∈ R such that |x−y| < δ but f(x)−f(y)| ≥
1. So condition for uniformly continuous fails for ε = 1. So f is not uniformly
continuous.

Example. Make domain bounded, and we can still fail. Consider f : (0, 1) → R,
f(x) = 1

x . Clearly continuous. Check not uniform continuity as an exercise.

Start of
lecture 5 Theorem 12. A continuous real-valued function on a closed bounded interval is

uniformly continuous.
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Proof. Let f : [a, b] → R and suppose f is continuous but not uniformly continuous.
Then we can find an ε > 0 such that for all δ > 0 there exists x, y ∈ [a, b] with
|x− y| < δ but |f(x)− f(y)| ≥ ε. In particular taking δ = 1

n for n = 1, 2, 3, . . . , we can
find sequences (xn), (yn) in [a, b] with for each n, |xn− yn| < 1

n but |f(xn)− f(yn)| ≥ ε.
The sequence (xn) is bounded so by Bolzano Weierstrass it has a convergent subsequence
xnj → x say. And [a, b] is a closed interval so x ∈ [a, b]. Then xnj − ynj → 0 so also
ynj → x. But f is continuous at x, so there exists δ > 0 such that for all y ∈ [a, b],
|y − x| < δ implies that |f(y) − f(x)| < ε

2 . Take such a δ. As xnj → x we can find
J1 such that j ≥ J1 implies that |xnj − x| < δ. Similarly can find J2 such that j ≥ J2
implies |ynj − x| < δ. Now let j = max{J1, J2}. Then |xnJ − x| < δ and |ynj − x| < δ so
we have |f(xnJ )− f(x)| < ε

2 and |f(ynj )− f(x)| < ε
2 . Then

|f(xnj )− f(ynj )| ≤ |f(xnj )− f(x)|+ |f(x)− f(ynj )| <
ε

2
+

ε

2
= ε

contradiction.

Corollary 13. A continuous real-valued function on a closed bounded interval is
bounded.

Proof. Let f : [a, b] → R be continuous, and so uniformly continuous by Theorem 12.
Then can find δ > 0 such that

∀x, y ∈ [a, b] |x− y| < δ =⇒ |f(x)− f(y)| < 1

Let M =
⌈
b−a
δ

⌉
. Now let x ∈ [a, b]. We can find a = x0 ≤ x1 ≤ · · · ≤ xm = x, with

|xi − xi−1| < δ for each i. Hence

|f(x)| = |f(a) +
M∑
i=1

f(xi)− f(xi−1)|

≤ |f(a)|+
M∑
i=1

|f(xi)− f(xi−1)|

< |f(a)|+
M∑
i=1

1

= M + f(a)

Corollary 14. A continuous real-valued function on a closed bounded interval is
integrable.

16



Proof. Let f : [a, b]→ R be continuous and so uniformly continuous by Theorem 12. Let
ε > 0. Then can find δ > 0 such that for all x, y ∈ [a, b], |x−y| < δ =⇒ |f(x)−f(y)| < ε.
Let D = {x0 < x1 < · · · < xn} be a dissection such that for each i we have xi−xi−1 < δ.
Let i ∈ {1, . . . , n}. Then for any u, v ∈ [xi−1, xi] we have |u−v| < δ so |f(u)−f(v)| < ε.
Hence

sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x) ≤ ε

Hence:

S(f,D)− s(f,D) =
n∑

i=1

(xi − xi−1)( sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x))

≤
n∑

i=1

(xi − xi−1)ε

= ε
n∑

i=1

(xi − xi−1)

= ε(b− a)

But ε(b− a) can be made arbitrarily small by taking ε small. So by Riemann’s criterion
f is integrable over [a, b].

17



2. Metric Spaces

2.1. Definitions and Examples

Can we think about convergence in a more general setting? What do we really need? -
A notion of distance.

In R: distance x to y is |x− y|.
In R2: distance x to y is ∥x− y∥.
For functions distance x to y is

sup sup
x∈X
|f(x)− g(x)|

(where this exists, i.e. if f − g is bounded).

Triangle inequality was often important.

Definition (Metric space). A metric space is a set X endowed with a metric d, i.e.
a function d : X2 → R satisfying:

(i) d(x, y) ≥ 0 for all x, y ∈ X with equality if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Could define a metric space as an ordered pair (X, d). If it is obvious what d is, sometimes
write “The metric space X. . . ”

Examples

(1) X = R, d(x, y) = |x− y| “The usual metric on R”.

(2) X = Rn with the Euclidean metric

d(x, y) = ∥x− y∥ =

√√√√ n∑
i=1

(xi − yi)2

(3) Let Y ⊂ R. Take
X = B(Y ) = {f : Y → R|f is bounded}

now we can use the uniform metric

d(f, g) = sup
x∈Y
|f(x)− g(x)|

18



(we need the bounded condition for this supremum to necessarily exist). Check
triangle inequality: let f, g, h ∈ B(Y ). Let x ∈ Y . Then

|f(x)− h(x)| ≤ |f(x)− g(x)|+ |g(x)− h(x)|
≤ d(f, g) + d(g, h)

Take sup over all x ∈ Y we get

d(f, h) ≤ d(f, g) + d(g, h)

Remark. Suppose (X, d) is a metric space and Y ⊂ X. Then d |Y 2 is a metric
on Y . We say Y with this metric is a subspace of X.

(4) Subspaces of R: any of Q,Z,N, [0, 1], . . . with the usual metric of d(x, y) = |x− y|.

(5) Recall that a continuous function on a closed bounded interval is bounded. Define
C([a, b]) = {f : [a, b]→ R|f is continuous}. This is a subspace of B([a, b]).

(6) The empty metric space X = with the empty metric.

(7) Can define different metrics on the same set, for example the l1 metric on Rn:

d(x, y) =
n∑

i=1

|xi − yi|

(8) The l∞ metric on Rn:
d(x, y) = max

i
|xi − yi|

(proof of triangle inequality is the same as for uniform metric in example 3).

(9) On C([a, b]) we can define the L1 metric

d(f, g) =

∫ b

a
|f − g|

(10) X = C with

d(z, w) =

{
0 if z = w

|z|+ |w| if z ̸= w

triangle inequality? Need d(u,w) ≤ d(u, v) + d(v, w)

� if u = w, LHS = 0

� If u = v or v = w then LHS = RHS

19



� If u, v, w all distinct:
|u|+ |w| < |u|+ |w|+ 2|w|

“British rail metric” or “SNCF metric”:

Start of
lecture 6 (11) Let X be any set. Define a metric d on X by

d(x, y) =

{
0 x = y

1 x ̸= y

Easy to check this works. This is called the discrete metric on X.

(12) Let X = Z. Let p be a prime. The p-adic metric on Z is the metric d defined by

d(x, y) =

{
0 x = y

p−a if x ̸= y and x− y = pam with p ∤ m

“Two numbers are close if the difference is divisible by a large power of p”. Triangle
inequality:

� Easy if any two of x, y, z are the same, so assume x, y, z are all distinct.

� Let x − y = pam and y − z = pbn where p ∤ m, p ∤ n and without loss of
generality a ≤ b. So d(x, y) = p−a and d(y, z) = p−b. Now:

x− z = (x− y) + (y − z)

= pam+ pbn

pa(m+ pb−an)

so pa | x− z so d(x, z) ≤ p−a. But d(x, y) + d(y, z) ≥ d(x, y) = p−a, so triangle
inequality does hold.

20
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Definition. Let (X, d) be a metric space. Let (Xn) be a sequence in X and let
x ∈ X. We say (Xn) converges to x and write “xn → x” or “xn → x as n→∞” if

∀ε > 0 ∃N ∀n ≥ N d(xn, x) < ε.

Equivalently xn → x if and only if d(xn, x)→ 0 in R.

Proposition 15. Limits are unique. That is, if (X, d) is a metric space, (xn) a
sequence in X, x, y ∈ X with xn → x and xn → y, then x = y.

Proof. For each n,

d(x, y) ≤ d(x, xn) + d(xn, y)

≤ d(xn, x) + d(xn, y)

→ 0 + 0 = 0

So we would need d(x, y) → 0 as n → ∞, but d(x, y) is constant, so d(x, y) = 0. So
x = y.

Remark. This justifies talking about the limit of a convergent sequence in a metric
space, and writing x = limn→∞ xn if xn → x.

Remarks on the definition

(1) Constant sequences obviously converge. Moreover, eventually constant sequences
converge.

(2) Suppose (X, d) is a metric space and Y is a subspace of X. Suppose (xn) is a
sequence in Y which converges in Y to x. Then also (xn) converges in X to x.
However the converse is false. For example, in R with the usual metric then 1

n → 0
as n → ∞. Consider the subspace R \ {0}. Then

(
1
n

)
n≥1

is a sequence in R \ {0}
but it doesn’t converge in R \ {0}. This is because by uniqueness of limits, it would
have to converge to 0, but 0 ̸∈ R \ {0}.

Examples

(1) Let d be the Euclidean metric on Rn. Exactly as in R2, we have xn → x if and only
if the sequence converges in each coordinate in the usual way in R.

What about other metrics on Rn? For example let d∞ be the uniform metric

d∞(x, y) = max
i
|xi − yi|
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which sequences converge in (Rn, d∞)? Note that

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 ≤

√√√√ n∑
i=1

d∞(x, y)2

so d(x, y) ≤
√
nd∞(x, y). But also d∞(x, y) ≤ d(x, y). Now suppose (xn) is a

sequence in Rn. Then

d(xn, x)→ 0 ⇐⇒ d∞(xn, x)→ 0

So exactly the same sequences converge in (Rn, d) and (Rn, d∞). What about the l1
metric d1?

d1(x, y) =
n∑

i=1

|xi − yi|

Similarly d∞(x, y) ≤ d1(x, y) ≤ nd∞(x, y). So again, exactly the same sequences
converge in (Rn, d).

(2) Let X = C([0, 1]) = {f : [0, 1] → R | f is continuous}. Let d∞ be the uniform
metric on X:

d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

Now note that

fn → f in X, d∞ ⇐⇒ d∞(fn, f)→ 0

⇐⇒ sup
x∈[0,1]

|fn(x)− f(x)| → 0

⇐⇒ fn → f uniformly

We also had the L1 metric d1 on X:

d1(f, g) =

∫ 1

0
|f − g|

Now

d1(f, g) =

∫ 1

0
|f − g|

≤
∫ 1

0
d∞(f, g)

= d∞(f, g)

So similarly to previous example,

fn → f in (X, d∞) =⇒ fn → f in (X, d1)

But converse does not hold, i.e. we can find a sequence (fn) in X such that fn → 0
in d1 metric by fn doesn’t converge in the d∞ metric. So we want (fn) such that∫ 1
0 |fn| → 0 as n → ∞, but (fn) does not converge uniformly. We can just take
functions like this:
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Then clearly fn → f in the d1 metric but not in the d∞ metric.

(3) Let (X, d) be a discrete metric space;

d(x, y) =

{
0 x = y

1 x ̸= y

When do we have xn → x in (X, d)? Suppose xn → x, i.e.

∀ε > 0 ∃N ∀n ≥ N d(xn, x) < ε

Setting ε = 1 in this, can find N such that

∀n ≥ N d(xn, x) < 1

i.e. ∀n ≥ N , d(xn, x) = 0, i.e. ∀n ≥ N , xn = x. Thus (xn) is eventually constant.
But we know that in any metric space, eventually constant sequences converge. So
in this space, (xn) converges if and only if (xn) eventually constant.
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Definition. Let (X, d) and (Y, e) be metric spaces and let f : X → Y .

(i) Let a ∈ X and b ∈ Y . We say f(x)→ b as x→ a if

∀ε > 0 ∃δ > 0 ∀x ∈ X

0 < d(x, a) < δ =⇒ e(f(x), b) < ε

(ii) Let a ∈ X. We say f is continuous at a if f(x)→ f(a) as x→ a. That is

∀ε > 0 ∃δ > 0 ∀x ∈ X

d(x, a) < δ =⇒ e(f(x), f(a)) < ε

(iii) If ∀x ∈ X, f is continuous at a, we say f is a continuous function or simply f
is continuous.

(iv) We say f is uniformly continuous if

∀ε > 0 ∃δ > 0 ∀x, y ∈ X

d(x, y) < δ =⇒ e(f(x), f(y)) < ε

(v) Suppose W ⊂ X. We say f is continuous on W (similarly for uniformly
continuous on W ) if the function f |W is continuous, as a function W → Y
where now thinking of W as a subspace of X.

Start of
lecture 7 Remarks

(1) Don’t have a nice rephrasing of (i) in terms of similar concepts in the reals. Would
want to write “e(f(x), b)→ 0 as d(x, a)→ 0”, but this is meaningless.

(2) (i) says nothing about what happens at the point a itself. For example, let f : R→ R

f(x) =

{
1 x = 0

0 x ̸= 0

Then f(x)→ 0 as x→ 0 (but f(0) ̸= 0 so f is not continuous at 0). If we have that
f is continuous then

d(x, a) = 0 =⇒ x = a =⇒ f(x) = f(a) = e(f(x), f(a)) = 0

so we can drop ‘0 <’ from the definition when we come to define continuity.

(3) Can rewrite definition (v): f is continuous on W if and only if f |W is a continuous
function f |W : W → Y thinking of W as a subspace of X. That is

∀a ∈W ∀ε > 0 ∃δ > 0 ∀x ∈W d(x, a) < δ =⇒ e(f(x), f(a)) < ε

24
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In particular, note the subtlety that this only mentions points of W . So, under this
definition, for example f : R→ R,

f(x) =

{
1 x ∈ [0, 1]

0 x ̸∈ [0, 1]

then f is continuous on [0, 1], but f is not continuous at points 0 and 1.

Proposition 16. Let (X, d), (Y, e) be metric spaces. Let f : X → Y and a ∈ X.
Then f is continuous at a if and only if whenever (xn) is a sequence in X with
xn → a then f(xn)→ f(a).

Proof. → Suppose f is continuous at a. Let (xn) be a sequence in X with xn → a. Let
ε > 0. As f continuous at a we can find δ > 0 such that ∀x ∈ X, d(x, a) < δ =⇒
e(f(x), f(a)) < ε. As xn → x we can find N such that n ≥ N =⇒ d(xn, a) < δ.
Let n ≥ N . Then d(xn, a) < δ so e(f(xn), f(a)) < ε. Hence f(xn)→ f(a).

⇐ Suppose f is not continuous at a. Then there is some ε > 0 such that ∀δ.0, ∃x ∈ X
with d(x, a) < δ but e(f(x), f(a)) ≥ ε. Now take δ = 1

1 ,
1
2 ,

1
3 , . . . we obtain a

sequence (xn) with, for each n

d(xn, a) <
1

n
and e(f(xn), f(a)) ≥ ε.

Hence xn → a but f(xn) ̸→ f(a).

Proposition 17. Let (W, c), (X, d), (Y, e) be metric spaces, let f : W → X, let
g : X → Y and let a ∈ W . Suppose f is continuous at a and g is continuous at
f(a). Then g ◦ f is continuous at a.

Proof. Let (xn) be a sequence in W with xn → a. Then by proposition 6, f(xn)→ f(a)
an so also g(f(xn))→ g(f(a)). So by proposition 6 g ◦ f continuous at a.

Examples

(1) R → R with usual metric. This is the same definition as when did it directly for R
only. So already know lots of continuous functions R→ R, for example polynomials,
sin, exp, . . .

(2) Constant functions are continuous. Also if X is any metric space and f : X → X
by f(x) = x for all x ∈ X (the identity function on X) then f is continuous.
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(3) Consider Rn with the Euclidean metric and R with the usual metric.
The projection maps πi : Rn → R given by πi(x) = xi are continuous. (Why?
We’ve seen convergence in Rn of sequences then this is the same as convergence
in each coordinate. Let’s denote a sequence in Rn by (x(m))m≥1. So for example,

x
(3)
5 is the 5th coordinate of the 3rd term. We know x(m) → x if and only if for

each x
(m)
i → xi i.e. for each i, πi(x

(m)) → πi(x). So by proposition 16 each πi is
continuous.) Similarly, suppose f1, . . . , fn : R → R. Let f : R → Rn be defined
by f(x) = (f1(x), . . . , fn(x)). Then f is continuous at a point if and only if all of
f1, . . . , fn are.

Using these facts, and using example 1 and proposition 17 we have many continuous
functions Rn → Rm. For example consider f : R3 → R2,

f(x, y, z) = (e−x sin y, 2x cos z)

is continuous. (Why? Take W = (x, y, z) ∈ R3, we have f1(w) = e−π1(w) sinπ2(w)
and f2(w) = 2π1(w) cosπ3(w). So f1, f2 continuous so f continuous.)

(4) Recall that if we have the Euclidean metric, the l1 metric or the l∞ metric on Rn then
convergent sequences are same in each case. So by proposition 16, the continuous
functions X → Rn or from Rn → Y are the same with each of these three metrics.

(5) Let (X, d) be a discrete metric space and let (Y, e) be any metric space. Which
functions f : X → Y are continuous? Suppose a ∈ X and (xn) a sequence in X
with xn → a. Then (xn) is eventually constant, i.e. for sufficiently large n, xn = a
and so f(xn) = f(a). So f(xn) → f(a). Hence every function on a discrete metric
space is continuous.

2.2. Completeness

In section 1 we saw a version of general principle of convergence held in each of the three
examples we considered. Does general principle of convergence hold in a general metric
space?

Definition (Cauchy sequence). Let (X, d) be a metric space and let (xn) be a
sequence in X. We say (xn) is Cauchy if

∀ε > 0 ∃N ∀m,n ≥ N d(xm, xn) < ε

Exercise: (xn) convergent implies that (xn) Cauchy.
But the converse is not true in general.

Example. Let X = R \ {0} with the usual metric and let xn = 1
n . We saw

previously that (xn) does not converge. Note that X is a subspace of R. In R, (xn)
is convergent (xn → 0) so (xn) is Cauchy in R so (xn) is Cauchy in X.
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Example. Take Q with the usual metric, and take a sequence xn →
√
2. Then xn

is Cauchy but not convergent (in Q).

This example with Q is the main motivation for the following definition.

Definition. Let (X, d) be a metric space. We say X is complete if every Cauchy
sequence in X converges.

Examples

(1) Example above says R \ {0} with usual metric is not complete. Similarly Q with
usual metric is not complete.

(2) General principle of convergence says R with usual metric is complete.

General principle of convergence for Rn says Rn with Euclidean metric is complete.

(3) General principle of uniform convergence (almost) says if X ⊂ R and B(X) = {f :
X → R | f is bounded} with the uniform norm then B(X) is complete.

Start of
lecture 8

Proof. Let (fn) be a Cauchy sequence in B(X). Then (fn) is uniformly Cauchy
so by general principle of uniform convergence is uniformly convergent. That is
fn → f uniformly for some f : X → R. As fn → f uniformly we know fn − f is
bounded for n sufficiently large. Take such an n. Then fn − f and fn are bounded
so f = fn − (fn − f) is bounded. That is, f ∈ B(X). Finally, fn → f uniformly so
d(fn, f)→ 0 i.e. fn → f in (B(X), d).

Remark. In many ways, this is typical of a proof that a given space (X, d) is
complete:

(i) Take (xn) Cauchy in X;

(ii) Constant / find a putative limit object x where it seems (xn) converges to
x in some sense;

(iii) Show x ∈ X,

(iv) Show xn → x in metric space (X, d), i.e. that d(xn, x)→ 0.

This is often tricky / fiddly / annoying / repetitive / boring. But need to take
care as, for example, it’s tempting to talk about d(xn, x) while doing (ii) or (iii);
but this makes no sense to write ‘d(xn, x)’ until we’ve completed (iii) as d only
defined on X2.

(4) If [a, b] is a closed interval then C([a, b]) with uniform norm d is complete.

Proof. (i) Let (fn) be a Cauchy sequence in C([a, b]).
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(ii) We know C([a, b]) is a subspace of B([a, b]) with uniform metric. We know
B([a, b]) is complete and (fn) is a Cauchy sequence in B([a, b]) so in B([a, b]),
fn → f for some f .

(iii) Each function is continuous and fn → f uniformly so f is continuous, i.e.
f ∈ C([a, b]).

(iv) Finally, each fn ∈ C([a, b]), f ∈ C([a, b]) and fn → f uniformly so d(fn, f)→ 0.

This generalises:

Definition. Let (X, d) be a metric space and Y ⊂ X. We say Y is closed if
whenever (xn) is a sequence in Y with xn → x ∈ X then x ∈ Y .

Proposition 18. A closed subset of a complete metric space is complete.

Remark. This does make sense: if Y ⊂ X then Y is itself a metric space as a
subspace of X so can say for example ‘Y is complete’ to mean the metric space
Y (as a subspace of X) is complete. Could do exactly the same with any further
properties of metric spaces we define.

Proof. Let (X, d) be a metric space and Y ⊂ X with X complete and Y closed.

(i) Let (xn) be a Cauchy sequence in Y .

(ii) Now (xn) is a Cauchy sequence in X so by completeness xn → x in X for some
x ∈ X.

(iii) Y ⊂ X is closed so x ∈ Y .

(iv) Finally we now have each xn ∈ Y , x ∈ Y and xn → x in X so d(xn, x)→ 0 so
xn → x in Y .

(5) Define

l1 = {(xn)n≥1 ∈ RN |
∞∑
n=1

|xn| converges}

Define a metric d on l1 by

d((xn), (yn)) =
∞∑
n=1

|xn − yn|
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Note we have
∑
|xn|,

∑
|yn| converge and for each n, |xn − yn| ≤ |xn| + |yn| so by

comparison test
∑
|xn − yn| converges. So d is well-defined. Easy to check d is a

metric on l1. Then (l1, d) is complete.

Proof. (i) Let (x(n))n ≥ 1 be a Cauchy sequence in l1, so for each n, (x
(n)
i )i≥1 is a

sequence in R with
∑∞

i=1 |x
(n)
i | convergent.

(ii) For each i, (x
(n)
i )n≥1 is a Cauchy sequence in R, since if y, z ∈ l1, then |yi−zi| ≤

d(y, z). But R is complete, so for each i we can find xi ∈ R with x
(n)
i → xi as

n→∞. Let x = (x1, x2, x3, . . . ) ∈ RN.

(iii) We next show x ∈ l1, i.e. that
∑∞

i=1 |xi| converges. Given y ∈ l1, define
σ(y) =

∑∞
i=1 |yi|, i.e. σ(y) = d(y, z) where z is the constant zero sequence. We

now have, for any m,n,

σ(x(m)) = d(x(m), z)

≤ d(x(m), x(n)) + d(x(n), z)

= d(x(m), x(n)) + σ(x(n))

So
σ(x(m))− σ(x(n)) ≤ d(x(m), x(n)).

But we can find a similar inequality by swapping m and n, so

|σ(x(m))− σ(x(n))| ≤ d(x(m), x(n))

Hence (σ(x(m)))m≥1 is a Cauchy sequence in R, and so by general principle of
convergence it converges, say σ(x(m))→ K as m→∞.

Claim. For any I ∈ N,
∑I

i=1 |xi| ≤ K + 2.

Proof. As σ(x(n))→ K as n→∞ we can find N1 such that for all n ≥ N1,

∞∑
i=1

|x(n)i | ≤ K + 1

This also implies that for all n ≥ N1,

I∑
i=1

|x(n)i | ≤ K + 1

Next, for each i ∈ {1, 2, . . . , I} we have x
(n)
i → xi as n → ∞ so can find N2

such that

n ≥ N2 =⇒ ∀i ∈ {1, . . . , I}|x(n)i − xi| <
1

I
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Now let n = max{N1, N2}. Then

I∑
i=1

|xi| ≤
I∑

i=1

+
I∑

i=1

|x(n)i − xi|

≤ K + 1 + I × 1

I
= K + 2

Now the partial sums of
∑
|xi| are increasing and bounded above so

∑
|xi|

converges. That is, x ∈ l1.

(iv) Finally, need to check x(n) → x as n → ∞ in l1, i.e. that d(x(n), x) → 0 as
n→∞. We have, for all n, I,

d(x(n), x) =
∞∑
i=1

|x(n)i − xi|

≤
I∑

i=1

|x(n)i − xi|+
∞∑

i=I+1

|x(n)i |+
∞∑

i=I+1

|xi|

Let ε > 0. We know
∑
|xi| convergent (as x ∈ l1) so can pick I1 such that∑∞

i=I1+1 |xi| < ε. As (x(n)) is Cauchy, we can find N1 such that

m,n ≥ N1 =⇒ d(x(m), x(n)) < ε

As
∑

i |x
(N1)
i | converges, can find I2 such that

∑∞
i=I2+1 |x

(N1)
i | < ε. Then

n ≥ N1 =⇒
∞∑

i=I2+1

≤
∞∑

i=I1+1

|x(N1)
i |+

∞∑
i=I2+1

|x(n)i − x
(N1)
i |

< ε+ d(x(n), x(N1)

< 2ε

Let I = max{I1, I2}. For each i = 1, 2, . . . , I we have |x(n)i −xi| → 0 as n→∞,

so
∑I

i=1 |x
(n)
i − xi| → 0 as n→∞. Hence we can find N2 such that

n ≥ N2 =⇒
I∑

i=1

|x(n)i − xi| < ε
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Let N = max{N1, N2} and let n ≥ N . Then

d(x(n), x) ≤
I∑

i=1

|x(n)i − xi|+
∞∑

i=I+1

|x(n)i |+
∞∑

i=I+1

|xi|

≤
I∑

i=1

|x(n)i − xi|+
∞∑

i=I2+1

|x(n)i |+
∞∑

i=I1+1

|xi|

< ε+ 2ε+ ε

= 4ε

Hence d(x(n), x)→ 0 as n→∞, i.e. x(n) → x in l1. Hence l1 is complete.

Start of
lecture 9

Now we can move on to the main theorem on completeness:

Definition. Let (X, d) be a metric space and f : X → X. We say f is a contraction
if ∃λ ∈ [0, 1) such that for all x, y ∈ X,

d(f(x), f(y)) ≤ λd(x, y)

Theorem 19 (Contraction mapping theorem). Let (X, d) be a complete, non-empty
metric space and f : X → X a contraction. Then f has a unique fixed point.

Proof. Let λ ∈ [0, 1) satisfy

∀x, y ∈ X d(f(x), f(y)) ≤ λd(x, y)

Let x0 ∈ X. Recursively define xn = f(xn−1) for n ≥ 1. Let ∆ = d(x), x1). Then, by
induction, d(xn, xn+1) ≤ λn∆ for all n. Now suppose N ≤ m < n. Then

d(xm, xn) ≤
n−1∑
i=m

d(xi, xi+1)

≤
n−1∑
i=m

λi∆

≤
∞∑

i=N

λi∆

=
λN∆

1− λ

→ 0
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as N → ∞. So for all ε > 0, there exists N such that for all m,n ≥ N , d(xm, xn) < ε.

(we take N such that λN∆
1−λ < ε). Thus (xn) is Cauchy, so by completeness it converges,

say xn → x ∈ X. But also xn = f(xn−1) → f(x) because f is continuous. So by
uniqueness of limits, f(x) = x.

Suppose also f(y) = y for some y ∈ X. Then

d(x, y) = d(f(x), f(y)) ≤ λd(x, y)

with λ < 1. So d(x, y) = 0, i.e. x = y.

Remark. (1) Why is f continuous? We have, for all x, y ∈ X, d(f(x), f(y)) ≤
d(x, y). So for all ε > 0, d(x, y) < ε =⇒ d(f(x), f(y)) < ε. (so we can
take δ = ε in the definition of continuity). In particular this shows that f is
uniformly continuous.

(2) We have proved more than claimed. Not only does f have a unique fixed point,
but start from any point of the space and repeatedly apply f then the resulting
sequence converges to the fixed point. In fact, the speed of convergence is
exponential.

Application

Example. Suppose we want to numerically approximate the solution to cosx = x. Any
root must lie in [−1, 1]. Consider the metric space X = [−1, 1] with the usual metric.
X is a closed subset of complete space R so X is complete. Obviously X is non-empty.

Think of cos : [−1, 1] → [−1, 1]. Suppose x, y ∈ [−1, 1]. Then using MVT, there is
z ∈ [x, y]

| cosx− cos y| = |x− y|| cos′ z|
= |x− y|| − sin z|
≤ |x− y| sin 1

But 0 ≤ sin 1 < 1 so cos is a contraction of [−1, 1]. So by Contraction mapping theorem,
cos has a unique fixed point in [−1, 1]. That is cosx = x has a unique solution. How do
we find it numerically? Use remark 2. Calculate cos iterated many times to 0 say, and
we have rapid (exponential) convergence to the root.

Two major applications of contraction mapping theorem later.
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2.3. Sequential compactness

Recall Bolzano Weierstrass for Rn says a bounded sequence in Rn has a convergent
subsequence.

Definition. Let (X, d) be a metric space. We say X is bounded if

∃M ∈ R ∀x, y ∈ X d(x, y) ≤M

Remark. Easy to check by triangle inequality that X bounded is equivalent to
X = ∅ or ∃M ∈ R, ∃x ∈ X such that ∀y ∈ X, d(x, y) ≤M .

So definition agrees with earlier definition for subsets of Rn.

Recall: Let (X, d) be a metric space and Y ⊂ X. We say Y is closed in X if whenever
(xn) is a sequence in Y with, in X, xn → x ∈ X then actually x ∈ Y .

Definition. A metric space is sequentially compact if every sequence has a conver-
gent subsequence.

Bolzano Weierstrass for Rn is essentially the following:

Theorem 20. Let X ⊂ Rn with the Euclidean metric. Then X is sequentially
compact if and only if X is closed and bounded.

Proof. ⇐ SupposeX is closed and bounded. Let (xn) be a sequence inX. Then (xn) be
a sequence in X. Then (xn) is a bounded sequence in Rn so by Bolzano Weierstrass,
in Rn, xnj → x for some x ∈ Rn and some subsequence (xnj ) of (xn). As X is closed,
x ∈ X. Hence the subsequence (xnj ) converges in X. So X is sequentially compact.

⇒ Suppose X is not closed. Then we can find a sequence (xn) in X such that in Rn,
xn → x ∈ Rn with x ̸∈ X. Now any subsequence xnj → x in Rn. But x ̸∈ X
so by uniqueness of limits (xnj ) does not converge in X. So X is not sequentially
compact. Suppose instead X is not bounded. Then can find a sequence (xn) in X
with for all n, ∥x∥ ≥ n, i.e. ∥xn∥ → ∞ as n→∞. Suppose we have a subsequence
xnj → x ∈ X. Then ∥xnj∥ → ∥x∥ but ∥xnj∥ → ∞, contradiction. So, again, X is
not sequentially compact.

Start of
lecture 10
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Can this theorem be generalised to any metric space? Obviously not: for example in
R \ {0} with usual metric, the set [−1, 0)∪ (0, 1] is closed and bounded but the sequence(
1
n

)
n≥1

has no convergent subsequence.

Problem: space not complete. Maybe complete + bounded could imply sequentially
compact?
Even this doesn’t work. Recall example from section 1: let

X = {f ∈ B(R) | sup
x∈R
|f(x)| ≤ 1}

with uniform metric. Then X is complete (closed subset of complete space B(R)) and
bounded (if f, g ∈ X, d(f, g) ≤ 2). But consider

fn(x) =

{
1 x = n

0 x ̸= n

Then (fn) is a sequence in X but ∀m,n, m ̸= n implies d(fm, fn) = 1. So (fn) cannot
have a convergent subsequence. So the problem is that X is ‘too big’. So we need a
stronger concept of boundedness.

Definition. Let (X, d) be a metric space. We say X is totally bounded if for all
δ > 0 we can find a finite set A ⊂ X such that ∀x ∈ X ∃a ∈ A with d(x, a) < δ.

Theorem 21. A metric space is sequentially compact if and only if it is complete
and totally bounded.

Proof. ⇐ Suppose the metric space (X, d) is complete and totally bounded. Let
(xn)n≥1 be a sequence in X.

As X is totally bounded, can find finite A1 ⊂ X such that ∀x ∈ X there exists
a ∈ A1 with d(x, a) < 1. In particular there is an infinite set N1 ⊂ N and a point
a1 ∈ A1 such that ∀n ∈ N1, d(xN , a1) < 1. Hence ∀m,n ∈ N1, d(xm, xn) < 2.
Similarly, we can find finite A2 ⊂ X such that ∀x ∈ X, ∃a ∈ A2, d(x, a) <

1
2 . In

particular, there is an infinite N2 ⊂ N1 such that ∀n ∈ N2, d(xn, a2) <
1
2 and thus

∀m,n ∈ N2, d(xm, xn) < 1.

Keep going. We get a sequence N1 ⊃ N2 ⊃ N3 ⊃ · · · of infinite subsets of N such
that ∀i, ∀m,n, m,n ∈ Ni =⇒ d(xm, xn) <

2
i .
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Now pick n1 ∈ N2. Then pick n2 ∈ N2 with n2 > n1. Then pick n3 ∈ N3 with
n3 > n2 and so on. We obtain a subsequence (xnj ) of (xn) such that for all j,
xnj ∈ Nj . Thus if i ≤ j then xni , xnj ∈ Ni and so

d(xni , xnj ) <
2

i

Hence (xnj ) is a Cauchy sequence and hence, by completeness, converges. So X is
sequentially compact.

⇒ Suppose X is not complete. Then X has a Cauchy sequence (xn) which doesn’t
converge. Suppose we have a convergent subsequence, say xnj → x. Then xn → x
(exercise). Contradiction.

Suppose instead X is not totally bounded. Then there is some δ > 0 such that
whenever A ⊂ X is finite, there exists x ∈ X such that ∀a ∈ A, d(x, a) ≥ δ. So pick
x1 ∈ X. Pick x2 ∈ X such that d(x1, x2) ≥ δ. Pick x3 ∈ X such that d(x1, x3) ≥ δ
and d(x2, x3) ≥ δ. Continue. Then we get a sequence (xn) in X such that for all
i, j with i ̸= j, d(xi, xj) ≥ δ. Then (xn) has no convergent subsequence.

Exercise: A continuous function on a sequentially compact metric space is uniformly
continuous. If the function is real-valued then it’s bounded and attains its bounds.

2.4. The Topology of Metric Spaces

Theme of section 2: to generalise convergence / continuity, all we need is a distance.

But, for example in Rn we have the very different concepts of distance given by the
Euclidean, l1 and l∞ metrics. But all give same concept of convergence and continuity.

Definition. Let (X, d) and (Y, e) be metric spaces. Let f : X → Y . We say f is
a homeomorphism and that X,Y are homeomorphic if f is a continuous bijection
with continuous inverse.

Remark. Homeomorphism is an equivalence ‘relation’.

Examples

(1) If x, y ∈ Rn:
d∞(x, y) ≤ d1(x, y) ≤ nd∞(x, y)

So identity map Rn → Rn is continuous as map (Rn, d1) → (Rn, d∞) and inverse
map (Rn, d∞) → (Rn, d1) is continuous. So it’s a homeomorphism. Similarly, Rn

with Euclidean metric is homeomorphic to both these spaces.
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(2) Same argument would show: if (X, d) and (Y, e) are metric spaces and f : X → Y
is a bijection satisfying:

(i) ∃A ∀x, y ∈ X, e(f(x), f(y)) ≤ Ad(x, y).

(ii) and ∃B ∀x, y ∈ X, d(x, y) ≤ Be(f(x), f(y)).

Then f, f−1 are continuous so X,Y are homeomorphic.

(3) Define f :
(
−π

2 ,
π
2

)
→ R by f(x) = tanx. Then f is a homeomorphism (usual metric

in each case). But there is no constant A such that

∀x, y ∈
(
−π

2
,
π

2

)
| tanx− tan y| ≤ A|x− y|

Proposition 22. Let (V, b), (W, c), (X, d), (Y, e) be metric spaces and f : X → V ,
g : Y →W be homeomorphisms. Then

(i) In X, xn → x if and only if in V , f(xn)→ f(x);

(ii) and a function g : X → Y is continuous at a ∈ X if and only if g ◦ h ◦ f−1 is
continuous at f(a) ∈ V .

Proof. (i) xn → x implies f(xn)→ f(x) as f is continuous. f(xn)→ f(x) =⇒ xn =
f−1(f(xn))→ f−1(f(x)) = x as f−1 is continuous.

(ii) h continuous implies g ◦ h ◦ f−1 because composition of continuous functions is
continuous.
And g ◦ h ◦ f−1 continuous implies h = g−1 ◦ (g ◦ h ◦ f−1) ◦ f is continuous because
composition of continuous functions is continuous.

We now have examples of metric spaces that look very different but behave identically
with respect to convergence / continuity.
Thought: Could we disperse with distance altogether?
Another way to think about continuity:

Definition. Let (X, d) be a metric space let a ∈ X and let ε > 0. The open ball of
radius ε about a is the set

Bε(a) = {x ∈ X | d(x, a) < ε}
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Remark. Suppose f : X → Y , a ∈ X. d metric on X, e metric on Y . Then

f continuous at a ⇐⇒ ∀ε > 0 ∃δ > 0 d(x, a) < δ =⇒ d(f(x), f(a)) < ε

⇐⇒ ∀ε > 0 ∃δ > 0 x ∈ Bδ(a) =⇒ f(x) ∈ Bε(f(a))

⇐⇒ ∀ε > 0 δ > 0 f(Bδ(a)) ⊂ Bε(f(a))

⇐⇒ ∀ε > 0 ∃δ > 0 Bδ(a) ⊂ f−1(Bε(f(a))

So we have redefined continuity in terms of open balls. But open balls have radii,
so this still uses a notion of distance.

Definition. Let X be a metric space. A subset G ⊂ X is open if ∀x ∈ G, ∃ε > 0
such that Bε(x) ⊂ G.
A subset N ⊂ X is a neighbourhood (nbd) of a point a ∈ X if there exists an open
set G ⊂ X such that a ∈ G ⊂ N .

Start of
lecture 11 Remarks

(1) Intuition: A set is open if for each point in the set it contains all points nearby as
well. A set is a neighbourhood of a if it contains all points near a.

(2) The open ball Bε(a) is open. Why? If x ∈ Bε(a) then d(x, a) = δ < ε, say, so by
triangle inequality Bε−δ(x) ⊂ Bε(a).

(3) If N is an open set and a ∈ N then certainly N is a neighbourhood of a:

a ∈ N ⊂ N .

However, a neighbourhood of a need not be open. For example in R with the usual
metric then [−1, 1] is a neighbourhood of 0:

0 ∈ (−1, 1) ⊂ [−1, 1]

And [−1, 1] ∪ {396} is a neighbourhood of 0 (throwing in extra stuff doesn’t stop
something from being a neighbourhood).

(4) N is a neighbourhood of a if and only if ∃ε > 0 with Bε(a) ⊂ N :

⇐ a ∈ B)ε(a) ⊂ N .

⇒ a ∈ G ⊂ N and ∃ε > 0 such that Bε(a) ⊂ G.

(5) A set G is open if and only if it’s a neighbourhood of each of its points.
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Proposition 23 (Generalising continuity). Let (X, d), (Y, e) be metric spaces and
let f : X → Y .

(i) f is continuous at a ∈ X if and only if whenever N ∈ Y is a neighbourhood
of f(a) we have f−1(N ) ⊂ X a neighbourhood of a;

(ii) f is a continuous function if and only if whenever G ⊂ Y open we have
f−1(G) ⊂ X open.

Proof. (i) ⇒ Suppose f is continuous at a ∈ X. Let N be a neighbourhood of f(a).
Then ∃ε > 0 such that Bε(f(a)) ⊂ N . But f continuous at a so ∃δ > 0 such
that Bδ(a) ⊂ f−1(Bε(f(a))) ⊂ f−1(N ). So f−1(N ) is a neighbourhood of a.

⇐ Suppose f−1(N ) is a neighbourhood of a for every neighbourhood N of f(a).
Let ε > 0. In particular, Bε(f(a)) is a neighbourhood of f(a) so f−1(Bε(f(a)))
is a neighbourhood of a so ∃δ > 0 such that Bδ(a) ⊂ f−1(Bε(f(a))). So f is
continuous at a.

(ii) ⇒ Suppose f is a continuous function. Let G ⊂ Y be open. Let a ∈ f−1(G).
Then f(a) ∈ G and G open so G is a neighbourhood of f(a). Moreover, f is
continuous at a so by (i) we have f−1(G) a neighbourhood of a. Hence ∃δ > 0
such that Bδ(a) ⊂ f−1(G). So f−1(G) is open.

⇐ Suppose f−1(G) open whenever G is open in Y . Let a ∈ X. Let N ⊂ Y
be a neighbourhood of f(a). Then ∃G ⊂ Y open such that f(a) ∈ G ⊂ N .
By assumption f−1(G) ⊂ X open. Now a ∈ f−1(G) ⊂ f−1(N ) with f−1(G)
open so f−1(N ) is a neighbourhood of a. So by (i), f is continuous at a. So
f is a continuous function.

Remarks

(1) This says that we can define continuity entirely in terms of open sets without men-
tioning the metric.

(2) We saw previously that homeomorphisms preserve convergence and continuity. Propo-
sition 23(ii) says homeomorphisms also preserve open sets: to be precise, if f : X →
Y is a homeomorphism then G ⊂ X is open if and only if f(G) ⊂ Y is open. (Why?
G = f−1(f(G)) with f continuous and f(a) = (f−1)−1(G) with f−1 continuous.)

What else is preserved by homeomorphisms?

Suppose f : X → Y is a homeomorphism and X is sequentially compact. Let (yn) be a
sequence in Y . Then f−1(yn)) is a sequence in X and so has a convergent subsequence
f−1(ynj )→ x ∈ X, say. But convergence of sequences is preserved by homeomorphisms.
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Hence ynj = f(f−1(ynj ))→ f(x) ∈ Y . So Y is sequentially compact.
So if X,Y homoeomorphic spaces, then

X sequentially compact ⇐⇒ Y sequentially compact

‘Sequential compactness is a topological property ’

If X,Y are homeomorphic, and one of them has a particular topological property, then
so does the other.

What about completeness? Not so good.

Example. We saw (0, 1) and R with the usual metric in each case are homeomor-
phic. But R is complete and (0, 1) is not. So completeness is not a topological
property.

What went wrong? Property of being a Cauchy sequence is not preserved by homeo-
morphisms.

Remark. Suppose (xn) is a sequence in a metric space X and x ∈ X. Then

xn → x ⇐⇒ ∀ε > 0 ∃N ∀n ≥ N d(xn, x) < ε

⇐⇒ ∀ε > 0 ∃N ∀n ≥ N xn ∈ Bε(x)

⇐⇒ for all neighbourhoods N of x, ∃N such that ∀n ≥ N , xn ∈ N .

This defines convergence solely in terms of neighbourhoods. Can’t do something
similar for Cauchy sequences using neighbourhoods / open sets.

Just seen sequential compactness is a topological property. Can define sequential com-
pactness just in terms of neighbourhoods / open sets:

sequentially compact← convergence of sequences← neighbourhoods

Is there a ‘nicer’ way to do this?

Definition. Let X be a metric space. An open cover of X is a collection C of open
subsets of X such that

X =
⋃
G∈C

G

A subcover of C is an open cover B of X with B ⊂ C. We say X is compact if every
open cover of X has a finite subcover.
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Example (The Heine-Borel theorem). [0, 1] with the usual metric is compact.

Proof. Let C be an open cover of [0, 1]. Let

A = {x ∈ [0, 1] | ∃B ⊂ Cfinite with [0, x] ⊂
⋃
G∈B

G

We know ∃G ∈ C with 0 ∈ G. So 0 ∈ A so A ̸= ∅. Clearly A bounded above by 1.
So A has a supremum, σ = supA, say.
As G is open, ∃ε > 0 such that [0, ε) = Bε(0) ⊂ G. So ε

2 ∈ A so σ > 0.
Suppose σ < 1. Can find G′ ∈ C with σ ∈ G. As σ = supA, we can find x ∈ A
with x ∈ G′. So have B ⊂ C finite with [0, x] ⊂

⋃
G∈B G. But ∃ε > 0 such that

(σ − ε, σ + ε) = Bε(σ ⊂ G. So[
0, σ +

ε

2

]
⊂

⋃
G∈B∪{G′}

G

So σ + ε
2 ∈ A. Contradiction. Hence σ = 1. Can find G′′ ∈ C such that 1 ∈ G′′.

As G′′ open, can find ε > 0 such that (1 − ε, 1] = Bε(1) ⊂ G′′. As 1 = supA can
find x ∈ A ∩ (1− ε, 1]. That says we have finite B ⊂ C with [0, x] ⊂

⋃
G∈B G. Then

B ∪ {G′′} is an open cover of [0, 1] and so a subcover of C. So [0, 1] is compact.

Start of
lecture 12 Theorem 24. Let X be a metric space. Then the following are equivalent:

(i) X is compact;

(ii) X is sequentially compact;

(iii) X is complete and totally bounded;

and, if X is a subspace of Rn with the Euclidean metric

(iv) X ⊂ Rn is closed and bounded.

Proof. Done (ii) ⇐⇒ (iii) (⇐⇒ (iv) if appropriate) in section 2.3. So only remains to
show (i) ⇐⇒ (ii).

⇒ Suppose X is not sequentially compact. Then there is some sequence (xn) in X
with no convergent subsequence. Hence for every point a ∈ X we can find a
neighbourhood of a and hence an open set Ga containing a but containing xn for
only finitely many values of n. (If not, pick an a for which this is not true; then
take n1 such that xn1 ∈ B1(a), then n2 > n1 such that xn2 ∈ B 1

2
(a), and so on,

then xnj → a, contradiction).

Now, let C = {Ga | a ∈ X}. This is an open cover of X. But if D ⊂ C is finite,
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then
⋃

G∈D G contains xn for only finitely many n, so
⋃

G∈D G ̸= X. So C has no
finite subcover. Hence X is not compact.

⇐ Suppose X is sequentially compact. Let C be an open cover of X. Then we claim
that there exists δ > 0 such that for all a ∈ X, there exists G ∈ C such that
Bδ(a) ⊂ G.

Suppose not. Then ∀δ > 0, ∃a ∈ X, ∀G ∈ C, Bδ(a) ̸⊂ G. Taking δ = 1
n for each

n ∈ N we obtain a sequence (xN ) in X such that for each n, ∀G ∈ C, B 1
n
(xn) ̸⊂ G.

By sequential compactness, we can find a convergent subsequence xnj → a ∈ X,
say. Pick G ∈ C such that a ∈ G. As G open, can pick ε > 0 such that Bε(a) ⊂ G.
Pick j sufficiently large that xnj ∈ B ε

2
(a) and also 1

nj
< ε

2 . Then

B 1
nj

(xnj ) ⊂ Bε(a) ⊂ G

contradiction. So such a δ does exist.

Now, take δ as in the claim. As X is sequentially compact, it is totally bounded
so we can find a finite set A ⊂ X such that for all x ∈ X there exists a ∈ A
such that d(x, a) < δ. That is ∀x ∈ X, ∃a ∈ A such that x ∈ Bδ(a). That is,
X =

⋃
a∈ABδ(a). By choice of δ, for each a ∈ A we can pick Ga ∈ C such that

Bδ(a) ⊂ Ga. So {Ga | a ∈ A} is a finite subcover. So X is compact.

Finally, two important properties of open sets. First: relationship between open / closed:

Proposition 25. Let X be a metric space and G ⊂ X. Then G is open if and only
if F = X \G is closed.

Proof. ⇒ Suppose F not closed. Then there is a sequence (xn) in F with xn → x ∈ G.
Suppose N is a neighbourhood of x. Then there exists N such that for all n ≥ N ,
xn ∈ N . But for all n, xn ̸∈ G. So N ≠ G. So G is not a neighbourhood of x. So
G is not open.

⇐ Suppose G is not open. Then there is some x ∈ G such that ∀ε > 0, Bε(x) ̸⊂ G.
That is, Bε(x) ∩ F ̸= ∅. So for n = 1, 2, 3, . . . we can pick xn ∈ B 1

n
(x) ∩ F . Then

(xn) is a sequence in F with xn → x ∈ G. So F is not closed.

Secondly: if X is a metric space, can we say something about the structure of the
collection of all open subsets of X?
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Proposition 26. Let X be a metric space and let τ = {G ⊂ X | G open}. Then:

(i) ∅ ∈ τ and X ∈ τ ,

(ii) if σ ⊂ τ then ⋃
G∈σ

G ∈ τ

“any union of open sets is open”

(iii) if G1, G2, . . . , Gn ∈ τ then
n⋂

i=1

Gi ∈ τ

“a finite intersection of open sets is open”.

Remark. Do need finiteness in (iii). For example for all n ∈ N,
(
− 1

n ,
1
n

)
is open in

R with usual metric. But
⋂∞

n=1

(
− 1

n ,
1
n

)
= {0} is not.

Proof. (i) Obvious

(ii) Suppose σ ⊂ τ . Let H =
⋃

g∈σ G. Suppose a ∈ H. Then a ∈ G for some G ∈ σ. So
G is a neighbourhood of a (as G open) so H is a neighbourhood of a (as G ⊂ H).
Hence H is open, i.e. H ∈ τ .

(iii) Suppose G1, . . . , Gn ∈ τ and let J =
⋂n

i=1Gi. Suppose a ∈ J . For each i, a ∈ Gi

and Gi open so ∃δi > 0 such that Bδi(a) ⊂ Gi. Let δ = min{δ1, . . . , δn}. Then
δ > 0 and Bδ(a) =

⋂n
i=1Bδi(a) ⊂

⋂n
i=1Gi = J . So J is open, i.e. J ∈ τ .
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3. Topological Spaces

‘Do continuity entirely in terms of open sets without mentioning distance’.

Metric space: set with a distance.
Topological space: set with a collection of open subsets.

3.1. Definitions and Examples

Definition. A topological space is a set X endowed with a topology τ , that is a
subset τ ⊂ P(X) satisfying:

(i) ∅ ∈ τ and X ∈ τ ;

(ii) if σ ⊂ τ then ⋃
G∈σ

G ∈ τ

(iii) if G1, . . . , Gn ∈ τ then
n⋂

i=1

Gi ∈ τ

Remark. Could replace (iii) by G,H ∈ τ =⇒ G ∩H ∈ τ . Equivalent to (iii) by
induction.

Notation. Sometimes write ‘(X, τ) is a topological space’. If obvious what the
topology is, might just write ‘X is a topological space’.

Example. Let (X, d) be a metric space. Let τ = {G ⊂ X | G open}. Then by
proposition 26, τ is a topology on X. We say τ is the topology induced by the
metric d.

Want to define open / closed / continuous etc for topological spaces. As metric spaces
are topological spaces we want to try to make sure it’s ‘backwards compatible’, so to say
new definitions don’t contradict old metric space ones. So in making new definitions,
we’ll be guided by section 2.4.

Start of
lecture 13 Definition. Let (X, τ) be a topological space. We say G ⊂ X is open if G ∈ τ . We

say F is closed if X \ F ∈ τ .
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Definition. Let (X, τ) be a topological space. A subset N ⊂ X is a neighbourhood
of a ∈ X if there exists G ⊂ X open with a ∈ G ⊂ N .

Definition. Let (X, τ) and (Y, σ) be topological spaces. Let f : X → Y . We say
f is continuous if whenever G ⊂ Y is open then f−1(G) ⊂ X is open; that is, f is
continuous if ∀G ∈ σ, f−1(G) ∈ τ .

Definition. Let (X, τ) and (Y, σ) be topological spaces. We say f is continuous
at a ∈ X if whenever N ⊂ Y is a neighbourhood of f(a) then f−1(N ) ⊂ X is a
neighbourhood of a.

Definition. Let (X, τ), (Y, σ) be topological spaces. We say f is a homeomorphism
and X, Y are homeomorphic if f is a bijection and both f and f−1 are continuous.

Definition. Let (X, τ), (Y, σ) be topological spaces. We say that a property is topo-
logical if it is preserved by homomorphisms; that is to say, if X,Y are homeomorphic
then X has the property if and only if Y does.

Remarks

(1) If τ is induced by a metric then this is all consistent with the metric space definitions
of these concepts.

(2) Given our definition: G is open if and only if G ∈ τ , often don’t need to explicitly
name the topology. For example, let X = R with the usual topology and G ⊂ X be
open. Other times more convenient to specify τ , write ‘G ∈ τ ’ etc.

(3) Homeomorphism is an “equivalence relation”.

(4) If a ∈ G and G open then G is a neighbourhood of a, however, neighbourhoods need
not be open in general. A set G ⊂ X is open if and only if G is a neighbourhood of
each of its points.

Proposition 27. Let X,Y be topological spaces and let f : X → Y . Then f is
continuous if and only if for all a ∈ X, f is continuous at a.
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Proof. ⇒ Suppose f continuous and let a ∈ X. Let N ⊂ Y be a neighbourhood
of f(a). Then there is an open set G ⊂ Y with a ∈ G ⊂ N . As f continuous,
f−1(G) ⊂ X open. Now a ∈ f−1(G) ⊂ f−1(N ) with f−1(G) open.

⇐ Suppose for all a ∈ X we have f continuous at a. Let G ⊂ Y be open. Let
a ∈ f−1(G). Then f(a) ∈ G, but G is open so G is a neighbourhood of f(a). Now
f is continuous at a so f−1(G) is a neighbourhood of a in X. But a was arbitrary
so f−1(G) is a neighbourhood of each of its points. That is, f−1(G) ⊂ X is open.
Hence f is continuous.

Proposition 28. Let (X, τ), (Y, σ), (Z, ρ) be topological spaces, let f : X → Y be
continuous and let g : Y → Z be continuous. Then g ◦ f : X → Z is continuous.

Proof. Let G ∈ ρ. As g is continuous, g−1(G) ∈ σ. As f continuous, f−1(g−1(G)) ∈ τ .
That is, (g ◦ f)−1(G) ∈ τ . So g ◦ f is continuous.

Examples

(1) The discrete topology: Let X be any set and τ = P(X). ‘Every set is open’.
However, this is not new: it is induced by the discrete metric

d(x, y) =

{
1 x ̸= y

0 x = y

Now in (X, d), for any x ∈ X then {x} = B1(x) is open and so if G ⊂ X then
G =

⋃
x∈G{x} is open.

(2) The indiscrete topology: Let X be any set and τ = {∅, X}. ‘Only open sets are
∅ and the whole space’. This is genuinely new: τ cannot be induced by a metric
(if |X| ≥ 2). Indeed, suppose |X| ≥ 2 and that τ is induced by a metric d. Let
x, y ∈ X with x ̸= y, so d(x, y) = δ > 0, say. Then Bδ(x) is open with x ∈ Bδ(x)
and y ̸∈ Bδ(x), contradiction.

(3) The cofinite topology: Let X be any infinite set and let

τ = {G ⊂ X | X \G is finite} ∪ {∅}

Check this is a topology:

(i) ∅ ∈ τ , X \X = ∅ is finite so X ∈ τ .

(ii) Let σ ∈ τ . If σ is empty or contains ∅ then
⋃

G∈σ G = ∅ ∈ τ . Otherwise, pick
H ∈ σ with H ̸= ∅. Then X \H is finite so(

X \
⋃
G∈σ

G

)
=
⋂
G∈σ

(X \G) ⊂ X \H
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is finite. So
⋃

G∈σ G ∈ τ .

(iii) Let G,H ∈ τ . If G = ∅ or H = ∅ then G∩H = ∅ ∈ τ . Otherwise X \G, X \H
are finite and then

(X \ (G ∩H)) = (X \G) ∪ (X \H)

is finite. So G ∩H ∈ τ .

So the cofinite topology is indeed a topology.
Is it induced by a metric d? No: observe first that if G,H are open and non-empty
then G∩H ̸= ∅. Now suppose x, y ∈ X with x ̸= y. Then d(x, y) = δ > 0 so B δ

2
(x),

B δ
2
(y) are non-empty disjoint open sets. So d doesn’t induce τ .

(4) The cocountable topology: Let X be any uncountable set and let

τ = {G ⊂ X | X \G countable} ∪ {∅}

Then, very similarly to (3), this is a topology that is not induced by any metric.

3.2. Sequences and Hausdorff spaces

Definition. Let X be a topological space, let (xn) be a sequence in X and let
x ∈ X. We say (xn) converges to x and write xn → x if whenever N ⊂ X is a
neighbourhood of x then there exists N such that for all n ≥ N , xn ∈ N .

Examples

(1) Let X be an uncountable set with the cocountable topology. Which sequences
converge in X? Suppose xn → x. Then let

N = (X \ {xn | n ∈ N}) ∪ {x}

Then N is open and x ∈ N so N is a neighbourhood of x. So there exists N such
that for all N ≥ N , xn ∈ N . So there exists N such that for all n ≥ N , xn = x.
Obviously if there exists N such that for all n ≥ N , xn = x then xn → x. So the
only convergent sequences in this space are eventually constant.

(2) Let X = {1, 2, 3} with the indiscrete topology. Let xn = i ∈ X with i ≡ n (mod 3).
So the sequence is 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . . Then we claim that xn → 2. Let N be a
neighbourhood of 2. Then there exists G open such that 2 ∈ G ⊂ N . But the only
open sets are ∅ or {1, 2, 3}. So G = {1, 2, 3}. So N = {1, 2, 3} so for all n, xn ∈ N .
So xn → 2. Similarly xn → 1 and xn → 3. So:
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Warning. LIMITS OF CONVERGENT SEQUENCES NEED NOT BE UNIQUE.
So we can’t write limn→∞ xn, unless we prove that the limit exists and is unique.
Note the above proof shows that in any indiscrete space every sequence converges
to every point of the space.

Start of
lecture 14 Definition (Hausdorff Space). A topological space X is Hausdorff if whenever

x, y ∈ X with x ̸= y then there are disjoint open G,H ⊂ X with x ∈ G and y ∈ H.

Examples

(1) Metric spaces are Hausdorff. Indeed, if (X, d) is a metric space and x, y ∈ X, x ̸= y
then let δ = d(x, y) > 0 and take G = B δ

2
(x) and H = B δ

2
(y).

(2) Indiscrete spaces are not Hausdorff (assuming |X| ≥ 2).

(3) The cofinite topology is not Hausdorff. Let X be an infinite set with the cofinite
topology and let x, y ∈ X with x ̸= y. Let G,H ⊂ X be open with x ∈ G, y ∈ H.
Clearly G, h ̸= ∅ so X \G, X \H are finite and so

X \ (G ∩H) = (X \G) ∪ (X \H)

is finite. In particular G ∩ H ̸= ∅. Similarly, the cocountable topology is not
Hausdorff.

Proposition 29. Limits of convergent sequences in Hausdorff spaces are unique.

Proof. Let X be Hausdorff, let a, b ∈ X, and let (xn) be a sequence in X with xn → a
and xn → b.
Suppose a ̸= b. Take open G,H with a ∈ G, b ∈ H and G ∩ H = ∅. Now G is a
neighbourhood of a so there is some N1 such that ∀n ≥ N1, xn ∈ G. Similarly, there is
some N2 such that ∀n ≥ N2, xn ∈ H. Take n = max{N1, N2}. Then xn ∈ G ∩H = ∅,
contradiction. Hence a = b.

Relationship to continuity?

Proposition 30. Let X,Y be topological spaces and let f : X → Y be continuous
at a ∈ X. Let (xn) be a sequence in X with xn → a. Then f(xn)→ f(a).

Proof. Let N ⊂ Y be a neighbourhood of f(a). As f is continuous at a we know f−1(N )
is a neighbourhood of a. As xn → a we can fined N such that ∀n ≥ N , xn ∈ f−1(N ).
Then for all n ≥ N , f(xn) ∈ N . So f(xn)→ f(a).
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Warning. CONVERSE NOT TRUE IN GENERAL

Example. Let X = Y = R, X with cocountable topology, Y with usual topology
and f : X → Y be the identity function. Suppose xn → 0 in X. Then for sufficiently
large n, xn = 0 and so for sufficiently large n, f(xn) = xn = 0 = f(0) so f(xn) →
f(0) in Y .
However, (−1, 1) ⊂ Y is open and 0 ∈ (−1, 1) so (−1, 1) is a neighbourhood of 0 in
Y . But f−1((−1, 1)) = (−1, 1) ⊂ X is not a neighbourhood of 0 in X. So f is not
continuous at 0.

Here, even imposing condition that the spaces are Hausdorff is not enough.

Example. Take example as above but replace topology on X by

σ = {G ⊂ R | (X \G) countable or 0 ̸∈ G}

This is a topology (check-exercise). And it is Hausdorff: suppose x, y ∈ X with
x ̸= y. If x, y ̸= 0 then {x}, {y} ∈ σ. While if x = 0, say, then R \ {y}, {y} ∈ σ.
Now, neighbourhoods of 0 in σ are exactly the same as in the cocountable topology.
So exactly as before xn → 0 in X implies xn → 0 in Y , but f is not continuous at
0.

Remark. In a metric space, the topology is completely determined by convergence
of sequences. Not true for a general topological space. Hence we’ll tend to concen-
trate more on continuity than convergence of sequences.

3.3. Subspaces

Definition (Subspace Topology). Let (X, τ) be a topological space and let Y ⊂ X.
The subspace topology on Y is

σ = {G ∩ Y | G ∈ τ}

Easy to check that this is a topology. Need to check backward compatibility with metric
space definition:

Proposition 31. Let (X, d) be a metric space with topology τ induced by d. Let
Y be a subspace of the metric space X. Then Y has the subspace topology.
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Proof. Let σ be the topology on Y induced by the metric d |Y 2 . Suppose G ∈ τ . Let
y ∈ G ∩ Y . As y ∈ G and G open in X we can find δ > 0 such that ∀x ∈ X, d(x, y) < δ
implies x ∈ G. Then ∀x ∈ Y , d(x, y) < δ =⇒ x ∈ G∩ Y . So G∩ Y is a neighbourhood
of y. So G ∩ Y ∈ σ.

Conversely, suppose H ∈ σ. For each y ∈ H can find δy > 0 such that ∀x ∈ Y ,
d(x, y) < δy =⇒ x ∈ H. Consider the open balls

Bδy(y) = {x ∈ X | d(x, y) < δy}

(y ∈ H). Each Bδy(y) is open , for each y ∈ H, y ∈ Bδy(y) and Bδy(y) ∩ Y ⊂ H. Let
G =

⋃
y∈H Bδy(y). Then G is open and G ∩ Y = H. That is, we’ve found G ∈ τ such

that G ∩ Y = H.

Proposition 32. A subspace of a Hausdorff space is Hausdorff.

Proof. Let (X, τ) be Hausdorff, Y ⊂ X, σ the subspace topology on Y . Let x, y ∈ Y
with x ̸= y. As X Hausdorff can find G,H ∈ τ with x ∈ G, y ∈ H, G ∩H = ∅. Then
G ∩ Y,H ∩ Y ∈ σ with x ∈ G ∩ Y , y ∈ H ∩ Y , and (G ∩ Y ) ∩ (H ∩ Y ) = ∅.

3.4. Completeness

Definition. Let (X, τ) be a topological space. An open over of X is a subset C ⊂ τ
such that X =

⋃
G∈C G.

Definition. Let (X, τ) be a topological space and C and open cover ofX. A subcover
of C is a subset D of C which is itself an open cover.

Definition. We say that a topological space X is compact if every open cover of X
has a finite subcover.

Definition. We say that a topological space X is sequentially compact if every
sequence in X has a convergent subsequence.

A continuous real-valued function on a sequentially compact topological space is bounded
and attains its bounds.
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Remark. Traditional wording: here and elsewhere, if no topology is specified R is
generally assumed to have the usual topology. Proof similar to metric case.

We’ve seen for a metric space that compact and sequentially compact are equivalent.

Warning. This equivalence is not true for a general topological space.

There exists a compact space that isn’t sequentially compact, and a sequentially compact
space that isn’t compact, but both examples are beyond the scope of this course.

Observe compactness and sequential compactness are both topological properties, since
they both use only open sets and convergence of sequences.

Given we don’t want to think too much about sequences in a general topological space,
we’ll be concentrating primarily on compactness rather than sequential compactness.

Start of
lecture 15 Remark. If X is a topological space and K ⊂ X we might want to say ‘K is

compact’. Clearly meaningful since K is topological space with subspace topology.
Think further:
Let τ be the topology on X. Then K is compact if and only if whenever C ⊂ τ with
K =

⋃
G∈C G ∩K then there is a finite D ⊂ C such that K =

⋃
G∈D G ∩K.

Equivalently, K is compact if and only if whenever C ⊂ τ with K ⊂
⋃

G∈C G then
there is a finite D ⊂ C with K ⊂

⋃
G∈D G. So sometimes refer to C as being open

cover of K (in X).

Examples

(1) [0, 1] with the usual topology is compact. (section 2.4 “Heine Borel Theorem” -
‘creeping along proof’). More generally, S ⊂ Rn is compact if and only if S is closed
and bounded.

(2) A metric space is compact if and only if it is complete and totally bounded.

(3) Suppose X is a discrete topological space. Then {{x} | x ∈ X} is an open cover. So
X is compact if and only if X is finite. (Note any finite space is compact).

(4) Let X be indiscrete. Then the only open covers of X are {∅, X} and {X}, both of
which are finite. So X is compact.

Theorem 33. A continuous real-valued function on a compact topological space is
bounded and attains its bounds.
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Proof. LetX be compact and f : X → R be continuous. LetGn = f−1((−n, n)) (n ∈ N).
Then {Gn | n ∈ N} is an open cover of X and so, as X compact, have a finite subcover
{Gn1 , . . . , Gnk

}.For all x ∈ Gni , |f(x)| < ni. Hence for all x ∈ X, |f(x)| < max1≤i≤k ni.
Hence f is bounded.

Let σ = supx∈X f(x), and suppose σ not attained by f . Then can define g : X → R by

g(x) =
1

σ − f(x)

which is well-defined and continuous. Hence by previous part, g is bounded. But as
σ = supx∈X f(x), so given ε > 0 we can find x such that σ − f(x) < ε so g(x) > 1

ε .
Contradiction. Similarly, ∈x∈X f(x) is attained.

Remark. Think of compactness as a ‘smallness’ condition - next best thing to
finiteness. For example: a real-valued function on a finite space is bounded (obvi-
ous). Here we have a continuous function on a compact space - how do we show
boundedness? Use compactness to show space not ‘too big’ - we can cover it with
finitely many sets on each of which f is bounded. (Then it becomes obvious).

More generally:

Theorem 34. A continuous image of a compact space is compact.

Proof. Let f : X → Y be continuous and X compact. Let K = f(X) ⊂ Y . Let C be an
open cover of K in Y . Then {f−1(G) | G ∈ C} is an open cover of X, so by compactness,
there is a finite D ⊂ C such that {f−1(G) | G ∈ D} is an open cover of X. Then D is an
open cover of K in Y . So K is compact.

Remark. This together with the fact that compact subsets of R are closed and
bounded gives an alternative proof of Theorem 33.

Lemma. (a) A closed subsets of a compact space is compact.

(b) A compact subset of a Hausdorff space is closed.

Proof. (a) Let X be a compact topological space and let F ⊂ X be closed. Let C be
an open cover of F in X. Then X \ F is open so C′ = C ∪ {X \ F} then C′ is an
open cover of X. X is compact so C′ has a finite subcover D′. Let D = D′ \ {X \F}
if X \ F ∈ D′ and D = D′ otherwise. Then D is a finite subcover of C. So F is
compact.
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(b) Let X be a Hausdorff space and let K ⊂ X be compact. We want to show K is
closed, i.e. X \K is open, i.e. X \K is a neighbourhood of each of its points.
Let y ∈ X \ K. Given x ∈ K, x ̸= y so as X Hausdorff, can find disjoint open
Ux, Vx ⊂ X with x ∈ Ux and y ∈ Vx. Then {Ux | x ∈ X} is an open cover of K in
X so it has a finite subcover {Ux1 , Ux2 , . . . , Uxn}. Let

U =
n⋃

i=1

Uxi V =
n⋂

i=1

Vxi

We have U, V open, K ⊂ U , y ∈ V and U ∩ V = ∅. In particular, we have found an
open set V such that y ∈ V ⊂ X \K. So X \K is a neighbourhood of each of its
points, so it’s open, so K is closed.

Theorem 35. A continuous bijection from a compact space to a Hausdorff space
is a homeomorphism.

Proof. Let f : X → Y be a continuous bijection, X compact, Y Hausdorff. Aim is to
show f−1 : Y → X is continuous.

Let G ⊂ X open. Then X \G is closed, so by Lemma 35(a), X \G is compact. Hence
by Theorem 34, f(X \G) is compact and so by Lemma 35(b), f(X \G) is closed. That
is, Y \ f(G) is closed, i.e. f(G) is open. But f is a bijection, so (f−1)−1(G) = f(G) is
open. So f−1 is continuous.

Start of
lecture 16 3.5. Products

Have R with the usual topology. Would like R×R to be R2 with the Euclidean topology.
In general, if (X, τ) and (Y, σ) are topological spaces, what sensible topology can we put
on X × Y ?
In general, τ × σ is not going to be a topology. For example, R× R
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Open ball not in τ × σ, but each point in ball is in some set in τ × σ confined in the
ball. But open ball is union of some sets in τ × σ.

In general, the product topology from τ, σ is going to be collection of all unions of sets
in τ × σ.

Definition. A π-system on a set X is a non-empty subset Π ⊂ PX such that
A,B ∈ Π =⇒ A ∩B ∈ Π.

Proposition 36. Let Π be a π-system on a set X. Then

τ =

{⋃
A∈Σ

A | Σ ⊂ Π

}
∪ {∅, X}

is a topology on X.

Proof. Clearly ∅, X ∈ τ and it’s closed under arbitrary unions. Now suppose G,H ∈ τ . If
G = ∅, X or H = ∅, X, then G∩H ∈ τ trivially. Otherwise, G =

⋃
A∈ΦA, H =

⋃
B∈ΘB

for some Φ,Θ ⊂ Π. Then

G ∩H =
⋃
A∈Φ
B∈Θ

(A ∩B) =
⋃
C∈Σ

C

where Σ = {A ∩B | A ∈ Φ, B ∈ Θ} ⊂ Π.

We call τ the topology generated by Π.
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Proposition 37. Let (X, τ), (Y, σ) be topological spaces. Then τ ×σ is a π-system
on X × Y .

Proof. ∅ = ∅ × ∅ ∈ τ × σ. So τ × σ ̸= ∅. Now suppose A,B ∈ τ × σ. Then A = G×H,
B = K × L for some G,K ∈ τ and some H,L ∈ σ. So

A ∩B = (G ∩K)× (H ∩ L) ∈ τ × σ

Definition. Let (X, τ), (Y, σ) be topological spaces. The product topology on X×Y
is the topology generated be the π-system

{U × V : U ∈ τ, V ∈ σ}

Exercise: If X = Y = R, τ = σ = usual topology. Then the product topology on R2 is
the Euclidean topology. (Example sheet 3 with guidance).

Theorem 38. (a) A product of Hausdorff spaces is Hausdorff.

(b) A product of compact spaces is compact.

Proof. Let (X, τ), (Y, σ) be topological spaces and let ρ be the product topology on
X × Y .

(a) Suppose X,Y Hausdorff. Let (x, y), (z, w) ∈ X × Y with (x, y) ̸= (z, w). WLOG
x ̸= z. As X is Hausdorff, can find G,H ∈ τ with G ∩H = ∅, x ∈ G, z ∈ H. Then
G× Y,H × Y ∈ ρ with (G× Y ) ∩ (H × Y ) = ∅ and (x, y) ∈ G× Y , (z, w) ∈ H × Y .
So X × Y is Hausdorff.

(b) Suppose X,Y compact. Let C ⊂ ρ be an open cover of X × Y . Fix x ∈ X. For each
y ∈ Y , there is some Gy ∈ C such that (x, y) ∈ Gy. Hence we can find Uy ∈ σ and
Vy ∈ τ such that (x, y) ∈ U)y × Vy ⊂ Gy. In particular, we have x ∈ Uy and y ∈ Vy.
Thus {Vy | y ∈ Y } ⊂ σ} is an open cover of Y . So, as Y is compact, it has a finite
subcover {Vy1 , . . . , Vyn}, say. Let W =

⋂n
i=1 Uyi . Then W is open in X and x ∈W .

Moreover,

W × Y ⊂
n⋃

i=1

(Uyi × Vyi) ⊂
n⋃

i=1

Gyi

Now, do this for each x ∈ X to obtain Wx = W , nx = n and

G(x)
yi = Gyi

(1 ≤ i ≤ nx) as above. Then {Wx | x ∈ X} ⊂ τ is an open cover of X. So, as X
is compact, it has a finite subcover, {Wx1 , . . . ,Wxm}, say. Now X =

⋃m
j=1Wxj and,
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for each j,

WxJ × Y ⊂
nxj⋃
i=1

G
(xj)
yi

Thus {G(xj)
y1 | 1 ≤ j ≤ m, 1 ≤ i ≤ nxj} is an open cover of X × Y and hence a finite

subcover of C. Thus X × Y is compact.

3.6. Quotients

Consider the surface of a torus in R3:

We might be interested in for example the set of continuous functions T → T . Analysis
is likely to be unpleasant, for example what is the equation defining T? What do we
care about? Continuity and convergence. So if we replace T by a space homemorphic
to T then we’re happy, particularly if the new space is analytically easier to work with.
For example, take closed unit square [0, 1] × [0, 1] with Euclidean topology. Glue (x, 0)
to (x, 1) for each x and glue (0, y) to (1, y) for each y.

55



This seems to give us T . More formally, defined an equivalence relation on [0, 1]× [0, 1],
∼ say, with equivalence classes:

{(x, y)} (0 < x, y < 1)

{(x, 0), (x, 1)} (0 < x < 1)

{(0, y), (1, y)} (0 < y < 1)

{(0, 0), (0, 1), (1, 0), (1, 1)}

Essentially, we could define T = [0, 1]2/ ∼, the set of equivalence classes. Maybe better
way to do this?

Instead we could define an equivalence relation ∼ on R2 by (x, y) ∼ (z, w) ⇐⇒ x−z ∈ Z
and y − w ∈ Z. Again, hopefully could define T = R2/ ∼.
But: What is the topology?

Start of
lecture 17 Definition (Quotient Topology). Let (X, τ) be a topological space and ∼ an equiv-

alence relation on X. Let q : X → X/ ∼ be the quotient map, i.e. ∀x ∈ X,
q(x) = [x]∼. The quotient topology on X/ ∼ is

ρ = {G ⊂ X/ ∼| q−1(G) ∈ τ}

Remarks

(1) ρ is indeed a topology using q−1(
⋃
G) =

⋃
q−1(G) and q−1(G ∩ H) = q−1(G) ∩

q−1(H).

(2) ρ is the largest topology on X/ ∼ making the quotient map q continuous.
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Examples

(1) Take R with the usual topology and x ∼ y if and only if x − y ∈ Z. Then R/ ∼
‘is’ S′, the unit circle (a subspace of R2 with Euclidean topology). ‘is’ means ‘is
homeomorphic to’. (Proof later).

(2) As above but now x ∼ y if and only if x − y ∈ Q. What is quotient topology on
R/ ∼? Suppose G ⊂ R/ ∼ is open, G ̸= ∅. Then q−1(G) ⊂ R is open and non-empty
so contains some interval (a, b) ⊂ q−1(G) with a ̸= b. Now take any x ∈ R. Then
there exists y ∈ (a, b) with x − y ∈ Q i.e. x ∼ y. Then q(x) = [x]∼ = [y]∼ = G.
Hence G = R/ ∼.
So the quotient topology on R/ ∼ is the indiscrete topology.

So the quotient topology on R/ ∼ is the indiscrete topology.

� Quotients of metrizable spaces need not be metrizable.

� Quotients of Hausdorff spaces need not be Hausdorff.

Basics on equivalence relations and quotients

Suppose X is a set and ∼ an equivalence relation on X. We have X/ ∼= {[x]∼ | x ∈ X}
and have quotient map q : X → X/ ∼, x 7→ [x]∼. Clearly q is surjective. Suppose now
Y is also a set and f : X → Y . Assume f respects ∼, i.e. x ∼ y =⇒ f(x) = f(y).

Then there is a unique function f : X/ ∼→ Y such that f = f ◦ q. Indeed, must have
∀x ∈ X,

f([x]∼) = f(q(x)) = f(x)

As f respects ∼, this is well-defined:

[x]∼ = [y]∼ =⇒ x ∼ y =⇒ f(x) = f(y)
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Example. Suppose G is a group, H another group, θ : G→ H is a homomorphism.
Let K = ker θ, and define ∼ on G by g ∼ h ⇐⇒ g−1h ∈ K. Then G/K = G/ ∼
and

Can check θ is a homomorphism and injective so isomorphism onto θ(G). This is
the first isomorphism theorem.

Proposition 39. Let (X, τ) be a topological space and ∼ an equivalence relation
on X. Let ρ be the quotient topology on X/ ∼. Suppose f : X → Y is a continuous
function respecting ∼, where (Y, σ) is a topological space. Then there is a unique
continuous function f : X/ ∼→ Y such that f = f ◦ q, where q : X → X/ ∼ is the
quotient map.

Proof. Define f : X/ ∼→ Y by
f([x]∼) = f(x)

This is well-defined:

[x]∼ = [y]∼ =⇒ x ∼ y =⇒ f(x) = f(y)

Clearly f ◦ q = f . Let G ∈ σ. Then

q−1(f
−1

(G)) = (F ◦ q)−1(G) = f−1(G) ∈ τ

as f continuous. So by definition of quotient topology, f
−1

(G) ∈ ρ. Hence f continuous.
Finally, if f = h ◦ q for some h : X/ ∼→ Y then ∀x ∈ X, h([x]∼) = h(q(x)) = f(x) =
f([x]∼). So h = f .
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Remark. This is what makes quotients useful. For example recall torus T = R2/ ∼
for appropriate relation ∼. Hopefully T is homeomorphic to genuine torus as a
subspace in R3. T is nasty. R2 is nice. So always work ‘upstairs’ in R2 rather then
‘downstairs’ in T . For example if you want to think about a continuous function on
T - instead think about an appropriate continuous function on R2 respecting ∼.

Example. Recall we had R with usual topology, x ∼ y if and only if x− y ∈ Z and
S′ = {x ∈ R2 | ∥x∥ = 1} with subspace topology inherited from Euclidean topology
on R2. We claimed R/ ∼ is homeomorphic to S′. Define f : R→ S′ by

f(x) = (sin 2πx, cos 2πx)

Clearly f is a continuous surjection, and it respects ∼. By proposition 40 there is a
unique continuous f : R/ ∼→ S′ with f ◦ q = f . Clearly f is a continuous bijection
(for injectivity, note each x ∈ S′ is f(a) for a unique a ∈ [0, 1) and each b ∈ R has
b ∼ a for a unique a ∈ [0, 1))
Now R/ ∼= q([0, 1]) is a continuous image of a compact set so is compact. And S′

is Hausdorff. Any continuous bijection from a compact space to a Hausdorff space
is a homeomorphism. So done: f is a homeomorphism from R/ ∼ to S′.

3.7. Connectedness

Recall the Intermediate Value Theorem:
If f : [a, b]→ R is continuous, and without loss of generality f(a) < f(b), then

[f(a), f(b)] ⊂ f([a, b])

Moreover, if x, d ∈ f([a, b]) with c < d then [c, d] ⊂ f([a, b]). Doesn’t work more
generally, for example if we replace by [a, b] by [−1, 0) ∪ (0, 1] = X. Define: X → R by

f(x) =

{
1 x < 0

0 x > 0

Then f is continuous on X, 0 ∈ f(X), 1 ∈ f(X) but for example 1
2 ̸∈ f(X) so [0, 1] ̸⊂

f(X).
What’s gone wrong? [−1, 0) ∪ (0, 1] is ‘disconnected’.

Definition. A topological space X is disconnected if there exist disjoint, non-empty
open sets U, V with X = U ∪ V .
We say X is connected if X is not disconnected.
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Remarks

(1) Recall the U ⊂ X is closed if and only if its complement is open. So

X disconnected ⇐⇒ if there exist disjoint, non-empty closed sets U, V with X = U ∪ V .

X connected ⇐⇒ the only subsets of X that are both open and closed are ∅, X

Start of
lecture 18

X connected if and only if whenever U, V ⊂ X are open and disjoint with X = U∪V
then U = ∅ or V = ∅.

Again, could replace ‘open’ by ‘closed’.

If X is disconnected, we say the sets U, V in the definition disconnect X.

(2) Connectedness is a topological property.

(3) If S ⊂ X, X a topological space, what does our definition of connectedness say
when applied to S? Of course as usual S has the subspace topology from X so is a
topological space in its own right.
S is disconnected if and only if there exist open sets U, V ⊂ X such that S ∩ U ∩
V = ∅ and S ⊂ U ∪ V , S ∩ U ̸= ∅, S ∩ V ̸= ∅. Again, we say U, V disconnect
S.

Warning. We don’t necessarily need to have U ∩ V = ∅: for example in N
with the cofinite topology, the set {1, 2} is disconnected in N by the open sets
N \ {1},N \ {2}. We have

(N \ {1}) ∩ (N \ {2}) ∩ {1, 2} = ∅

but
(N \ {1}) ∩ (N \ {2}) ̸= ∅.

Indeed, if U, V ⊂ N are open and non-empty then U ∩ V ̸= ∅.

S connected if and only if whenever U, V ⊂ X are open and S ⊂ U ∩ V and
S ∩ U ∩ V = ∅ then either S ∩ U = ∅ or S ∩ V = ∅.

Finally, as in remark 1, could replace ‘open’ with ‘closed’ in these reformulations of
the definition.

Which subsets of R are connected?

Definition. A subset I ⊂ R is an interval if whenever a < b < c with a, c ∈ I then
b ∈ I.
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Proposition 40. Let I ⊂ R with the usual topology. Then I is connected if and
only if I is an interval.

Proof. ⇒ Suppose I not an interval. Then we can find a < b < c with a, c ∈ I but
b ̸∈ I. Then (−∞, b) and (b,∞) disconnect I in R.

⇐ Suppose I is an interval. Work in subspace topology on I. Let S ⊂ I be open,
closed and non-empty. Let a ∈ S.

Suppose we have b ∈ I \S. Without loss of generality b > a. Let c = sup([a, b]∩S).
Then we can find a sequence (xn) in S with xn → c ∈ I¿ But S is closed in I so
c ∈ S. In particular, c ̸= b, so c < b.

But also S is open in I so there exists δ > 0 such that (c− δ, c+ δ) ⊂ S, without
loss of generality δ < b− c. Then c+ δ

2 ∈ S ∩ [a, b], contradiction to the supremum
property. So in fact, S = I. So I is connected.

Another equivalent version of the definition of connectedness:

Theorem 41. Let X be a topological space. Then X connected if and only if every
continuous function f : X → Z (with usual topology) is constant.

Proof. ⇒ Suppose X is connected and f : X → Z continuous. For any n ∈ Z,
{n} ⊂ Z is open and closed, so f−1({n}) ⊂ X is open and closed, so f−1({n}) = ∅
or f−1({n}) = X. So f is constant.

⇐ Suppose U, V disconnect X. Define f : X → Z by

f(x) =

{
0 x ∈ U

1 x ∈ V

Then for any A ⊂ Z, f−1(A) = ∅, X, U or V , so f−1(A) is open. So f is continuous
and non-constant.

Remarks

(1) Theorem 42 together with Intermediate value theorem can provide an alternative
proof of Proposition 41.

(2) Theorem 42 remains true with same proof if Z is replaced by any discrete topological
space Y with |Y | ≥ 2.
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Proposition 42. A continuous image of a connected space is connected.

Proof. Let X be a connected topological space, let Y be a topological space and let
f : X → Y be continuous. Suppose U, V ⊂ Y are open with f(X) ⊂ U ∪ V and
U ∩ V ∩ f(X) = ∅. As f continuous, f−1(U), f−1(V ) ⊂ X are open. Also X =
f−1(U0∪ f−1(V ) and f−1(U)∩ f−1(V ) = ∅. As X connected without loss of generality
we have f−1(U) = ∅. Then U ∩ f(X) = ∅. So f(X) is connected.

Proposition 43. A product of connected spaces is connected.

Proof. Let (X, τ) and (Y, σ) be connected topological spaces, and let ρ be the product
topology on X × Y . Suppose U, V ∈ ρ with U ∩ V = ∅ and U ∩ V = X × Y . We want
to show U = ∅, V = X × Y or U = X × Y , V = ∅.
Fix x ∈ X. Then {x} × Y is homeomorphic to Y (Exercise - Example sheet 3). In
particular, {x}×Y is connected. Then {x}×Y ⊂ U or {x}×Y ⊂ V as otherwise U,W
would disconnect {x} × Y in X × Y . So let

A = {x ∈ X | {x} × Y ⊂ U}

and
B = {x ∈ X | {x} × Y ⊂ V }

Clearly A ∩B = ∅ (as U ∩ V = ∅). And we’ve just proved X = A ∪B.

Suppose x ∈ A. So {x} × Y ⊂ U . Then (assuming U ̸= ∅, which we can do without
loss of generality, since if Y = ∅ then X × Y is clearly connected) pick any y ∈ Y . Then
(x, y) ∈ U . U is open so can find T ∈ τ , S ∈ σ such that (x, y) ∈ T × S ⊂ U . In
particular, for all w ∈ T then (w, y) ∈ U and so {w}×Y ⊂ U , i.e. w ∈ A. We now have
T ∈ τ with x ∈ T ⊂ A so A is a neighbourhood of x in X. Hence A is open.

Similarly B is open. But X is connected, so A = ∅ giving U = ∅ or B = ∅ giving V = ∅.
Hence X × Y is connected.

Example. Recall [−1, 0) ∩ (0, 1] is not connected. But it is a disjoint union of
connected sets: [−1, 0) ∪ (0, 1]. Moreover, any proper superset of [−1, 0) or (0, 1] in
[−1, 0) ∪ (0, 1] is disconnected.

Definition. Let X be a topological space. A connected component of X is a maxi-
mal connected subset of A of X: that is to say, A is connected but if A ⊂ B ⊂ X
with B connected then A = B.
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Theorem 44. The connected components of a topological space X form a partition
of X.

Proof. Define ∼ on X by x ∼ y if and only if ∃A ⊂ X connected with x, y ∈ A. Clearly
∼ is reflexive ({x} is connected) and it is symmetric by the way we defined it. So we
want to show ∼ is transitive.

Suppose x, y, z ∈ X with x ∼ y and y ∼ z. Then ∃A,B ⊂ X connected with x, y ∈ A
and y, z ∈ B. Now x, z ∈ A ∪B. Suppose U, V disconnect A ∪B in X. Without loss of
generality y ∈ U . Pick w ∈ V ∩ (A ∪ B). Without loss of generality w ∈ A. But also
y ∈ A so U, V disconnect A. So A ∪B is connected so x ∼ z.
Hence ∼ is an equivalence relation. Suppose S is an equivalence class of ∼. Suppose
U, V disconnect S. Then can find x ∈ U ∩ S, y ∈ V ∩ S and U ∩ V ∩ S = ∅. Then x ∼ y
so there is a connected A ⊂ X with x, y ∈ A. For all z ∈ A, x, z ∈ A connected so x ∼ z
so z ∈ S. So A ⊂ S and so U ∩ V ∩ A = ∅ so U, V disconnect A, contradiction. So S is
connected.
Suppose S ⊂ T ⊂ X with T connected. Let x ∈ S. Then for all y ∈ T , x, y ∈ T with T
connected so x ∼ y. Thus T ⊂ S. So S = T . So S is a connected component.

Finally, let R be a connected component. Let x, y ∈ R. Then, as R is connected, x ∼ y.
So R is connected in some equivalence class Q of ∼. But R ⊂ Q with Q connected so
R = Q.

So the equivalence classes of ∼ are precisely the connected components.

Start of
lecture 19 Remark. This is what tells us connected components exist.

Another concept of connectedness:

Definition. A path from x to y in a topological space X is a continuous function
φ : [0, 1]→ X with φ(0) = x, φ(1) = y.
X is path-connected if for all x, y ∈ X there is a path from x to y.

Proposition 45. A path-connected space X is connected.

Proof. Suppose U, V disconnect X. Pick a ∈ U , b ∈ V . Let φ be a path in X from a to
b. Then U, V disconnect φ([0, 1]).

However, the converse is not true in general.
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Example. Consider

Let A = {(0, y) | −1 ≤ y ≤ 1} and B = {(x, sin 1
x | 0 < x ≤ 1}. Let X = a∪B ⊂ R2.

X connected: Clearly A, B path-connected hence connected. Suppose U, V discon-
nect X in R2. Then WLOG A ⊂ U , B ⊂ V . So (0, 0) ∈ A ⊂ U . U open so
have some δ > 0 such that Bδ((0, 0)) ⊂ U . Pick n such that 1

2nπ < δ. Then(
1

2nπ , 0
)
∈ U ∩B, contradiction.

X not path-connected: Suppose φ is a path from (0, 0) to (1, sin 1) in X. Let
σ = sup{t ∈ [0, 1] | φ1(t) = 0}. Let y = φ2(σ). Then, as φ continuous,

φ(σ) = (0, y)

Choose δ > 0 such that |σ− t| < δ implies ∥φ(σ)−φ(t)∥ < 1. WLOG δ < 1−σ. By
definition of σ, φ1

(
σ + δ

2

)
= x > 0. Choose w ∈ (0, x) such that

∣∣sin 1
w − y

∣∣ ≥ 1.

Then by IVT, there is some t ∈
(
σ, σ + δ

2

)
such that φ1(t) = w. Then |σ − t| < δ,

but

∥φ(σ)− φ(t)∥ ≥ |φ2(σ)− φ2(t)| =
∣∣∣∣sin 1

w
− y

∣∣∣∣ ≥ 1

contradiction.

BUT:

Proposition 46. An open, connected subset of Euclidean space is path-connected.

Proof. Let X ⊂ Rn be open and connected. If X = ∅ then done. So assume X ̸= ∅. Fix
a ∈ X. Let

U = {x ∈ X | ∃ path in X from a to x}

� U ̸= ∅ since a ∈ U (constant path from a to a)

� U open in X. Suppose b ∈ U . X open so can pick δ > 0 such that Bδ(b) ⊂ X. Let
φ be a path from a to b in X and let x ∈ Bδ(b). Then θ is a path in X from a to
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x where

θ(t) =

{
φ(2t) 0 ≤ t ≤ 1

2

b+ 2
(
t− 1

2

)
(x− b) 1

2 ≤ t ≤ 1

� U closed in X, i.e. X \ U open in X. Let b ∈ X \ U . Choose δ > 0 such that
Bδ(b) ⊂ X. Suppose x ∈ Bδ(b) ∩ U . Let φ be a path in X from a to x. Then

t 7→

{
φ(2t) 0 ≤ t ≤ 1

2

x+ 2
(
t− 1

2

)
(b− x) 1

2 ≤ t ≤ 1

is a path from a to b in X. So Bδ(b) ⊂ X \ U .

Hence, as X is connected, U = X. But the point a was arbitrary. So X is path-
connected.

Remark. Recall that don’t always specify the topology when defining a topological
space - should always assume it’s standard one. In particular:

� R comes with the usual topology.

� Rn comes with the Euclidean topology.

X ⊂ R,Rn comes with the subspace topology from the above. Products, quotients
come with the product / quotient topology respectively.
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Recall: f : R→ R is differentiable at a ∈ R with derivative A if

f(a+ h)− f(a)

h
→ A

as h→ 0. We write f ′(a) = A.
Want to generalise to f : Rn → Rm.
Easy: n = 1. Exactly same definition works.
Problem: if n ≥ 2, dividing by b ∈ Rn makes no sense.

Definition. If f : Rn → Rm, the i-th partial derivative of f at a ∈ Rn is

Dif(a) = lim
h→0

f(a+ hei)− f(a)

h

where this limit exists, where e1, . . . , en is standard basis of Rn.

Example. f : R2 → R.

f(x, y) =

{
0 x = 0 or y = 0

1 x ̸= 0 and y ̸= 0

Both partial derivatives exist at (0, 0):

D1f(0, 0) = 0 D2f(0, 0) = 0

But f not continuous at (0, 0).

67



Better definition? Return to f : R→ R:

f ′(a) = A ⇐⇒ f(a+ h)− f(a)

h
→ A as h→ 0

⇐⇒ f(a+ h)− f(a)

h
= A+ ε(h) where ε(h)→ 0 as h→ 0

⇐⇒ f(a+ h) = f(a) +Ah+ ε(h)h where ε(h)→ 0 as h→ 0

‘small changes in a produce approximately linear changes in f(a)’

Definition. Let f : Rn → Rm, and a ∈ Rn. We say f is differentiable at a if there
is a linear map α ∈ L(Rn,Rm) with

f(at+ h) = f(a) + α(h) + ε(h)∥h∥ (∗)

where ε(h)→ 0 as h→ 0.

Proposition 1. Suppose f : Rn → Rm, a ∈ Rn, α, β ∈ L(Rn,Rm) and

f(a+ h) = f(a) + α(h) + ε(h)∥h∥

f(a+ h) = f(a) + β(h) + η(h)∥h∥

with ε(h), η(h)→ 0 as h→ 0. Then α = β.
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Definition. Once we’ve proved Proposition 1, we know the α in (∗) is unique. We
say α is the derivative of f at a, and write Df |a = α. So if f differentiable at a,

f(a+ h) = f(a) +Df |a(h) + ε(h)∥h∥

where ε(h)→ 0 as h→ 0.

Remark. If f : R→ Rm,
Df |a(h) = f ′(a)h

Start of
lecture 20 Proof. Let h ∈ Rn, h ̸= 0. Then

α(h)− β(h) = (η(h)− ε(h))∥h∥

Then for λ ∈ R, λ ̸= 0,

∥α(h)− β(h)∥ =
∥∥∥∥α(λh)− β(λh)

λ

∥∥∥∥
=

∥∥∥∥(η(λh)− ε(λh))∥λh∥
λ

∥∥∥∥
= ∥η(λh)− ε(λh)∥∥h∥
→ 0

as λ→ 0. Hence α(h)− β(h). Hence α = β.

Remarks

(1) To consider differentiability of f at a, only matters what happens on some neigh-
bourhood of a .So definition works if instead of f : Rn → Rm we have f : N → Rm

where N ⊂ Rm is a neighbourhood of a or, in particular, if f : Bδ(a) → Rm where
δ > 0. (Imagine f defined as anything on rest of Rn and makes no difference).

(2) We can define the l1 and l∞ norms by

∥x∥1 = d1(0, x) =
n∑

i=1

|xi|

and ∥x∥∞ = d∞(0, x) = maxi |xi|. Note ∥x∥1 ≥ 0 with equality if and only if x = 0,

∥λx∥1 = |λ|∥x∥1; ∥x+ y∥1 ≤ ∥x∥1 + ∥y∥1

Similarly for ∥ • ∥∞. We’ve seen that for all x ∈ Rn:

∥x∥∞ ≤ ∥x∥ ≤
√
n∥x∥∞

69

https://notes.ggim.me/AT#lecturelink.20


and
∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞

So we can replace ∥ • ∥ in the definition of derivative by ∥ • ∥1 or ∥ • ∥∞ and the
definition doesn’t change. Sometimes this is useful for computation.

Consider the vector space L(Rn,Rm) of linear maps Rn → Rm. We have L(Rn,Rm) ∼
Rmn with the obvious isomorphism (write map as a matrix with respect to standard
bases of Rn and Rm).
So could think about Euclidean norm of a linear map. But seems a bit unnatural.

Definition. The operator norm on L(Rn,Rm) is defined by

∥α∥ = sup{∥αx∥ | ∥x∥ = 1}

αx ∈ Rm so ∥ • ∥ is normal Euclidean norm.

Proposition 2. Let ∥ • ∥ be the operator norm on V = L(Rn,Rm). Let α, β ∈ V .
Then

(i) ∥α∥ ≥ 0 with equality if and only if α = 0;

(ii) ∀λ ∈ R, ∥λα∥ = |λ|∥α∥;

(iii) ∥α+ β∥ ≤ ∥α∥+ ∥β∥;

(iv) ∀x ∈ Rn, ∥αx∥ ≤ ∥α∥∥x∥;

(v) ∥αβ∥ ≤ ∥α∥∥β∥;

(vi) If ∥ • ∥′ is the Euclidean norm on V ∼ Rmn with the standard isomorphism
then there are constants c, d > 0 (depending on m,n but independent of α)
such that

c∥α∥ ≤ ∥α∥′ ≤ d∥α∥

Remarks

(1) A linear map from Rn → Rm is continuous and {x ∈ Rn | ∥x∥ = 1} is compact so
the operator norm is well-defined.

(2) Notation: standard is ∥ • ∥ refers to operator norm if applied to a linear map and
Euclidean norm if applied to a point of Rn, unless otherwise stated.

Proof. (i) to (iii) Exercise.
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(iv) Let x ∈ Rn. If x = 0 then done. Otherwise, α(x) = ∥x∥α
(

x
∥x∥

)
with∥∥∥ x

∥x∥

∥∥∥ = 1. So

∥α(x)∥ ≤ ∥x∥∥α∥

(v) Let x ∈ Rn with ∥x∥ = 1. Then

∥αβx∥ ≤ ∥α∥∥βx∥ ≤ ∥α∥∥β∥∥x∥ = ∥α∥∥β∥

(by (iv) twice). So ∥αβ∥ ≤ ∥α∥∥β∥.

(vi) Let x ∈ Rn with ∥x∥ = 1.

∥αx∥ ≤
√
m max

1≤i≤m
|(αx)i|

Let A be the matrix of α with respect to the standard bases e1, . . . , en
of Rn and f1, . . . , fm of Rn. Then

∥αx∥ ≤
√
m max

1≤i≤m

∣∣∣∣∣∣
n∑

j=1

Aijxj

∣∣∣∣∣∣
≤
√
m max

1≤i≤m

n∑
j=1

|Aij ||xj |

≤
√
m max

1≤i≤n

n∑
j=1

∥α∥′

= n
√
m∥α∥′

Hence
∥α∥ ≤ n

√
m∥α∥′

On the other hand, pick i, j that maximise |Aij |. Then

∥αej∥ ≥ ∥(αej)i∥ = |Aij |

But

∥α∥′ ≤
√
mn|Aij |

≤
√
mn∥αej∥

≤
√
mn∥α∥

This proves (vi) with d =
√
mn and c = 1

n
√
m
.
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Proposition 3. Let f : Rn → Rm which is differentiable at a ∈ Rn. Then f is
continuous at a.

Proof. Write
f(a+ h) = f(a) +Df |a(h) + ε(h)∥h∥

where ε(h)→ 0 as h→ 0. Also, ∥h∥ → 0 as h→ 0, and Df |a is linear so continuous so
Df |a(h)→ Df |a(0) = 0 as h→ 0. Thus f(a+ h)→ f(a) as h→ 0.

Proposition 4. Let f, g : Rn → Rm and λ : Rn → R be differentiable at a ∈ Rn.
Then f + g, λf are differentiable at a with

D(f + g)|a = Df |a +Dg|a

and
D(λf)|a(h) = λ(a)Df |a(h) +Dλ|a(h)f(a)

Proof. We have
f(a+ h) = f(a) +Df |a(h) + ε(h)∥h∥

g(a+ h) = g(a) +Dg|a(h) + η(h)∥h∥

λ(a+ h) = λ(a) +Dλ|a(h) + ζ(h)∥h∥

where ε(h), η(h), ζ(h)→ 0 as h→ 0. Now,

(f + g)(a+ h) = (f + g)(a) + (Df |a +Dg|a)(h) + (ε(h) + η(h))∥h∥

where Df |a +Dg|a is linear and ε(h) + η(h)→ 0 as h→ 0.

Also,

(λf)(a+ h) = (λf)(a) + λ(a)Df |a(h) +Dλ|a(h)f(a) + ζ(h)∥h∥

where h 7→ λ(a)Df |a(h) +Dλ|a(h)f(a) is a linear map, and

ξ(h) = ζ(h)f(a)+Df |a(h)Dλ|a(h)
1

∥h∥
+Df |a(h)ζ(h)+λ(a)ε(h)+Dλ|a(h)ε(h)+ε(h)ζ(h)∥h∥

which we claim tends to 0 as h→ 0 since:

� ε(h), ζ(h) → 0 as h → 0 so ζ(h)f(a), Df |a(h)ζ(h), λ(a)ε(h), Dλ|a(h)ε(h) and
ε(h)ζ(h)∥h∥ all tend to 0 as h→ 0.
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� Df |a, Dλ|a are linear so continuous, so Df |a(h), Dλ|a(h)→ 0 as h→ 0, and

∥Df |a(h)Dλ|a(h)
1

∥h∥
∥ ≤ ∥Df |a(h)∥∥Dλ|a(h)∥

1

∥h∥

≤ ∥Df |a∥∥h∥∥Dλ|a∥∥h∥
1

∥h∥
= ∥Df |a∥∥Dλ|a∥∥h∥
→ 0

as h→ 0.

so ξ(h)→ 0 as h→ 0.

Start of
lecture 21

Partial derivatives can still be useful for computation:

Proposition 5. Let f : Rn → Rm and a ∈ Rn. Write

f =

 f1
...
fm


where for each i, fi : Rn → R. Then

(a) f is differentiable at a if and only if each fi is differentiable at a, in which case

Df |a =

Df1|a
...

Dfm|a


and

(b) if f is differentiable at a and A is the matrix of Df |a in terms of the standard
bases then Aij = Djfi(a).

Proof. (a) ⇒ Write
f(a+ h) = f(a) +Df |a(h) + ε(h)∥h∥

where ε(h)→ 0 as h→ 0. Then

fi(a+ h) = fi(a) + (Df |a)i(h) + εi(h)∥h∥

where (Df |a)i : Rn → R is linear and |εi(h)| ≤ ∥ε(h)∥ → 0 as h→ 0.

⇐ For each i, write

fi(a+ h) = fi(a) +Dfi|a(h) + εi(h)∥h∥
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where εi(h)→ 0 as h→ 0. Then

f(a+ h) = f(a) + α(h) + ε(h)∥h∥

where

α =

Df1|a
...

Dfm|a

 : Rn → Rm

is linear and

∥ε(h)∥ =

∥∥∥∥∥∥∥
 ε1(h)

...
εm(h)


∥∥∥∥∥∥∥ =

√√√√ m∑
i=1

εi(h)2 → 0

as h→ 0.

(b) Write
f(a+ h) = f(a) +Df |a(h) + ε(h)∥h∥

where ε(h)→ 0 as h→ 0. Let e1, . . . , en be the standard basis of Rn. Then

f(a+ kej)− f(a)

k
=

Df |a(kej) + ε(kej)∥kej∥
k

= Df |a(ej) + ε(kej)→ Df |a(ej)

as k → 0. So all partial derivatives of f exist at a and Djf(a) = Df |a(ej).

Definition. The matrix A in (b) is called the Jacobian matrix of f at a.

Theorem 6 (The Chain Rule). Let f : Rp → Rn be differentiable at a ∈ Rp, and
let g : Rn → Rm be differentiable at f(a) ∈ Rn. Then g ◦ f is differentiable at a
with

D(g ◦ f)|a = Dg|f(a) ◦Df |a

Remark. In principle this should be obvious: if f is approximately linear near f(a)
then g ◦ f is approximately linear near a and the linear approximation to get near
a is the obvious thing.
Proof looks a bit messy - calculation to make sure error terms behave.

Proof. Write
f(a+ h) = f(a) + α(h) + ε(h)∥h∥

and
g(f(a) + k) = g(f(a)) + β(k) + η(k)∥k∥
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where α = Df |a, β = Dg|f(a) are linear, ε(h) → 0 as h → 0 and η(k) → 0 as k → 0.
Now:

g(f(a+ h)) = g(f(a) + α(h) + ε(h)∥h∥)
= g(f(a)) + β(α(h) + ε(h)∥h∥) + η(α(h) + ε(h)∥h∥)∥α(h) + ε(h)∥h∥∥
= g(f(a)) + β(α(h))︸ ︷︷ ︸

linear

+ ζ(h)∥h∥︸ ︷︷ ︸
small

where

ζ(h) = β(ε(h)) + η(α(h) + ε(h)∥h∥)
∥∥∥∥α(h)∥h∥

+ ε(h)

∥∥∥∥
Now, ε(h) → 0 as h → 0 and β linear, so continuous, so β(ε(h)) → β(0) = 0 as h → 0.
Next, α linear so continuous so α(h)→ α(0) = 0 as h→ 0. And ε(h)∥h∥ → 0× 0 = 0 as
h → 0. So α(h) + ε(h)∥h∥ → 0 as h → 0. WLOG η(0) = 0 so g continuous at 0. Then
η(α(h) + ε(h)∥h∥ → 0 as h→ 0. Finally,∥∥∥∥α(h)∥h∥

+ ε(h)

∥∥∥∥ ≤ ∥α(h)∥∥h∥
+ ∥ε(h)∥

≤ ∥a∥∥h∥
∥h∥

+ ∥ε(h)∥

= ∥α∥+ ∥ε(h)∥
→ ∥α∥

as h→ 0. Hence ζ(h)→ 0 as h→ 0.

Examples

(1) Suppose f is constant. Then f(a + h) = f(a) + 0 + 0∥h∥ So f is everywhere
differentiable with derivative the zero map.

(2) Suppose f is linear. Then

f(a+ h) = f(a) + f(h) + 0∥h∥

so f everywhere differentiable with Df |a = f for all a.

(3) Suppose f : R→ Rm. As remarked earlier for a ∈ R, f is differentiable in old sense
at a if and only if it is differentiable in new sense, in which case Df |a(h) = hf ′(a).

(4) Using the above together with Chain Rule, get lots of differentiable functions, for
example

f : R2 → R2, f

((
x
y

))
=

(
ex+y

cos(xy)

)
is differentiable. Why? The projection maps π1, π2 : R2 → R, πs(x, y) = x, π2(x, y) =
y are linear so differentiable. So by Chain Rule:

f1(z) = eπ1(z)+π2(z), f2(z) = cos(π1(z)π2(z))
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are differentiable. So by Proposition 5(a), f is differentiable.
What is derivative of f at z = (x, y)? It’s some linear map R2 → R2. By Proposition
5(b), the matrix of the derivative is given by the partial derivatives:

Df |(x,y) =
(

ex+y ex+y

−y sinxy −x sinxy

)
(5) Let Mn be the vector space of n × n real matrices. So Mn ∼ Rn2

so can consider
differentiability of f :Mn →Mn. Recall that the definition still same if we replace
the Euclidean norm by the operator norm, so write ∥ • ∥ for operator norm onMn.
Define f :Mn →Mn by f(A) = A2. Then:

f(A+H) = (A+H)2 = A2︸︷︷︸
f(A)

+AH +HA︸ ︷︷ ︸
linear

+ H2︸︷︷︸
higher order

where ∥∥∥∥ H2

∥H∥

∥∥∥∥ ≤ ∥H∥2∥H∥
= ∥H∥ → 0

as H → 0. So f everywhere differentiable and

Df |A(H) = AH +HA

(6) We have det :Mn → R. We have:

det(I +H) =

∣∣∣∣∣∣∣
1 +H11 H12 · · · H1n

H21 1 +H22 · · · H2n
...

...
. . .

...Hn1 Hn2 · · · 1 +Hnn

∣∣∣∣∣∣∣
= 1︸︷︷︸

det I

+ Tr(H)︸ ︷︷ ︸
linear in H

+other terms involving two or more Hij multiplied together.︸ ︷︷ ︸
higher order

Note ∣∣∣∣HijHkl

∥H∥2

∣∣∣∣ ≤ |Hkl| → 0

as H → 0. (∥H∥2 is the Euclidean norm). So det is differentiable at I with
D det |i(H) = Tr(H). Suppose A ∈Mn invertible. Then

det(A+H) = det(A) det(I +A−1H)

= detA(1 + Tr(A−1H) + ε(A−1H)∥A−1H∥)
= detA+ (detA)(TrA−1H) + (detA)ε(A−1H)∥A−1H∥

where ε(K)→ 0 as K → 0. And∣∣∣∣(detA)ε(A−1H)∥A−1H∥
∥H∥

∣∣∣∣ ≤ |(detA)ε(A−1H)∥A−1∥|

→ 0

as H → 0. So det differentiable at A with D det |A(H) = (TrA−1H)(detA).
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Start of
lecture 22

Recall: If f : R → R differentiable with zero derivative everywhere then f is constant.
This followed from the mean value theorem.

Theorem 7 (Mean value inequality). Let f : Rn → Rm. Suppose f is differentiable
on an open set X ⊂ Rn with a, b ∈ X. Suppose further that

[a, b] = {a+ t(b− a) | 0 ≤ t ≤ 1} ⊂ X.

Then
∥f(b)− f(a)∥ ≤ ∥b− a∥ sup

z∈(a,b)
∥Df |z∥

where (a, b) = [a, b] \ {a, b}.

Proof. Define ϕ : [0, 1]→ R by ϕ(t) = f(a+ t(b− a)) · (f(b)− f(a)). Then ϕ = α ◦ f ◦ β
where β : [0, 1]→ Rn, α(x) = x · (f(b)− f(a)). Clearly ϕ is continuous on [0, 1]. Now α
is a linear map so is everywhere differentiable with Dα|x = α. Next, β([0, 1]) ⊂ X and
f is differentiable on X. Finally, if t ∈ (0, 1) then β differentiable at t with β′(t) = b−a,
i.e. Dβ|t(h) = h(b− a). Hence by the Chain Rule, if t ∈ (0, 1) then ϕ is differentiable at
t and

Dϕ|t(h) = Dα|f(β(t))(Df |β(t)(Dβ|t(h)))
= α(Df |a+t(b−a)(h(b− a)))

= (f(b)− f(a) · (hDf |a+t(b−a)(b− a))

= h((f(b)− f(a)) ·Df |a+t(b−a)(b− a)

That is,
ϕ′(t) = (f(b)− f(a)) ·Df |a+t(b−a)(b− a)

So, by the Mean Value Theorem,

∥f(b)− f(a)∥2 = (f(b)− f(a)) · f(b)− (f(b)− f(a)) · f(a)
= ϕ(1)− ϕ(0)

= ϕ′(t) for some t ∈ (0, 1)

= (f(b)− f(a)) ·Df |a+t(b−a)(b− a)

≤ ∥f(b)− f(a)∥∥Df |a+t(b−a)(b− a)∥ Cauchy Schwartz

≤ ∥f(b)− f(a)∥∥Df |a+t(b−a)∥∥b− a∥

Hence
∥f(b)− f(a)∥ ≤ ∥b− a∥∥Df |a+t(b−a)∥

Corollary 8. Let X ⊂ Rn be open and connected, and let f : X → Rm be
differentiable with Df |x the zero map for all x ∈ X. Then f is constant on X.

77

https://notes.ggim.me/AT#lecturelink.22


Proof. By Mean Value Inequality, f is ‘locally constant’: for each x ∈ X, there is some
δ > 0 such that Bδ(x) ⊂ X and so f is constant on Bδ(x). (Since Bδ(x) is convex so
contains line segments joining each pair of points.)
Note that as X is open, if U ⊂ X then U open in X if and only if U is open in Rn. If
x = ∅ then done. Suppose not. Fix a ∈ X. Let

U = {x ∈ X | f(x) = f(a)}.

� U ̸= ∅ because a ∈ U .

� U is open: If b ∈ U then there is some δ > 0 such that Bδ(b) ⊂ X and f constant
on Bδ(b) so Bδ(b) ⊂ U .

� U is closed in X: if b ∈ X \ U then there is some δ > 0 such that Bδ(b) ⊂ X and
f constant on Bδ(b) so Bδ(b) ⊂ X \ U . So X \ U open in Rn, so open in X. So U
is closed in X.

But X is connected, so U = X.

We’ve seen if f differentiable at a then partial derivatives exist at a and the matrix (∗)
of Df |a is given by the partial derivatives.
But, on the other hand, can have all partial derivative existing at a but f not differen-
tiable at a.
However, there is a partial converse to (∗).

Theorem 9 (Continuous Partial Derivatives Implies Differentiable). Let f : Rn →
Rm and let a ∈ Rn. Suppose there is some neighbourhood of a such that the partial
derivativesDif (1 ≤ i ≤ n) all exist and are continuous at a. Then f is differentiable
at a.

How can we prove this? For simplicity, we’ll just prove this when n = 2, m = 1. So
f : R2 → R. Write a = (x, y). Want to think about f(x+ h, y + k) for small h, k. Now,
by definition of partial derivatives,

f(x+ h, y + k) = f(x+ h, y) + kD2f(x+ h, y) + o(k) (∗)

and
f(x+ h, y) = f(x, y) + hD1f(x, y) + o(h)

Hence

f(x+ h, y + k) = f(x, y) + hD1f(x, y) + kD2f(x+ h, y) + o(h) + o(k)

= f(x, y) + hD1f(x, y) + k(D2f(x, y) + o(1)) + o(h) + o(k)

= f(x, y) + hD1f(x, y) + kD2f(x, y)︸ ︷︷ ︸
linear in (h, k)

+ o(h) + o(k)︸ ︷︷ ︸
o((h,k))
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Unfortunately, this is nonsense. In particular, the o(k) in (∗) is actually also dependent

on h. Call it η(h, k). We need η(h,k)
k → 0 as (h, k) → (0, 0). But only know for each h,

η(h,k)
k → 0 as k → 0, and this is weaker.

In fact, to write a proof that actually works, we need Mean Value Theorem.

Proof. For simplicity, n = 2, m = 1. a = (x, y). Take (h, k) small. Then by MVT,

f(x+ h, y + k)− f(x+ h, y) = kD2f(x+ h), y + θh,kk)

for some θh,k ∈ (0, 1). Again by MVT,

f(x+ h, y)− f(x, y) = hD1f(x+ ϕhh, y)

for some ϕh ∈ (0, 1). Hence

f(x+ h, y + k)− f(x, y) = kD2f(x+ h), y + θh,kk) + hD1f(x+ ϕhh, y)

As (h, k) → (0, 0) we have x + h, y + θh,kk) → (x, y) and (x + ϕhh, y) → (x, y), so by
continuity of D1, D2 at (x, y), we have

D2f(x+ y, y + θh,kk)→ D2f(x, y)

and
D1f(x+ ϕhh, y)→ D1f(x, y)

WriteD2f(x+h, y+θh,kk) = D2f(x, y)+η(h, k) andD1f(x+ϕhh, y) = D1f(x, y)+ζ(h, k)
where η(h, k), ζ(h, k)→ 0 as (h, k)→ (0, 0). Then

f(x+ h), y + k) = f(x, y) + hD1f(x, y) + kD2f(x, y) + hζ(h, k) + kη(h, k)

Now (h, k) 7→ hD1f(x, y) + kD2f(x, y) is linear, and∣∣∣∣hζ(h, k) + kη(h, k)√
h2 + k2

∣∣∣∣ ≤ |ζ(h, k)|+ |η(h, k)| → 0

as (h, k)→ (0, 0). So f is differentiable at a = (x, y).

Remarks

(1) Same proof basically does f : Rn → R for general n (with more notation). Then get
f : Rn → Rm by looking at each fi : Rn → R (1 ≤ i ≤ m).

(2) If you try to prove something like this and don’t use MVT it’s probably wrong.

Start of
lecture 23
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2. The Second Derivative

We’ll start with a result in partial derivatives

∂2f

∂x∂y
=

∂2f

∂y∂x

Theorem 10 (Symmetry of second partial derivatives). Let f : Rn → Rm, a ∈ Rn

and ε > 0. Suppose DiDjf and DjDif exist on Bε(a) and are continuous at a.
Then DiDjf(a) = DjDif(a).

Proof. WLOG m = 1, n = 2, a = (x, y), i = 1, j = 2.
Let

∆h = f(x+ h, y + h)− f(x, y + h)− f(x+ h, y) + f(x, y)

= g(y + h)− g(y)

where g(t) = f(x+ h, t)− f(x, t). Let 0 < |h| <
√
ε. Then

∆h = hg′(y + θhh) (θh ∈ (0, 1))

= h(D2f(x+ h, y + θhh)−D2f(x, y + θhh))

= h2D1D2f(x+ ϕhh, y + θhh) (ϕh ∈ (0, 1))

Similarly, ∆h = h2D2D1f(x+ ζhh, y + ξhh) for some ζh, ξh ∈ (0, 1). Hence

D1D2f(x+ ϕhh, y + θhh) = D2D1f(x+ ζhh, y + ξhh)

So let h→ 0 and use continuity of D1D2f and D2D1f at (x, y)

D1D2f(x, y) = D2D1f(x, y)

What is the second derivative really?
Let f : Rn → Rm be everywhere differentiable. For each x ∈ Rn, Df |x ∈ L(Rn,Rm).
Define F : Rn → L(Rn,Rm) ∼ Rnm by F (x) = Df |x. If F is differentiable at a ∈ Rn then
we say f is twice differentiable at a and the second derivative of f at a is Dkf |a = DF |a.
What is D2f |a?

D2f |a ∈ L(Rn,L(Rn,Rm)) ∼ Bil(Rn × Rn,Rm)

So D2f |a is a bilinear map from Rn ×Rn → Rm. If f twice differentiable at a, this says

Df |a+h = Df |a +D2f |a(h) + o(h)

(Everything in this expression is a linear map), i.e.

Df |a+h(h) = Df |a(k) +D2f |a(h, h)︸ ︷︷ ︸
bilinear in h, k

+ ok(h)︸ ︷︷ ︸
for fixed k, this is o(h)
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Example. f :Mn →Mn, f(A) = A3.

f(A+K) = (A+K)3

= A3︸︷︷︸
f(A)

+A2K +AKA+KA2︸ ︷︷ ︸
linear in K

+terms involving K2︸ ︷︷ ︸
o(K)

So f everywhere differentiable with

Df |A(K) = A2K +AKA+KA2

Now

Df |A+H(K) = (A+H)2K + (A+H)K(A+H) +K(A+H)2

= A2K +AKA+KA2︸ ︷︷ ︸
Df |A(K)

+AHK +HAK +AKH +HKA+KAH +KHA︸ ︷︷ ︸
Bilinear

+H2K +HKH +KH2︸ ︷︷ ︸
ok(h)

So f is twice differentiable at A and

D2f |A(H, k) = AHK +HAK +AKH +HKA+KAH +KHA

Remark. For definition to work, enough to have f differentiable on some neigh-
bourhood of a.

How does D2f |a relate to the DiDjf(a)? Suppose f : Rn → R is twice differentiable at
a ∈ Rn. Then, with e1, . . . , en the standard basis,

Djf(a+ hei)−Djf(a)

h
=

D2f |a(hei, ej) + o(h)

h
= D2f |a(ei, ej) + o(1)

→ D2f |a(ei, ej)

So DiDjf(a) = D2f |a(ei, ej). So if H is the n× n matrix representing the bilinear form
D2f |a, we have

Hij = DiDjf(a)

We call H the Hessian matrix of f . If Rn → Rm, could do this for each fi : Rn → R
(i = 1, . . . ,m), or think about matrices whose entries are elements of Rm.
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Definition. Let f : Rn → Rm and a ∈ Rm. We say f is continuously differentiable
at a if Df |x exists for all x in same ball Bδ(a) (δ > 0) and the function x 7→ Df |x
is continuous at a.

If f is twice differentiable at a then Theorem 10 tells us that H is a symmetric matrix.
Hence under this condition, D2f |a is a symmetric bilinear form.
An application:

Definition. Let f : Rn → R, a ∈ Rn. We say a is a local maximum (respectively
minimum) for f if there is some δ > 0 such that for all x ∈ Bδ(a) we have f(x) ≤
f(a) (respectively f(x) ≥ f(a)).

Proposition 11. Let f : Rn → R and let a be a local maximum / minimum for f .
Suppose f differentiable at a. Then Df |a is the zero map.

Proof. Let u ∈ Rn. For each λ ̸= 0 in R,

f(a+ λu)− f(a)

λ
=

Df |a(λu) + o(λ)

λ
→ Df |a(u)

as λ→ 0. Assume WLOG a is a maximum (otherwise consider −f). Then

f(a+ λu)− f(u)

λ

{
≥ 0 if λ < 0

≤ 0 if λ > 0

Hence Df |a(u) = 0.

Converse of course does not hold: for example f : R→ R, f(x) = x3, a = 0.

Lemma 12 (Second-order Taylor Theorem). Let f : Rn → R be twice differentiable
at a ∈ Rn. Then

f(a+ h) = f(a) +Df |a(h) +
1

2
D2f |a(h, h) + o(∥h∥2)

Proof. Define g : [0, 1]→ R by

g(t) = f(a+ th)− f(a)− tDf |a(h)−
t2

2
D2f |a(h, h)

Clearly g is continuous on [0, 1], g(0) = 0 and g is differentiable on (0, 1) with

g′(t) = Df |a+th(h)−Df |a(h)− tD2f |a(h, h)
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By Mean Value Theorem, ∃t ∈ (0, 1) such that g(1)− g(0) = g′(t). Hence∣∣f(a+ h)− f(a)−Df |a(h)− 1
2D

2f |a(h, h)
∣∣

∥h∥2
=

∣∣Df |a+th(h)−Df |a(h)− tD2f |a(h, h)
∣∣

∥h∥2

=

∣∣D2f |a(th, h) + o(∥h∥2)− tD2f |a(h, h)
∣∣

∥h∥2

=
|o(∥h∥2)|
∥h∥2

→ 0

as h→ 0.

Theorem 13. Let f : Rn → R and a ∈ Rn. Suppose f is twice differentiable at a
(so, in particular, D2f |a is a symmetric bilinear form) and Df |a = 0. Then

D2f |a positive definite =⇒ a local minimum

and
D2f |a negative definite =⇒ a local maximum

Proof. Suppose WLOG D2f |a positive definite (otherwise consider −f). Then with
respect to some orthonormal basis D2f |a has diagonal matrix with strictly positive
elements on the leading diagonal. Have ∀x ∈ Rn, D2f |a(x, x) ≥ µ∥x∥2 where µ > 0 is
the least eigenvalue of D2f |a. By Lemma 12,

f(a+ h)− f(a)

∥h∥2
=

1

2

D2f |a(h, h)
∥h∥2

+ o(1)

≥ 1

2
µ+ o(1)

→ 1

2
µ

as h→ 0. But 1
2µ > 0 so for h sufficiently small,

f(a+ h)− f(a)

∥h∥2
> 0

so f(a+ h)− f(a) > 0 so a is a local minimum for f .
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3. Ordinary Differential Equations

Lemma 14. Let A ⊂ Rn, B ⊂ Rm with A compact and B closed. Let X =
C(A,B) = {f : A→ B | A continuous} with uniform metric

d(f, g) = sup
x⊂A
∥f(x)− g(x)∥

Then X is a complete metric space.

Proof. As A compact, d is well-defined. Let (fn) be a Cauchy sequence inX. Then (fn) is
uniformly Cauchy so uniformly convergent by General Principle of Uniform Convergence
on each coordinate. So fn → f uniformly for some f : A → Rm. Uniform limit of
continuous functions is continuous so f is continuous. And ∀x ∈ A, fn(x)→ f(x) so, as
B closed, f(x) ∈ B. So f ∈ X and d(fn, f)→ 0.

Often we want to solve an ODE but can’t find a closed-form solution.

� Numerical Methods

� Phase plane portraits

But this is silly if the ODE has no solution. So want a general result telling us under
appropriate conditions ODEs have unique solutions. Typical ODE: dy

dx = ϕ(x, y), subject
to y = y0 when x = x0. Useful to think about things Rn → Rn. Want to solve the initial
value problem:

f : R→ Rn

f ′(t) = ϕ(t, f(t))

for all t ∈ · · · , and f(t0) = y0.
Start of
lecture 24 Notation. If a ∈ Rn and δ > 0, the closed ball of radius δ about a is

Bδ(a) = {Rn | ∥x− a∥ ≤ δ}

Theorem 15 (Lindelöf Picard). Let a, b ∈ R (a < b), y0 ∈ Rn, δ > 0 and t0 ∈ (a, b).
Let ϕ : [a, b] × Bδ(y0) → Rn be continuous and suppose there is some K > 0 such
that

∀t ∈ [a, b] ∀y, z ∈ Bδ(y0) ∥ϕ(t, y)− ϕ(t, z)∥ ≤ K∥y − z∥

Then there is some ε > 0 such that [t0 − ε, t0 + ε] ⊂ [a, b] and the initial value
problem

f ′(t) = ϕ(t, f(t)) with f(t0) = y0 (∗)

has a unique solution on [t0 − ε, t0 + ε].
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Proof. As ϕ is a continuous function on a compact set so can find M such that

∀t ∈ [a, b] ∀y ∈ Bδ(y0) ∥ϕ(t, y)∥ ≤M

Take ε > 0 such that [t0 − ε, t0 + ε] ⊂ [a, b]. Let X = C([t0 − ε, t0 + ε], Bδ(y0)). Then by
Lemma 14, X is complete with the uniform metric d. And obviously X ̸= ∅. For g ∈ X,
define Tg : [t0 − ε, t0 + ε]→ Rn by

Tg(t) = y0 +

∫ t

t0

ϕ(x, g(x))dx

Note that by the Fundamental Theorem of Calculus, Tf = f if and only if f is a solution
of (∗).
Now, if g ∈ X and t ∈ [t0 − ε, t0 + ε] then

∥Tg(t)− y0∥ =
∥∥∥∥∫ t

t0

ϕ(x, g(x))dx

∥∥∥∥
≤
∫ t

t0

∥ϕ(x, g(x))∥dx

≤Mε

Also, if g, h ∈ X and t ∈ [t0 − ε, t0 + ε] then

∥Tg(T )− Th(t)∥ =
∥∥∥∥∫ t

t0

(ϕ(x, g(x))− ϕ(x, h(x)))dx

∥∥∥∥
≤
∫ t

t0

∥ϕ(x, g(x))− ϕ(x, h(x))∥dx

≤
∫ t

t0

K∥g(x)− h(x)∥dx

≤ Kεd(g, h)

i.e. d(Tg, Th) ≤ Kεd(g, h). So taking ε = min
{

δ
M , 1

2K

}
we have that T is a contraction

of X and so has a unique fixed point by Contraction Mapping Theorem as desired.

Remark. Not that much use as stated - doesn’t provide a global solution. Might
or might not be one. In practice, given appropriate conditions on ϕ can often ‘patch
together’ local solutions. Beyond scope of this course.
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4. The Inverse Function Theorem

Theorem 16 (The Inverse Function Theorem). Let f : Rn → Rn be continuously
differentiable at a ∈ Rn with α = Df |a being non-singular. Then there exist open
neighbourhoods U of a and V of f(a) such that f |U is a homeomorphism of U onto
V .

Moreover, if g : V → U is the inverse of f |U , then g is differentiable at f(a) with
Dg|f(a) = α−1.

Proof. (We won’t prove the fact about differentiability of the inverse in this course).
Write

f(a+ h) = f(a) + α(h) + ε(h)∥h∥

where ε(h) → 0 as h → 0. Let δ, η > 0 such that f is differentiable on Bδ(a). Let
W = Bδ(a), V = Bη(f(a)). Define ϕ : Rn → Rn by ϕ(x) = f(X) − α(x). Then for
x ∈W , ϕ is differentiable at x with

Dϕ|x = Df |x − α→ 0

as x→ a. Note W is a complete, non-empty metric space.
Fix y ∈ V . Define Ty : W → Rn by Ty(x) = x − α−1(f(x) − y). Note f(x) = y ⇐⇒
Ty(x) = x. Now, given x ∈W ,

∥Tya∥ = ∥α−1(αx− f(x) + y − α(a)∥
= ∥α−1(y − f(x) + α(x− a))∥
= ∥α−1(y − f(a)− ε(x− a)∥x− a∥)∥
≤ ∥α−1∥(∥y − f(a)∥+ ∥ε(x− a)∥∥x− a∥)
≤ ∥α−1∥(η + δ∥ε(x− a)∥)

Also, given w, x ∈W ,

∥Tyx− Tyw∥ = ∥α−1(αx− f(x) + f(w)− α(w))∥
= ∥α−1(ϕ(w)− ϕ(x))∥
≤ ∥α−1∥∥ϕ(w)− ϕ(x)∥
≤ ∥α−1∥∥w − x∥ sup

z∈W
∥Dϕ|z∥

by Mean Value Inequality. Pick δ > 0 sufficiently small such that ∀x ∈ Bδ(a) we have
∥ε(x − a)∥ < 1

2∥α−1∥ and also supz∈W ∥Dϕ|z∥ < 1
α−1 . (Can do this since ε(x − a) → 0

as x → a and Dϕ|x → 0 as x → a.). Take y = δ
2 . Then for each y ∈ V we have

∀x ∈ W∥Tyx − a∥ < δ and ∀x,w ∈ W ∥Tyx − Tyw∥ ≤ K∥w − x∥ where K < 1 is a
constant. So Ty is a contraction of W and thus by Contraction Mapping Theorem has
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a unique fixed point, xy ∈ Ty(W ) ⊂ Bδ(a). That is, for each y ∈ V , there is a unique
x ∈W with f(x) = y, and in fact x ∈ Bδ(a).
Let U be the set of all such x. Let h = f |Bδ(a). Then U = h−1(V ) so U is open in Bδ(a).
But Bδ(a) is open in Rn so U is open in Rn.
So now have open neighbourhoods U of a and V of f(a) such that f maps U bijectively
onto V .
Remains to show inverse function is continuous. Let X = C(V,W ). As W is bounded,
similarly to Lemma 14 we have X is a complete, non-empty metric space with the
uniform metric. Define S : X → X by

(Sg)(y) = g(y)− α−1(f(g(y))− y)

= Ty(g(y))

Given g, h ∈ X and y ∈ V ,

∥(Sg)(y)− (Sh)(y)∥ = ∥Ty(g(y))− Ty(h(y))∥
≤ K∥g(y)− h(y)∥
≤ Kd(g, h)

So d(Sg, Sh) ≤ Kd(g, h). Now S is a contraction of X so by Contraction Mapping
Theorem has a unique fixed point g. And by definition of S, for each y ∈ V , we have
g(y) is the unique x ∈ W with f(x) = y. Hence g = (f |U )−1. But g ∈ X so (f |U )−1 is
continuous and thus f |U is a homeomorphism from U onto V .
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