% vim: tw=50 % 18/02/2023 09AM \subsubsection*{Generalised Likelihood Ratio Tests} $X \sim f_X(\bullet \mid \theta)$, $H_0$: $\theta \in \Theta_0$, $H_1$: $\theta \in \Theta_1$. The generalised likelihood ratio statistic: \begin{flashcard}[generalised-likelihood-ratio-statistic] \prompt{Generalised likelihood ratio statistic? \\} \cloze{ \[ \Lambda_x (H_0; H_1) = \frac{\sup_{\theta \in \Theta_1} f_X(x \mid \theta)}{\sup_{\theta \in \Theta_0} f_X(x \mid \theta)} \]} \end{flashcard} Large values of $\Lambda_x$ indicate larger departure from $H_0$. \begin{example*} $X_1, \ldots, X_n \iidsim \normaldist(\mu, \sigma_0^2)$, $\sigma_0$ is known. Wish to test $H_0$: $\mu = \mu_0$, $H_1$: $\mu \neq \mu_0$ for fixed $\mu_0$. Here $\Theta_0 = \{\mu_0\}$, $\Theta_1 = \RR \setminus \{\mu_0\}$. The GLR is \[ \Lambda_x (H_0; H_1) = \frac{(2\pi \sigma_0^2)^{-\pi/2} \exp \left( -\frac{1}{2\sigma_0^2} \sum_i (x_i - \ol{x})^2 \right)} {(2\pi \sigma_0^2)^{\pi/2} \exp \left( -\frac{1}{2\sigma_0^2} \sum_i (x_i - \mu_0)^2 \right)} \] Taking $2 \cdot \log$ of $\Lambda_x$ (monotone increasing transformation) \[ 2\log \Lambda x = \frac{n}{\sigma_0^2} (\ol{x} - \mu_0)^2 \] The GLR test rejects $H_0$ when $\Lambda_x$ is large (or when $2\log \Lambda_x$ is large), i.e. when \[ \left| \sqrt{n} \frac{(\ol{x} - \mu_0}{\sigma_0} \right| \] is large. (Under $H_0$, the expression in the modulus has a $\normaldist(0, 1)$ distribution). For a test of size $\alpha$, reject when \[ \left| \sqrt{n} \frac{(\ol{x} - \mu_0)}{\sigma_0} \right| > z_{\alpha/2} = \Phi^{-1} \left( 1 - \frac{\alpha}{2} \right) \] \begin{center} \includegraphics[width=0.3\linewidth] {images/5eca3248af6d11ed.png} \end{center} This is called a 2-sided test. \end{example*} \begin{note*} $2\log \Lambda_x = n\frac{(\ol{x} - \mu_0)}{\sigma_0^2} \sim \chi_1^2$ under $H_0$. \end{note*} \noindent We can also define the critical region of the GLR test as \[ \left\{ x : n \frac{(\ol{x} - \mu_0)}{\sigma_0^2} > \chi_1^2(\alpha) \right\} \] In general, we can approximate the distribution of $2\log \Lambda_x$ with a $\chi_1^2$ distribution when $n$ is large(!) \subsubsection*{Wilks' Theorem} Suppose $\theta$ is $k$-dimensional $\theta = (\theta_1, \ldots, \theta_k)$. The dimension of a hypothesis $H_0$: $\theta \in \Theta_0$ is the number of ``free parameters'' in $\Theta_0$. \begin{enumerate}[(1)] \item $\Theta_0 = \{\theta \in \RR^k : \theta_1 = \theta_2 = \cdots = \theta_p = 0\}$ for some $p < k$. Here $\dim(\theta_0) = k - p$. \item Let $A \in \RR^{p \times k}$, $b \in \RR^p$, $p < k$> \[ \Theta_0 = \{\theta \in \RR^k : A\theta = b\} \] $\dim(\Theta_0) = k - p$ if rows of $A$ are linearly independent ($\Theta_0$ is a hyperplane). \item $\Theta_0 = \{\theta \in \RR^k : \theta_0 = f_i(\phi), \phi \in \RR^p\}$, $p < l$. Here $\phi$ are the free parameters; $f_i$ need not be linear. Under regularity conditions $\dim(\theta_0) = p$. \end{enumerate} \begin{flashcard}[wilks-theorem] \begin{theorem*}[Wilk's Theorem] \cloze{ Suppose $\Theta_0 \subset \Theta_1$ (``nested hypotheses'') \[ \dim(\Theta_1) - \dim(\Theta_0) = p \] If $X_1, \ldots, X_n$ are iid from $f_X(\bullet \mid \theta0$, then as $n \to \infty$, the limiting distribution of $2\log\Lambda_x$ under $H_0$ is $\chi_p^2$. That is, for any $\theta \in \Theta_0$, any $l > 0$, \[ \PP_\theta(z \log \Lambda_x \le l) \stackrel{n \to \infty}{\longrightarrow} \PP(Z \le l) \] where $Z \sim \chi_p^2$. } \end{theorem*} \end{flashcard} \noindent How to use this? If we reject $H_0$ when $2\log\Lambda_x \ge \chi_p^2(\alpha)$ then when $n$ is large, the size of the test is $\approx \alpha$. (!!!) \begin{example*} In the two-sided normal mean test \[ \Theta_0 = \{\mu_0\}, \qquad \Theta_1 = \RR \setminus \{\mu_0\} \] we found $2\log \Lambda_x \sim \chi_1^2$. If we take $\Theta_1 = \RR$, the GLR statistic doesn't change, so $2\log\Lambda_x \sim \chi_1^2$. \[ \dim(\theta_1) - \dim(\Theta_0) = 1 - 0 = 1 \] The prediction of Wilk's theorem is exact. \end{example*} \begin{proof} Wait for Part II Principles of Statistics :( \end{proof} \subsubsection*{Tests of goodness of fit} $X_1, \ldots, X_n$ are iid samples from a distribution on $\{1, 2, \ldots, k\}$. Let $p_i = \PP(X_1 = i)$, let $N_i$ be the number of observations equal to $i$. So, \[ \sum_{i = 1}^k p_i = 1, \qquad \sum_{i = 1}^k N_i = n \] Goodness of fit test: $H_0$: $p = \tilde{p}$ for some fixed distribution $\tilde{p}$ on $\{1, \ldots, k\}$. $H_1$: $p$ is \emph{any} distribution with $\sum_{i = 1}^k p_i = 1$, $p_i \ge 0$. \begin{example*} Mendel crossed $n = 556$ smooth yellow peas with wrinkled green peas. Each member of the progeny can have any combination of the 2 features: $SY$, $SG$, $WY$, $WG$. Let $(p_1, p_2, p_3, p_4)$ be the probabilities of each type, and $(N_1, \ldots, N_4)$ are the number of progeny of each type, $\sum N_i = n = 556$. \myskip Mendel's hypothesis: \[ H_0 : p = \left( \frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16} \right) \defeq \tilde{p} \] Is there any evidence in $N_1, \ldots, N_4$ to reject $H_0$? The model can be written $(N_1, \ldots, N_k) \sim \operatorname{Multinomial}(n; p_1, \ldots, p_k)$. Likelihood: $L(p) \propto p_1^{N_1} \cdots p_k^{N_k}$ \[ \implies l(p) = \text{const} + \sum_i N_i \log p_i \] We can test $H_0$ against $H_1$ using a GLR test: \[ 2\log\Lambda_x = 2 \left(\sup_{p \in \Theta_1} l(p) - \sup_{p \in \Theta_0} l(p)\right) \] Since $\Theta_0 = \{\tilde{p}\}$, $\sup_{p \in \Theta_0} l(p) = l(\tilde{p})$. In the alternative $p$ must satisfy $\sum p_i = 1$. \[ \sup_{p \in \Theta_1} l(p) = \sup_{p : \sum p_i = 1} \sum_i N_i \log p_i \] Use Lagrangian $\mathcal{L}(p, \lambda) = \sum_i N_i \log p_i - \lambda \left( \sum_i p_i - 1 \right)$. We find that $\hat{p}_i = \frac{N_i}{n}$ (the observed propoertion of samples of type $i$). \begin{align*} 2\log\Lambda &= 2(l(\hat{p}) - l(\tilde{p})) \\ &= 2 \sum_i N_i \log \left( \frac{N_i}{n \cdot \tilde{p}_i} \right) \end{align*} Wilk's theorem tells us that $2\log\Lambda_x$ is approximately $\chi_p^2$ with \[ p = \dim(\Theta_1) - \dim(\Theta_0) = (k - 1) - 0 = k - 1 \] So we can reject the $H_0$ with size $\approx \alpha$ when \[ 2\log\Lambda_x > \chi_{k - 1}^2 (\alpha) \] \end{example*}