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0 Introduction

Statistics: The science of making informed decisions. Can include:
e Design of experiments
e Graphical exploration of data
e Formal statistical inference € Decision theory
e Communication of results.

Let X, Xo,..., X, be independent observations from some distribution fx(e | €), with
parameter §. We wish to infer the value of § from Xy,..., X,,.

e Estimating 0
e Quantifying uncertainty in estimator

e Testing a hypothesis about 6.

0.1 Probability Review

Let € be the sample space of outcomes in an experiment. A “nice” or measurable subset
of Q is called an event, we denote the set of events F. A function P : F — [0, 1] is called
a probability measure if:

. F(é) =0
e P(Q)=1
o P(U2, Ai) => 2 P(4) if (A;) are disjoint.

A random wvariable is a (measurable) function X : R — R. For example: tossing a coin
twice Q = {HH,HT,TH,TT}. X: number of heads.

X(HH) =2 X(TH)=X(HT) =1 X(TT)=0
The distribution function of X is
Fx(x) =P(X < x)

A discrete random variable takes values in a countable X' € R, its probability mass
function or pmf is px(xz) = P(X = z). We say X has continuous distribution if it has a
probability density function or pdf satisfying

P(X €A = /Af)((I)dl‘
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for any “nice” set A.
The expectation of X is

EX — erx xpx(z) if X is discrete
B fﬂffx(x)dx if X is continuous

If g: R — R,
Eg(x) = / o) fx (2)da

The variance of X is
Var(X) = E((X — EX)?)

We say that X1, Xo,..., X, are independent if for all z1,...,z,
P(Xl <z9...,X, < xn) = lP)()(1 < $1) : P(Xn < $n)
If the variables have pdf’s, then

fx(@) =[] fx ()
i=1
(= (21, 2n), X = (X1,...,Xpn)).

Linear transformations

Ifa,...,a, €R
E(am X1+ +apXyp) = a1EX; + - + a,EX,
Var(a1 X1+ -+ + ap Xyp) = Zaiaj Cov (X3, Xj)

i
(Cov(X;, X;) =E((X; —EX;)(X; —EX;))). f X = (Xy,...,X,)"
EX = (EXy,...,EX,)"
E(a'X)=a'EX
Var(a'X) =a' Var(X) a
——
(Var(X))ij=Cov(Xi,X;)
Moment generating functions
Mx(t) = E(e™)
This may only exist for ¢ in some neighbourhood of 0.
o E(X") = §mMx(0)
o Mx =My — Fx=Fy

e Makes it easy to find the distribution function of sums of IID variables.



Example. Let X,..., X, be IID Poisson(u)

]\4')(1 (t) = Eetxl

_ tx e_u:u
N ‘ x!
=
oo
e (E)”
— M
¢ ;} x!
— e Hektexpt
e—m(1—e")
Sn=X14+ 4+ Xn.
Mg, (t) = Ee!X1+-Xn)
n
= H FetXi (independent)
=1

(1 —et
—e n(l—et)n

Observe this is Poisson(un) mgf. So S,, ~ Poisson(un).

Limit Theorems

Weak law of large numbers (WLLN). X1, ..., X,, are IID with EX; = p.

_ 1<
X, = nle
1=

is the “sample mean”. For all € > 0,
P( | X —p|l > ) —0 as n — 0o
—_—
event that depends only on X1,..., X,

Strong law of large numbers (SLLN)

P(X, =% p) =1
(This event depends on whole sequence X1, Xa,.... X, — u <= Ve > 03INVn >
N|X,—pul<e.

Central Limit Theorem
Zy = @ where 0 = Var(X;). Then Z, is approximately N(0,1) as n — co.
P(Z, < z) — ®(z) as n — 0o VzeR

where ® is the distribution function of a N(0, 1) variable.



Conditioning

Let X and Y be discrete random variables. Their joint pmf is
pxy(z,y) =P(X =2,Y =y)

The marginal pmf

px(z) =P(X =2) =) pxy(z,y)
yey

Conditional pmf of X given Y =y is

pxyy(@|y) =P(X =z|Y =y)
P(X =2,Y =vy)
P(Y =y)
_ PX,Y(%?J)
Py (y)

(defined = 0 if py (y) = 0). If X,Y are continuous, the joint pdf fx , has

1./ y/
P(X <a'Y <y') = / / fxy(z,y)dydz

The marginal pdf of Y is
fr(y) = / fxy(z,y)dz
The conditional pdf of X given Y is

_ fxy(@y)

Conditional expectation:

_ )2z mpxpy (x| y)
EX1Y) {ff; ofxpy (@ | y)da

(this is treated as a random variable, which is a function of Y').
Tourer property:
E[EX |Y)) =EX
Conditional variance formula:
Var(X) = E(X?) — (EX)?
=E(E(X?|Y)) - (E(EX | Y))*
=E(E(X?|Y) - [E(X | Y)*) + E[E(X | Y)*] - E[(X | V)]
=EVar(X | Y)+ Var(E(X | Y))

Start of
lecture 2
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Change of Variables (in 2D)
Let (x,y) — (u,v) is a differentiable bijection. Then
fov(u,v) = fxy(@(u,v),y(u,v)) - | det J|
A,y ]

) Oz
y
a(uv U) ou
X ~ Negbin(k, p): In successive IID Ber(p) trials X is the time at which k-th success
occurs.

S

Important Distributions

X ~ Poisson(A) is the limit of a Bin(n, A\/n) as n — oo.
If X; ~T(ay, A) fori=1,...,n with Xy,...,X, independent. What is the distribution
of S, =X1+ -+ X7
n )\ a1+ Fan
Mg (t) = Mx.(t) = ——
0= 1[0 = (175

This is the MGF of a I'(} a;, A). Hence S, ~ T'(D° a4, A). Also, if X ~ I'(a, A), then for
any b € (¢,00), bX ~T'(a, \/b).

Special cases

I'(1,\) = Exp(\), T'(k/2,1/2) = x3 “Chi-squared with k degrees of freedom.” Sum of k
independent squared N(0, 1) random variables.

0.2 Estimation

Suppose we observe data X1, Xo, ..., X, which are IID from some PDF (pmf) fx(z | 6),
with 6 unknown.

Definition (Estimator). An estimator is a statistic or a function of the data T'(X) =
0, which we use to approximate the true parameter §. The distribution of T'(X) is
called the sampling distrbution.

Example. X4,...,X, =l N(p,1).

The sampling distribution of & is N (,u, %)



Definition. The bias of § = T(X) is

~

bias(f) = Eg(0) — 0

P
Note. In general, the bias is a function of 6, even if notation bias(d) does not make

it explicit.
L

Definition. We say that 0 is unbiased if bias(d) = 0 for all § € ©.

Example (Continuing from previous). ji = % >, X; is unbiased because E,,(f1) =
w for all € R.

Definition. The mean squared error (mse) of 6 is

mse(0) = Eqg((0 — 0)?)

r

Note. Like the bias, mse(f) is a function of 6!
L

Bias-variance decomposition

mse(d) = Eg[( — 0)?]
= Eg[(é — Egé + Eeé - 9)2]
— Varg(f) + bias?(8) + [Ea(b—=T50)| (Eof — 0)

The two terms on the RHS are > 0.

There is a trade off between bias and variance.






Example. X ~ Bin(n,0). Suppose n known, we wish to estimate #. Standard
estimator T}, = %, then EqT,, = % = 6 (holds for all #). Hence T, is unbiased.

mse(7T,) = Varg(Ty,)
Varg X
nf(1 —0)
h2
6(1—0)
h

Consider a second estimator

X+1 X 1
pr— pr— —_— 1_ -
n+2 wn+( w)2

T

withw =25 If X =8,n=10 (8 successes in 10 trials), then T}, = 0.8, Tp = % =
0.75.

biaS(TB) = EQTB —0

:E<X+1>—9
n—+ 2
n 1

= 9 J—
n+ 2 + n+2
This is # 0 for all but one value of . Hence T}, is biased.

9

B 1 _ w?0(1-10)
Varg(Tg) = mn@(l —0) = —
mse(T) = Vary(Ts) + bias?(Tg)

= 20020 Ly <1—9>2

n
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Message: Our prior judgements about € affect our choice of estimator (for example in
this previous example, if we knew the X, represent coin flips, then we expect 6 to be
near 3, so we should use mse(7g)).

Unbiasedness is not necessarily desirable. Consider this pathological example:

Example. Suppose X ~ Poisson(\). We wish to estimate §# = P(X = 0)2 = e~ 2},
For an estimator 7'(X) to be unbiased we must have for all A

N N o
EAf] = > T(X) ==
=0 ’

00 \E - 0o x}\z
= ZT(:C)E = )‘:Z(—l) o
=0 =0

for this to hold YA > 0, we need

This estimator makes no sense!

0.3 Sufficiency

X1,...,X, are IID random variables from a distribution with pdf (or pmf) fx(e | ).
Let X = (X1,...,X,).

Question: Is there a statistic 7'(X) which contains all information in X needed to esti-
mate 07

Definition (Sufficiency). A statistic 7" is sufficient for 6 if the conditional distri-
bution of X given T'(X) does not depend on 6.

- 2
Remark. 6 and T'(X) could be vector-valued.

- J

11


https://notes.ggim.me/Stats#lecturelink.3

Example. X1,...,X, '~ Ber(0) for 0 € [0,1].

.|9 Heu _ liti

— 92%( — G

[ Note. This only depends on X through 7'(X) =" | X;.

1=

For x with Y z; =1t,

fX|T:t(l‘ | T(z) =t) =

(M)6°(1 — )

()

As this doesn’t depend on 0, T'(X) is sufficient for 6.

Theorem (Factorisation criterion). 7' is sufficient for 6 if and only if

fx(@|8) =g(T(x),0) - h(z)

for suitable functions g, h.

Proof. (Discrete case)
Suppose fx(z | 6) =g(T(X),0)h(X). If T(z) =t, then
)= OPy(X =2, T(X)=1
- OR(T(X) =
_ gT(x),0
Z;B’ T(z')= (
gt b
GEOT D 0 p(ary= M)

As this doesn’t depend on 6, T'(X) is sufficient.

Ixir=t(z | T =t

12



Conversely, suppose T'(X) is sufficient, then
Po(X =7)=Pp(X =2,T(X) =1)
=Pp(T(X)=1) - Py(X =2 | T(X) =1)

9(£.) h(z)

Then by sufficiency of T', h(x) doesn’t depend on 6 (so it is a function of z). Thus the
pmf of X, fx(e | 0) factorises as in the statement of the theorem. O

IID

Example. Xi,...,X,, ~ Ber(0).

fx(z]0) =62i(1— g2

Take g(t,0) = 0'(1 — 0)"~%, h(x) = 1. This immediately implies T'(X) = > z; is
sufficient.

Example. Xi,..., X n Unif([0,6]), & > 0. Then

n

a;]@ Hé x;€[0,6]

1
- an]l{maxi x;<0} l{mini 2;>0}
_’—/

T(z),0) o)

T(z) = max; x;. Then by factorisation lemma, T'(z) = max; x; is sufficient for 6.

Minimal Sufficiency

Sufficient stats are not unique. Indeed any 1-to-1 function of a sufficient statistic is also
sufficient. Also T'(X) = X is always sufficient by not very useful.

<
Definition. A sufficient statistic T' is minimal sufficient if it is a function of any

other sufficient statistic. That is, if 7" is also sufficient, then

T'(z) =T'(y) = T(z) =T(y)

for all z,y € X™.

13



e N
Remark. Any two minimal sufficient statistics, 7,7" are “in bijection with each
other”:

T(z) =T(y) <= T'(z) =T'(y)

Useful condition to check minimal sufficiency.
L J

Theorem (Minimal Sufficiency Theorem). Suppose that 7'(X) is a statistic such
that fx(z | 0)/fx(y | ) is constant as a function of # if and only if T'(x) = T'(y).
Then T is minimal sufficient.

Let  ~ y if Ix(@9) ig constant in 6. Tt's easy to check that A is an equivalence relation.
Ix (ylo)

Similarly, for a given statistic T, = 2 y if T(x) = T(y) defines another equivalence

relation. The condition of theorem says A and 2 are the same.

Note. We can always construct a statistic 7" which is constant on the equivalence
classes of flv, which by the theorem is minimal sufficient.

Proof. For any value t of T, let z; be a representative from the equivalence class

{z[T(x) =t}
Then
fx(x]0)

2 10) = fx(zp | 6) 222170
fX( | ) fX( T(x) | )fX(ZT(a:) |9)
9(T'(),0) T

Where h(x) does not depend on 6 by the hypothesis, as z N 27(2)- By factorisation
criterion, T is sufficient.

To prove that T' is minimal, take any other sufficient statistic S. Want to prove that
if S(z) = S(y) then T'(x) = T'(y). By factorisation criterion, there are functions gg, hs
such that

fx(z]0) = gs(S(x),0)hs(z)
Suppose S(x) = S(y). Then

fx(@16) _ gs(StryBhs(a)
Ix(y10)  gs(Styrdhs(y)

which doesn’t depend on . Hence x N y. By hypothesis, x 2, hence T'(x) =T(y). O

14



s N
Remark. Sometimes the range of X depends on # (for example Xy,..., X, =
Unif([0, 0]). In this case we can interpret

«“ fX(x|9

W0 is constant in 6”

to mean that fx(x | 0) = c¢(z,y) fx(y | 0) for some function ¢ which does not depend
on 0.

Start of

lecture 4 Example. Suppose that X1,..., X, (=l N(p, o), with parameters (u, 02) unknown.

fx(@]0)  (2mo?) ™2 exp {—gky Yp (zi — )2}

FxW10) ~ (2702)~/Zexp {—5kr >0 (i — )2}

1 n n n n
—on{ ok (3o 30t) 43 Yo
= 1 i=1 i=1

1=

If S0 a2 = Y0 92 and Y0 2 = Yoy, this ratio does not depend on
(u,02). The converse is also true: if the ratio does not depend on (u,c?) then
we must have Yr 22 = >0 y? and Y0 x; = Y. y. By the theorem,
T(X)= (X", X2,5°" , X;) is minimal sufficient.

Recall that bijections of T are also minimal sufficient. A more common way of expressing
a minimal sufficient statistic in this model is

S(X) = (X, Sxx)

dXi SxX =) (X -X)?

7 7

X =

S

In this example, (i,02) and T(X) are both 2-dimensional. In general, the parameter
and sufficient statistic can have different dimensions.

Example. Xy,..., X, = N(p, 1#2), > 0. Here, the minimal sufficient statistic is
5109) = (0% S

Rao-Blackwell Theorem

Note. So far we’ve written Ey, Py to denote expectations and probabilities in the

model where X1,..., X, o fx (o] 80). From now on, I'll drop the subscript 6.

15
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Theorem (Rao-Blackwell). Let T be a sufficient statistic for 6. Let 6 be some
estimator for §, with E(6?) < oo, for all §. Define a new estimator 6 = E¢(f | T(X)).
Then, for all 6,

E[(4 — 6)*] <E[(§ —6)’]

(mse(f) < mse(6)). The inequality is strict unless 0 is a function of T'(X).

( )
Remark. 0 is a valid estimator, i.e. it does not depend on 6, only depends on X,
because T is sufficient.

o) = [ j(x) fxir@ | T) da
estimator, so does not depend on 6 does not depend on 6, because T is sufficient
N\ J
( N

Moral. We can improve the mse of any estimator 6 by taking a conditional expec-
tation given T'(X).
L J

Proof. By the tower property:

Ef = E[E[f | T] = Ef
So bias(f) = bias(f) for all §. By the conditional variance formula,

Var(f) = E(Var(6 | T)) + Var(E(f | T))
= E[Var(d | T')] + Var(0)
N————
>0 with P=1

= Var(#) > Var(0)
for all . Therefore mse(f) > mse(6).

Note: Var(f | T) > 0 with some positive probability unless 0 is a function of T(X). So

mse(#) > mse(#) unless # is a function of T'(X). O

16



Example. Say Xi,..., X, =l Poisson(\). We wish to estimate § = P(X; = 0) =

e_)‘.
e~ AN T
fx(@| M)+ TLad
6" (—log §)2= @
G 1

Letting h(z) = ﬁ, g(T(X),0) = 6™(—1og §)TX) | then by factorisation criterion,
T(X) = 3 X; is a sufficient statistic. Let § = I¢x,—0} (unbiased: only uses one
observation X7).

AP
_P(X1 = 0)P (X0, Xi =)
P(S7, Xi= 1)

So é = (1 — %)sz is an estimator which by the Rao-Blackwell theorem has
mse(d) < mse(6)

Sanity check: What happens as n — 0o0?

R 1\ %2 _
0= (1 — ) 2% T
n

and by the Strong Law of Large Numbers, X — EX; = Aso 0" ~ e * =0 as h
grows large.

17



Example. Let Xq,...,X, IP?~Unif([0,l9]), 6 unknown. 6 > 0. Recall T(X) =

max; X; is sufficient for 6. Let 6§ = 2X7, which is unbiased. Then

O=FE[0|T =1

2E[X1 ’ maxXi = t]

2E[X; | max X; = t,max X; = X;|P[max X; = X; | max X; = t|
7 (2 (2

+ E[X; | max X; = t,max X; # X;|P[max X; # Xj max X; = ]
7 7 7

2t 2(n-—1
:7+ME[X1 | X7 <t, max X; =]
n n 1<i<n

2t 2(n—1)t
+ - @@z _
n n 2
So 6 = "TH max; X; is a valid estimator with

mse(f) < mse()

Start of
lecture 5 0.4 Maximum likelihood Estimation

Let X = (X,...,X,) have f=joint pdf (or pmf) fx(z | 0).

Definition (Likelihood function). The likelihood function is
L:0— fx(X]0)

The maximum likelihood estimator (mle) is any value of # maximising L(#).

If X1,...,X, are IID each with pdf (or pmf) fx(e | §), then

n

£0) = [ x| 0)

=1

We’ll denote the logarithm

1(0) =log L(6) = ) _log fx(x; | 0)
i=1

18
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Example. X1,..., X, (= Ber(0).

1(6) = (Z Xi> log § + (n - ZX,) log(1 — 6)

ol _ZX,L_TL—ZXz

o0 0 1-6

This is equal to 0 if and only if 8 = % " X; = X. Hence X is the mle for §. This is
unbiased as EX = 0.

Example. X1,...,X, (=l N(p, 0?)

n

n n 1
Z(M?JQ) = _5 10g(27r) - 5108;0’2 — ﬁ Z(x@ - ,U)Q
=il

.. .. ol _ ol _
This is maximised when = 90T = 0

ol 1 ¢
F-=""3 Z(Xi — W)
o 7=

equal to 0 when = X (Vo?)

ol n 1 —
S - Xz _ 2
Oc? 202 + 204 ;( 2

This is equal to 0 when o = L3 (X; — X)? = 1Sxx. Hence (,62) =
(X, SxX/n) are the mle in this model.

Note that i = X is unbiased. Is 6% biased? We could compute E6? directly. Later
in the course, we’ll show that

0_2 0_2 n—1
E2 ol 2 )02 n—1 27& 2
g = —_— = g g
Xn—1 n n

So #2 is biased, but asymptotically unbiased:

bias(62) =30 Vo?

19



Example. X1,...,X, ~ Unif|0, 0]

(W' V\XX‘,Y‘

We an see from the plot that 0 = max; X; is the mle for 6. Last time we started
from unbiased estimator # = 2X; and using the R-B theorem we found an estimator

n—+1
n

0 =

max X;
3
This is also unbiased. So in this model the mle is biased as

= 0
n—+1

. 1.
B, . = E [”+ 9] n
n

but it is asymptotically unbiased.

Properties of the mle

(1) If T is a sufficient statistic then the mle is a function of T'(X). By the factorisation
criterion:

L(0) = g(T(x), 0)h(x)

If T(x) = T'(y) the likelihood function with data z or y is the same up to a multi-
plicative constant. Hence, the mle in each case is the same.

(2) If ¢ = h(0) where h is a bijection, then the mle of ¢ is ¢ = h(f) where  is the mle
of 6.

(3) Asymptotic normality: /n(f — 6) is approximately normal with mean 0 when n is
large. Under some regularity conditions, for a “nice set” A,

P(vn(d —0) € A) = P(z € A)

where z ~ N(0,X). This holds for all “regular” values of 6.

20



Here ¥ is some function of [, and there is a theorem (Cramer-Rao) which says this
is the smallest variable attainable.

(4) Sometimes if the mle is not available analytically, we can find it numerically.

Confidence Intervals

Example. Vaccine has 76% efficacy in a 3-month period, with a 95% confidence
interval (59%, 86%)

Definition (Confidence Interval). A (100 - v)%-confidence interval for a parameter
0 is a random interval (A(X), B(X)) such that

P(A(X) <6 < B(X)) =7

for all values of 6. (A and B are random, and € is fixed).

Correct or frequentist interpretation:

There exists some fixed true parameter §. We repeat the experiment many times. On
average, 100 - 7% of the time the interval (A(X), B(X)) contains 6.

Misleading interpretation:
“Having observed X = z, there is a probability v that 6 is in (A(z), B(z)).”

21



Example. X;,..., X, =l N(6,1). Find a 95% confidence interval for . We know

that
— 1 1
X == X;~N{(0,—-
> x~n(6,7)
= 2:=yn(X —0) ~N(0,1)
z has this distribution for all .

Let z1, 22 be any two numbers such that ®(z3) — ®(z1) = 0.95.

D s
Z, o
4 C

Then

P(z1 < vn(X —0) < z2) =0.95
Rearrange:

— z9 — 21
PX—-—<0<X—)=0.95

(X-Zr=os¥%)

Then (Y — %,Y + %) is a 95% confidence interval. How to choose z1, 297 Usu-

ally we minimise the width of interval. In this case this is achieved by

21 = ®71(0.025), 2 =®71(0.975)

Start of
lecture 6 Recipe for Confidence Interval

(1) Find some quantity R(X, 6) such that the Py-distribution of R(X,#) does not depend
on #. This is called a pivot. For example

s = VA(X - ) ~N(0,1)  Vp
(2) Write down a probability statement about the pivot of the form
P(Cl S R(X, 9) S 02) =7

by using the quantities c1, ¢z of the distribution of R(X, ) [typically a N(0,1) or x3
distribution).

22
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(3) Rearrange the inequalities to leave € in the middle.

Proposition. If 7' is a monotone increasing function 7' : R — R, and (A(x), B(X))
is a 1007% confidence interval for 6, then (T'(A(X)),T(B(X))) is a confidence in-
terval for T'(9).

P
Remark. When 6 is a vector, we talk about confidence sets.

&

Example. Xq,...,X, = N(0,0?). Find a 95% confidence interval for 2.

(1) Note that % ~ N(0,1)

w 2
— 2 "
=1

2

Hence R(X,02%) =3, % is a pivot.

)

(2) Let C1 = F,'(0.025), ¢ = F,'(0.975). Then

1
P <c1 < EZX,? < 02> =0.95
3

(3) Rearranging:
X2 X2
]P><Z:ZSU2SZ:Z> =0.95

C2 C1

2 2
Hence [Zc—fl, Zc—fl} is a 95% confidence interval for o2.

2 2
Hence, using the proposition above, [\/ Zcfi A/ );’} is a 95% confidence interval

for o.

23



Example. Xi,..., X, =l Ber(p), n is large. Find an approximate 95% confidence
interval for p.

(1) The mle for pis p = % >, Xi. By the Central limit theorem when n is large, p
is approximately N (p, p(1— )> Therefore f \/7 is approximately N(0, 1).

(2) z = d-1(0.975)

P(—zg\/ﬁ(ﬁ_p)gz> ~ 0.95
p(1—p)

(3) Rearranging this is tricky. Argue that as n — oo, p(1 — p) — p(1 —p). So
replace denominator:

]P’(—z<\/ﬁ(ﬁ_p)§z>%0.95

~ V(1 -p)
Now it’s easier to rearrange:

P(ﬁ \/17_3 <p \/7>z0.95

So [p + 2 p\(} pj} is an approximate 95% confidence interval for p.

Note. e 2~1.95
o /P(1—p) <3 forallpe (0,1)

So a “conservative” confidence interval is []3 4+ 1.96 - % . ﬁ}

0.5 Interpreting Confidence intervals

Suppose X1, Xo 2 Unif [9 — %, 0+ %] What is a sensible 50% confidence interval for
0?7 Consider

P(0 is between X7, X2) = P(min(X1, X2) < 6 < max(X;, X2))
=P(X; <0< X9)+P(Xe <0< Xy)
1

— 7X7
* 2

—_
—_

l\')\}—‘[\’)\r—t
[\]
[\V]
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Immediately conclude that (min(X7, X2), max(Xy, X5)) is a 50% confidence interval for
0.

But we observe X1 = x1, Xo = xo with |21 — 29| > % In this case we can be sure that
0 is in (min(x1, x2), max(x1, x2).

Frequentist interpretation of confidence interval is entirely correct! If we repeat the
experiment many times 6 € (min(X1, X2), max(X1, X2)) ezactly 50% of the time. How-
ever, we cannot say that given a specific observation (x1,x2) we are “50% certain that
0 c Cl.

Bayesian Inference

So far, we have assume that there is some true parameter . That data X has pdf (or

pmf) fx(e|0).

Bayesian analysis is a different framework, where we treat 6 as a random variable taking
values in ©.

We being by assigning to 6 a prior distribution w(6), which represents the investigator’s
opinions or information about 6 before seeing any data. Conditional on 6, the data X
has pdf (or pmf) fx(x | §). Havign observed a specific value of X = z, this information
is combined with the prior to form the posterior distribution. m(6 | x) which is the
conditional distribution of 8 given X = x.

By Bayes rule:

m(0) - fx(x]0)
fx(x)

where fx(z) is the marginal probability of X and:

fx(x) = {fe fx (@ | 0)m(0)do %f 0 ?s constant
Y oco [x(x | 0)m(0) if 0 is discrete

(0] x) =

Bayesian Analysis

Idea: treat 6 as a random variable.
Prior distribution: 7(6) (Info about 6 before seeing data)
Joint distribution of X, 6:

fx(x ] 0)-7(0)

Posterior distribution:

012y = L6 [0))
[ fx(x | 0)m(0)do
x fx(z | 0)m(0)

(likelihood times prior).
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Example (Prior choice clear). Patient gets a COVID test:

0 0 patient does not have COVID
)1 patient does have COVID

Data:
0 negative test
X = g- .
1 positive test

We know: Sensitivity of test:
fx(X=1]6=1)

Specificity of test:
fx(X=0]6=0)

What prior? Suppose we don’t know anything about patient but we know that a
proportion p of people in the UK are infected today. Natural choice:

Chance of infection given true test?

7@=1)fx(X=1]|0=1)
TO0=0)/x(X=1]0=0+r0=1)fx(X=1]|0=1)

T=1]X=1)=

If 7(# = 0) > (0 = 1), this posterior can be small.
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Example. 6 € [0, 1] mortality rate for new surgery at addenbrookes. In the first 10
operations, there were no deaths. Model: X; ~ Ber(6), X; = 1 if i-th operation is
death, 0 otherwise.

fx(a]0) =62=%i(1 - g)l0-2 X

Prior: We're told that the surgery is performed in other hospitals with a mortality
rate ranging from 3% to 20%, with an average of 10%. We’ll say that 7(6) is
Beta(a,b). We choose a = 3, b = 27, so that the mean of 7(#) is 0.1 and

7(0.03 <6 <0.2) =0.9

Posterior:

(0| z) o< 7(6) X fx(z | )
x Hafl(l _ e)bflgle(l . 0)1072@
— GinJrafl(l _ 9)b+1072x171

(we ommitted the normalising constant of Beta(a, b) because it does not depend on
0). We deduce this is a Beta (> x; + a,10 — > x; + b) distribution. In our case

10
d i=0, a=0, b=27
=1

—> Beta(3,37)
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Note. Here prior and posterior are in the same family of distrbutions. This is
known as conjugacy.

What to do with posterior? The information in 7(G | z) can be used to make decisions
under uncertainty.

Formal Process

(1) We must pick a decision § € D.

(2) The loss function L(#,9) is the loss incurred when we make decision § and true
parameter has value 6. For example § = {0,1}, § = 1 means we ask the patient to
self isolate. Then, L(# = 0,6 = 1) is the loss incurred when we ask a non-infected
patient to self-isolate.

(3) We pick decision which minimises the posterior expected loss:

= arggrgg/@L(G,é)w(@ | z)d6

(Von Neumann-Morgenstern theorem)

Point estimation:
The decision is a “best guess” for the true parameter, so § € ©. The Bayes estimator
6 minimises

h(9) :/ L(6,6)r(0 | z)dd
(S)
Example. Quadratic loss L(6,6) = (6 — §)?

h(d) = /(9 —6)%n (0 | z)db

B() = 0 if
/(e _ 8)m(6 | z)d6 = 0

— /(h(@ | 2)d6 = 5/77((2 2)d0

Hence ®) equals the posterior mean of 6.
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Example. Absolute error loss L(6,6) = |6 — J|

/\9 56 | z)d

_/_Oo 0 — 6)r (9|:c)d9+/oo(9—5)7r(«9|:c)d9
:/5 077(0|93)d9+/;007r(9]xd0+5/ (6 | 2)d§ — 5/ (6 | x)d8

—00

Take derivative with respect to 4. By the FTC,

1 00
h'(a):/_ mem)de—/é (0| 2)d0

So h/(§) = 0 if and only if

/io 70| z)df = /;O 70| z)dd

6 = median of the posterior

So in this case

Credible Interval

A 100v% credible interval (A(x), B(z)) is one which satisfies
m(A(z) <0 < B(x) | 2) =~

(A and B are fixed at the observed data x, but € is random).

B()
/ (0| 2)d0 = ~
A(z)

\///// -

T
Yo

In example sheet 2:
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Note. We can interpret intervals conditionally (“given z, we are 1007% sure that
0 € [A(@), B@)]").

Note. If T is a sufficient statistic, (6 | ) only depends on z through T'(x).

(0| x) x w(0) X fx(x|06)
= n(0)g(T'(z),0)h(x)
x m(0)g(T'(z),0)

Example. Xq,...,X, =1 N(p,1). Prior: m(p) is N (0, T%)

m(p | @) oc fx (@ | p) - m(p)

5 exp [—; Zn:(mi _ u)2] exp [_ u?z]

=1

N [_ <;)(n+7‘2) {H - nzij_zz }2]

> 1
N(&=Z -

n+712"n+ 712
_ >

T ntr2
error loss (™l = %) A 95% credible interval is

we recognise this as a

distribution. The Bayes estimator () for both quadratic loss and absolute

= ——, 0+ ——
vn + 12 vn—+T

This is close to a 95% confidence interval when n > 72.
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Example. Xi,..., X, 7 Poisson(\). Prior: m(\) is Exp(1), 7(\) = e™*, A > 0.

(A @) o fx(z | A)-m(A)
—nA\Y X,
M%e_’\ A>0

7

= e~ (MDA w A>0

THisisa T (1 + > x;,n + 1) distribution. The Bayes estimator under quadratic loss
is the posterior mean

50) = 22Tt 1 nooe 20T fmle
n+1 n

Under the absolute error loss the bayes estimator D) has

A®) o
/ A )ET e mragy = L
0 (> m)! 2

Simple Hypothesis

A hypothesis is some assumption about the distribution of the data X. Scientific ques-
tions are phrased as a choice between a null hypothesis Hy (base case, simple model,
no effect) and an alternative hypothesis Hy (complex model, interesting case, positive or
negative effect).

Examples and non-examples of simple hypotheses (no explanation yet)

(1) X1,..., X, 2 Ber(d), Hy: 6 =

% (fair coin), Hy: 0 = 3. This is a valid pair.
(2) As in the previous but Hy: 6 = 1 and Hy: 6 # . This is not a valid pair.
(3) Xq,...,X, takes values in Ny. Hy: X; 1 Poisson(\) for some A > 0, Hy: X; 11D f1
for some other f;. This is not a valid pair.

(4) X haspdf f(e]0),0 € ©. Hy: 6 € ©g C O, Hy: 0 ¢ Op. This is simple if ©g = {}.

A hypothesis is said to be simple if it fully specifies the distribution of X. Otherwise we
say it is composite.

A test of Hy is defined by a critical region C C X. When X € C we “reject” Hy and
when X ¢ C we say we “fail to reject” or “find no evidence against” Hy.

Type I error: we reject Hy when Hy is true.
Type II error: we fail to reject Hy when Hy is false.
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When Hy and H; are simple, we define
a =Py, (Hp is rejected) = Py, (X € C)
“probability of type I error”.
B = Pu,(Hp is not rejected) = Py, (X ¢ C)
“probability of type II error”.

The size of the test is . The power of the test is 1 — 5. Tradeoff between minimising
size and maximising power. Usually we fix an acceptable size (say a = 1%), then pick
test of size a which maximises the power.

Neyman-Pearson Lemma

Let Hy, H1 be simple. Let X have pdf f; under H;, ¢ = 0, 1. The likelihood ratio statistic

A 1) = i

A likelihood ratio test (LRT) rejects Hy when
X €C=1{z:A(Ho, H) >k}

for some threshold or “critical value” k.

Theorem (Neyman-Pearson Lemma). Suppose that fy, fi are non-zero on the same
sets. Suppose there exists k£ such that the LRT with critical region

C ={x:A,(Hy,Hy) >k}

has size exactly a. Then, this is the test with the smallest 8 (highest power) out of
all tests of size < a.

( N
Remark. A LRT of size o need not exist (try to think of an example). Even then,

there is a “randomised LRT” with size «.
L p,

Proof. Let C be complement of C. The LRT has

a="Py,(X €C) = /Cfo(x)d:c
5 =Pu,(X ¢ C) - [ hops
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Let C* be critical region of another test with size a*, power 1 — 5*, with a® < . Want
to prove that g < 8* or § — * <0.

B—pB*= /fl(x)dx — | filzx)dz
C C*

N /CDC* filw)dw = /c*mc fil)dz
B fi(z) e — fi(z) de
B /CmC* fo(z) folz)d /c*mc fx) folz)d

<RonC >Ron C

S g |:»/CQC* fO(x)dx B /C*F‘IC fO(x)dx:|
—k [ [ folayar /C fo(af)dw}

=k(a" — )

<0 O
Start of
lecture 9 Lemma. If C' is a LRT with size o, and C* is another test of size < «, then C' is

more powerful than C*, i.e.

B=Pu(zgC) <Py (xgC")=p"
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Example. X1,..., X, =l N(u,03), 0 is known. Want the best size o test for Hy:

mu = pg, Hi: p = p1 for some fixed p1 > po

@ro?Fexp (—5ky Tws — m)?)
@rofT¥ exp (— 5k X(wi — 10)?)
:exp(ml% po), -, s %))

200

Ay(Ho; H1) =

A, (Hy; Hy) is monotone increasing in T = %sz Hence, for any k, there is a c,
such that A, (Ho; H1) > k <= T > c¢. Thus the LRT critical region is {z : T > a}
for some constant c¢. By the same logic the LRT is of the form

¢ = vt < oy

want to pick ¢ such that

Py, (ﬁ(x_m)) > c') =«

0]

But \/ﬁ% ~ N(0,1) (this is a pivot). So if we take ¢ = ®~1(1 —a) - 2,. Finally
the LRT has critical region

{x:m—mm}

g0

By N-D lemma, this is the most powerful test of size . This is called a “z-test”

because we use a z statistic 2 = \/n (E;%) to define the critical region.

P-value

For any test with critical region of the form {z : T'(z) > k} for some statistic 7', a p-value

or observed significance level is

p = Puy(T(X) > T(X7))

where z* is the observed date. In example we just saw, let ug = 5, uy = 6, og = 1,
a = 0.05, observe

= (5.1,5.5,4.9,5.3)
¥ =52, 2" =04 2, =P 1 —a) =1.645
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Cr'.Lﬁ'cQA ‘—es\",,\
of size o= 3‘/{>

Here, we fail to reject Hy: pg =5, p = 0.35.

Proposition. Under Hy, p has a Unif(0, 1) distribution. p is a function of z*; null
distribution assumes z* ~ Pg,.

Proof.
PHO(p < u) = PHo(l — F(T) < U)

where F' is the cdf of T'.
=Py, (F(T)>1—u))
=Py, (T > F (1 —u))
=1-F(F 1 -u)

= U

for all w € [0,1]. Thus p ~ Unif(0, 1). O

Composite Hypotheses

X~ fx(e|0),0€0. Hy: 0 € Oy C O, Hi: 8 € O C ©. Type I, II error probabilities
depend on the value of 6 within ©qy or ©1 respectively. Let C' be some critical region.

35



Definition (Power Function and UMP test). The power function of the test C is

W(@)ZPQ( rzeC )

Hy rejected

The size of ¢ is the worst case Type I error probability:

o = sup W(6)
0cO

We say that C' is uniformly most powerful (UMP) of size o for Hy against H; if:
(1) supgee, W(0) =

(2) For any other test C* of size < «, with power function W*, we have W (6) >
W*(0) for all § € O;.

[ Note. UMP test need not exist. But, in some simple cases, the LRT is UMP.
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Example. Xi,..., X, '~ N(u,03): o2 known. We wish to test Ho: p < po against

Hi: > po for some fixed pg. We just studied the simple hypothesis:

Hy:p=po,  Hi:p=m  (m > po)

C:{x:z:\/M>za}

g0

LRT was:

Claim: the same test C' is UMP for Hy against H;. The power function for C' is

W) = Bu(X € ) =P, (YHEH0 5, )

00

p, (I8, S 0)

:1_@(za+\/ﬁ(ﬂo—ﬂ)>

a0
This is monotone increasing in py € (—00, 00)

n

N

7

N—\)
B
®, =)

The test has size « as sup,co, W(p) = a. It remains to show that if C* is another
test of size < « with power function W* then W(u1) > W*(up) for all puy > puo.
Main observation: critical region only depends on po. And C is the LRT for the
simple hypothesis H): u = po, Hj: p = p1. Any test C* of Hy vs H; of size < «
also has size < o for H, vs Hj.

W*(uo) < sup W*(u) <«
1EBOo

Hence by N-D lemma, we know W (u1) > W(usz). As we can apply this argument
for any pq > o, we have

W*(u1) <W(pr) Y > po
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Generalised Likelihood Ratio Tests
X ~ fx(e]8), Hy: 6 € Og, Hi: 0 € O1. The generalised likelihood ratio statistic:

supgeo, fx(z | 0)

A (Ho; Hy) =
(Ho; H) SUpgeo, fx (x| 0)

Large values of A, indicate larger departure from Hy.

Example. Xq,..., X, = N(u,03), oo is known. Wish to test Ho: p = po, Hi:

w # po for fixed po. Here ©g = {po}, ©1 =R\ {uo}. The GLR is

(2n03) ™2 exp (— 5y iz — 7)?)

(2770(2))”/2 exp (—ﬁ >l — ,u(])2>

Ay (Ho; Hy) =
Taking 2 - log of A, (monotone increasing transformation)
2log Az = %(E — 1p)?
a0

The GLR test rejects Hy when A, is large (or when 2log A, is large), i.e. when

a0

is large. (Under Hy, the expression in the modulus has a N(0, 1) distribution). For
a test of size «, reject when

N P L ()

0o 2

> a

& J7

This is called a 2-sided test.

=y
90

[ Note. 2log A, = nE=40) x3 under H.
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We can also define the critical region of the GLR test as

{o:nl2 s )

90
In general, we can approximate the distribution of 21log A, with a x? distribution when

n is large(!)

Wilks’ Theorem

Suppose 0 is k-dimensional § = (61, ..., 6;). The dimension of a hypothesis Hy: 6 € O
is the number of “free parameters” in Oy.

(1) ©={0e€RF:0, =0y =--- =0, =0} for some p < k. Here dim(6y) = k — p.
(2) Let AcRP*F b e RP, p < K,
Qg ={#cR": A0 =0}
dim(©¢) = k — p if rows of A are linearly independent (0 is a hyperplane).

(3) ©g = {0 € R* : 0y = fi($), 6 € RP}, p < I. Here ¢ are the free parameters; f; need
not be linear. Under regularity conditions dim(6p) = p.

Theorem (Wilk’s Theorem). Suppose Oy C ©; (“nested hypotheses”)
dim(0;) — dim(6g) = p

If Xy,...,X, are iid from fx(e | 80, then as n — oo, the limiting distribution of
2log A, under Hy is Xz%‘ That is, for any 6 € ©g, any [ > 0,

n—oo

Po(zlogA, <1) —= P(Z <)

where Z ~ X;%-

How to use this? If we reject Hy when 2log A, > X?)(a) then when n is large, the size of
the test is ~ a. (1)

Example. In the two-sided normal mean test

©o = {mo},  ©1=R\{uo}
we found 2log A, ~ x?. If we take ©; = R, the GLR statistic doesn’t change, so
21log A, ~ 2.

d1m(01) - dlm(@o) =1-0=1

The prediction of Wilk’s theorem is exact.

Proof. Wait for Part II Principles of Statistics :( O
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Tests of goodness of fit

X1,...,X, are iid samples from a distribution on {1,2,...,k}. Let p; = P(X; = i), let
N; be the number of observations equal to ¢. So,

k k
Zpi = 1, ZNz =n
=1 =1

Goodness of fit test: Hy: p = p for some fixed distribution p on {1,...,k}. Hy: pis any
distribution with Zle pi =1, p; > 0.
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Example. Mendel crossed n = 556 smooth yellow peas with wrinkled green peas.
FEach member of the progeny can have any combination of the 2 features: SY, SG,
WY, WG. Let (p1,p2,p3,ps) be the probabilities of each type, and (Ny, ..., Ny)
are the number of progeny of each type, > N; = n = 556.

9 3 3 1
H M = _——, —, — = D
0op (16’16’16’16) &

Is there any evidence in Ni,..., Ny to reject Hy? The model can be written
(N1, ..., Ni) ~ Multinomial(n; p1, ..., px). Likelihood: L(p) o pivl . ‘piv’“

Mendel’s hypothesis:

= [(p) = const + Z N;log p;

7

We can test Hy against H; using a GLR test:

2log A, =2 (sup l(p) — sup l(p))

PEO] jZSISh)

Since ©g = {p}, sup,ce, I(p) = [(p). In the alternative p must satisfy ) p; = 1.

sup I(p) = sup »_ Njlogp;
pEO1 pypi=ly

Use Lagrangian L£(p,\) = 3., N;logp; — A (3, pi — 1). We find that ; = 2 (the
observed propoertion of samples of type ).

2log A =2(l(p) — U(p))

= QZNi log <nN;3>

Wilk’s theorem tells us that 2log A, is approximately Xz% with

p=dim(©;) —dim(©g) =(k—1)—-0=k—1
So we can reject the Hy with size ~ o when

2log Ay > Xﬁ_l(a)

Start of
lecture 11 Tests of Goodness of fit and Independence

It’s common to write

2log A = QZOilog <Oi>
. €;
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where 0; = N; “observed number of type i” and e; = n - p; “expected number of type i
under null”.

Pearson’s statistic: Let §; = 0; — e;. Then

2log A = 22(@ +9;) log <1 + 51)

N————

This is called Preason’s statistic. This is also referred to a X%_l distribution when n is
large.

Example. Mendel’s data:
(nl, ng,ns, TZ4) = (315, 108, 102, 31)
2log A ~ 0.618, >, (i—ei)® + 0.604. We refer each statistic to a X2, = x4 distri-

bution. '
x3(0.05) = 7.815

A
7
(009

Xy

We don’t reject Hy at size 5%. The p-value is P(x3 > 0.6) ~ 0.96. The data fir the
null model almost too well.

Goodness of fit test for composite null

Hy: p; = pi(0) for some parameter 6. Hy: p can be any distribution on {1,..., k}.
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Example. Individuals can have 3 genotypes. Hp: p; = 6%, po = 20(1 — ), p3 =
(1 —6)2, for some 0 € [0,1].

Y pi=1 6
=2(1(p) — 1(p(9))

2log A =2 < sup I(p) — supl(p(@)))

where p is the mle in the alternative Hy; 0 is the mle in null Hy. Last time we found
p; = % # would need to be computed for the null model in question.

N;
2logA =2 N; log 5
Z: Q%WJ
= 2201‘ log %
i &

0; = N; “observed number of type i”, ¢; = n - pl(é) “expected number of type ¢

_e:)2
under Hy”. We can define a Pearson statistic >, (016761)

as before.

using the same argument

Fach statistic can be referred to a X?l when n is large by Wilke’s theorem.

d = dim(©;) — dim(©y)
= (k‘ - 1) - dlm(@o)

Example. [(0) =), N;logp;(8) = 2N, log 6 + Nalog(26(1 — 0)) + 2N3log(1 — 6).
Maximising over 6 € [0,1] gives § = % (exercise). In this model 2log A and
3, 0= have a y2 distribution with d = (k—1)—dim(6g) = (k—1)—1 = k—2 =

€;
3—2=1.
Testing independence in contingency tables

(X1,Y1),..., (X, Yy) are iid with X; taking values in {1,...,7}, Y; taking values in
{1,...,c}. The entries in a contingency table are

Nij = #{l 1 <1 <n, (leyz) = (7‘7])}

(# samples of type (i, 7))

Example. COVID-19 deaths. X;: age of i-th death. Y;: week on which it fell.
Question: are deaths decreasing faster for older age grou that had been vaccinated?
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Probability Model

We'll assume n is fixed. A sample (X;,Y;) has probability p;; of falling in (7, j) entry of
table.

(Nll, e ,Nlc, NQl, e ,NQC, e 7N7“c) ~ Multinomial(n;pll, ey Pley - ,prc)

[ Remark. Fixing n may not be natural; we’ll consider other models later. ]

Null hypothesis
Week of death is independent of age. X; independent of Y; for each sample. Let

n T
Piv =Y Pij  DPri= D Pij
j=1 i=1

H(): Dij = Pi+D+j- (P(Xl = 7,,Y2 = j) = P(Xl = Z)P(Y} = j)) H1: (pij) is unconstrained
except for p;j >0, >, ;pij = 1. The generalised LRT:

2log A = 220@- log (Z”)
i "

0ij = Nij, ej; = np;;, where p is the mle under independence model Hy. Using Lagrange
multipliers we can find

Dij = Di+D+j
where
~ N; “ N+‘
Pit = — Prj=—"~
Niy =) Ny Ny =) Ny
j ;

20g A =25 3 Nyjlog (—0_) & 3 05— i)
— 2logh =233 Ny (N ) o 3 (0

i=1 j=1 i, Y

Wilke’s: The asymptotic distribution of these statistics is Xﬁ with

d= dim(@)l) - dim(@())
=(re=1)=[{r=1)+(c-1)]
(r—=1)(c—1)

((r—1) and (¢ — 1) — degrees of freedom in (p1+4,...,pr4+) and (p41,...,P+c))
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Testing independence in contingency tables

Njj;: number of samples of type (i, j).
(Nij) ~ Multinomial(n, (p;;))

Ho: pij = pi+ X p+j
H;i: (psj) unconstrained.
Found 2log A, which has asymptotic X%’r—l) (c—1) distribution.

Example (COVID-19 deaths). Problems with x? independence test:

(1) x? approximation can be bad when we have large tables. Rule of thumb: Need
N;; > 5 for all 4, j.

Solution (non-examinable): exact testing. Idea: under Hj, the margins of N
(Nit), (N4;) are sufficient statistics for p. therefore 2 tables N, N with the
same margins are equally likely under Hy. An exact test contrasts the test
statistic observed 2log A(N) with the distribution of this statistic for the set of
tables with the same margins as N. This gives a test of exact size a.

(2) 2log A can detect deviations from Hy in any direction. = Low power,
especially when r, ¢ is large. This is why Hy is not rejected in a test of size 1%
in COVID-19 example. Solutions:

(1) Define a parametric alternative H; with fewer degrees of freedom.

(2) Lump categories in the table.

Tests of Homogeneity

Instead of assuming ), ; Nij fixed, we assume row totals are fixed.
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Example. 150 patients, split into groups of 50 for placebo, half-dose, full-dose. We
record whether each patient improved, showed no difference or got worse.

| I N.D. W

Placebo
Half
Full

Now row totals are fixed. Null of homogeneity: probability of each outcome is the
same in each treatment group.

Model:
(N;1,..., Nic) ~ Multinomial(n;+, pi1, - - - , Pic)

independent for i = 1,...,r. Paramters satisfy Zj pij = 1 for alli. Hy: p1j = p2j =
~-ppj forall j=1,...,c. Hi: (pi1,...,pic) is a probability vector for all 1.
r !

Mt N; Nic
L(p) = 1_[1 mpu L e
1=

l(p) = const + Z Nijlog pij
1,

To find 2log A we need to maximise [(p) over Hy, H;. Hi: use Lagrange multipliers
with constraints }, p;; = 1 for all i. Then the mle is

Ny

Nit

ﬁij =
Ho: let Pj =DP1j = = P+j-

l(p) = const + Z Nyjlogp;

j=1
hence the mle is p; = %, Nyt = »_; Nit. Thus
N“
2log A =2 N;;ilog <”)
2N Nt Ny j /g4

2
This is exactly the same statistic as 2log A for the independence test. Let 0;; = N,

B = T = T e
ij = TitDj = Tit 5

Oij
— 2logA =2 0;;log | —
g ; ij g<€ij>

~Y (035 — €15)°
i Y

This is also the same as Pearson’s statis‘%'(c); for independence test.



Wilk’s implies 2log A is approximately X?{a
d = dim(0;) — dim(Oy)
=(c—1Dr—(c—1)
=(c—-1)(r-1)

Asymptotic distribution of 2log A is also the same as in the independence test.

Testing independence or homogeneity with size o always has the same conclusion.

Relationship between tests and confidence sets

Define the acceptance ragion A of a test to be the complement of the critical region. Let
X ~ fx(o| @) for some 6 € O.

Theorem. (1) Suppose that for each 6y € © there is a test of Hy: 6 = 0y of size «
with acceptance region A(fp). Then, the set

I(X)={0:X € A(0)}
is a 100(1 — a))% confidence set.
(2) Suppose I(X) is a 100(1 — )% confidence set for §. Then

A8o) = {z : o € I(X)}

is the acceptance region of a size « test for Hy: 6 = 6.

Proof. In each part:
Oy € I(X) — X ¢ A(@o)

For part (1), we calculate:
IP’@O (I(X) > 490) = Pgo (SU € A(eo))
=1- Pgo(l‘ S 0(90))
=1—«
as desired. For part (2):
P, (X € C(bh)) = Pg, (X & A(b0))
= Py (1(X) # 60)
=1- PQO(I(QZ) > 90)
=1-(1-«a)

as desired. O
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Example. X1,..., X, (= N(u,03), 0% known.

I(X) = <Xi Za(;;)

confidence interval. Test: Hy: pu = po, Hi: p # po. Critical region:

ot

g

Start of
lecture 13 Multivariate Normal Theory

Recall: if X is a random vector, then

E[AX +b] = AEX + b
Var(AX 4 b) = AVar(X)A"

Definition. We say X has a multivariate normal distribution if for any ¢t € R",
t" X is normal.

Proposition. If X is MVN then AX + b is MVN.

Proof. Say AX +bis in R™. Take t € R™.
tH (X +b)=(AT)"X +t"b

Since X is MVN, ATt)TX is a normal distribution, and since ¢'b is a constant, this
means that ¢’ (AX + b) is normal. O

Proposition. A MVN distribution is fully specified by its mean and variance.

Proof. Take X1, Xo both MVN with mean p and variance . We’ll show that their
mgf’s are equal, hence X and X5 have the same distribution.

Eelt X1 = M+ (1) t' X, is Normal

1
= exp <1 E(tT Xq) + 5 Var(t' X) - 12)

1
= exp (tT,u + 2tTEt>

This just depends on u, 33, so it is the same for X, Xo. O
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Orthogonal projections

Definition. (1) We say P € R™*"™ is an orthogonal projection if it is:
e Idempotent: PP = P.
e Symmetric: PT = P.

(2) Or equivalently, P € R™ ™ is an orthogonal projection if for any v € col(P),
Pv = v, and for any w € col(P)*, Pw = 0.

Proposition. (1) and (2) are equivalent.

(Ryoef= (2) Take v € col(P), so v = Pa for some a € R". Then
Pv=PPa=Pa=v
Take w € col(P)*. Then PTw = 0. Hence
Pu=Plw=0
(2) = (1) We can write any a € R” uniquely as a = v + w, w € col(P)*, v € col(P). Then
P%q = PP(v+w) = Pv=P(v+w)= Pa

As a was arbitrary, P = P2. For symmetry, take ui, us € R”. Then

(Pur) (T~ Pyuz) = 0
—_——

€col(P)  ecol(P)+

= ulT(PT — PTP)ug = 0. Since this holds for all uj,us € R*, PT = PTP. But
PT P is symmetric, hence P is symmetric, hence P symmetric. O

Corollary. If P is orthogonal projection, then I — P is as well.

Proof.
(I-P)'=I—-P"=I-P

and
(I-PI-P)=1-2P+PP=I1-P O
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Proposition. If P € R"*" is an orthogonal projection then
P=UU"

where the columns of U form an orthogonal basis for col(P). (if k¥ = rank(P), then
U € R™<k).

Proof. UUT is cleraly symmetric and also idempotent
y

vu'vuT =vuuT
I,
k

So UU " is an orthogonal projection. To show it is equal to P, note col(P) = col(UU ")
by construction. O

Corollary.
_ _ T _ Ty
k = rank(P) = Tr(UI U)=Te(UU") = Tr(P)
k

Theorem. If X is MVN, X ~ N(0,0%I) and P is an orthogonal projection, then
(1) PX ~N(9,02P), (I — P)X ~N(0,0%(I — P)), PX, (I — P)X independent.

(2) (2.4 %

o? rank(P)

Proof. The vector

(1 5p) %

is MVN, because it is a linear function of X. The distribution is specified by the mean

and variance:
PX P
E[(I—P)X] (I—P)EX_O

and:



Let Z ~ N(0,0%P), Z' ~N(0,0%(I — P)), Z,Z" independent. Then

(2) =10 o %))
(0 5hx)* (Z)

hence PX, (I — P)X independent. This proves (1).

For (2):
IPX|? (PX)"PX XT(WUuNH'oU'X X'UUTX
o2 a? B o? - o?
Cols of U form orthogonal basis for col(P)
IPX|? _ T S (0T 2
o2 o2 o?

=1
But UT X ~ N(0,021)
Var(U'X) = U" Var(X)U = ¢°U ' U = oI
Therefore (U X);, i = 1,...,rank(P) are IID N(0, 0?)

UTX);
_, U X N(0, 1)
g

IPx|

Hence '—'~ is the sum of rank(P) squared independent N(0, 1) variables, i.c. x

rank(P)"

Application

X1,...,Xp £ N(, 0?). Both 1, 0% unknown. Recall that the mle for pis X = 1 3~ X;.

The mle for 0?2 is 6% = SXTX, where Sxx = >_,(X; — X)2.

Theorem. (i) X ~ N(u,0?/n)
(ii) S;{TX ~ X72’L—1

(iii) X, Sxx independent.

Proof. Let 1 = (1,...,1)T € R™. Let P = %11T be an orthogonal projection onto
span(1). Easy to check that P = PT = P2, We can write

X1

X9

o1
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where e ~ N(0,02I). Note:

e X is a function of PX
PX = ul + Pe

because X = (PX);. In particular, X is function of Pe.

Sxx =Y _(Xi— X)?

%

=[IX - 1X]?
=l - P)X|?
= [I(7 = P)el?

so Sxx is a function of (I — P)e. By previous theorem, P. 1l (I — P)e. Hence
X 1L Sxx. Part (i) we've shown before. Also,

Sxx _ = Pye?

oz o2 XTr(I — P) -
-1
0.6 The linear Model
Data are pairs (x1,Y7), ..., (zn,Yn). Y; € R: “responses”, random. z; € RP: “predic-

tors”, fixed.

Example. Y;: number of insurance claims for client i. z;: (age, number of claims
in 2-21, years with driver’s license, . ..).

In a linear model, we assume
Yi =o'+ frza + Bawio + -+ + Bpxip + &4
e ( is an intercept.

e [(1,..., 3, are coefficients.

e £1,...,&, are random noise variables.

Remark. We normally remove intercept by including a dummy predictor which is
equal to 1 for all 7, i.e. z;y =1 foralli=1,...,n.
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( I
Remark. We can also model non-linear relationships between Y; and z; using a
linear model, for example by using z; = (age, age?, log(age)).

_ J

( I
Remark. ; is the effect on Y; of increasing x;; by a unit, whilst keeping all other

predictors constant. Estimates of 8 should not be interpreted causally, unless we

have a randomised experiment.
= _J

Matrix formulation:

x x “ e z‘
Y, 11 T12 1p
. T21 T Ty
Yn
Tnl Tn2 ce Tnp

~
“design matrix”

b1 €1
p=1": €=

Bp En

Y=Xp+¢

Moment assumptions on ¢:
(1) Ee=0 = EY = Xp.

(2) Vare = 0% = Var(e;) = o2 for all i “homoscedasticity”. Cov(e;,e;) = 0 for all
i#j.

We'll assume throughout that € R¥*P has full rank. In particular, p < n (more samples

than predictors).

Least squares estimator

£ minimises the residual sum of squares

S(B) =Y - X8|
= _(Yi—a{p)?
=1

This is a quadratic (positive definite) polynomial in 8 so B satisfies

VS(B)l,_s =0
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n p
— 95() = 2> wp [Yi-D @B | =0
aﬁk BZB =1 j=1

for each k£ =1,...,p. Equivalent matrix form:

X'X3=XTy

As X has rank p, the matrix X ' X € RP*? is invertible, hence

B=(XTX)"'XTYy

(linear in Y'!). Check:

EZ =E[(XTX)'X Y]

= (X"X)"'X"EY
(XX Xp
B

Hence 3 is unbiased. We can also calculate:

Var(f) = Var(X TX)7'XTY)
= (X" X)X T Var(V) X (X T x)7?
= (X' X)X Te?Ix(xTXx)!
=o2(XTX) !

Theorem (Gauss-Markov). Let 8* = CY be any linear estimator of § which is
unbiased. Then for any ¢ € RP,

Var(t' §) < Var(t' 8*)

We say /3 is “Best Linear Unbiased Estimator” (BLUE).

&

Remark. Think of ¢ € RP as the value of the predictors for a new sample. Then
tTB, tT5* are estimators of the mean response. These are both unbiased, so the
mse is the variance of tTB, tT 3*. Theorem says variance is “best” using the least
squares estimator.

~

Proof.

Var(t' 8*) — Var(t' 8) = t" (Var 8* — Var )t > 0
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This holds for all te RP? if and only if the matrix Var * — Var B is positive semi-definite.
Recall f* =CY, 3= (XTX)"'XTY. Let A=C — (X"X)"'X". Note:

EAY =EB* —EB=8-8=0
(since #* and 3 are unbiased). But also note
EAY = AEY = AXB =0
for all 5 € RP, so we must have AX = 0. Then

Var 8* = Var((A + (X" X) ' X )Y)
—(A+(XTX) XD Vary(A+ (X TX)tx )T

= 2(AAT + (XTX) P+ AX X 4+ (X T = x AT
= 02 AA" + Var(B)
— Var* — Var 3 = 02 AAT

and this is positive definite, as desired. O

Fitted values and residuals: fitted values
V=XB=XX"X)"'X"Yy
—_—
P “hat matrix”

Residuals: Y —Y = (I — P)Y.

Proposition. P is the orthogonal projection onto col(X).

Proof. P is clearly symmetric. Also,
PP=X(X"X)"¥x(xIxxT=p

Therefore P is an orthogonal projection onto col(P). We need to show col(P) = col(X).
For any a, Pa = X[(X T X)™'X Ta] € col(X). Also, if b= Xc is a vector in col(X), then

b=Xc=X(X"X)"'X"Xc= Pb e col(P) O
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Corollary. Fitted values are projections of Y onto col(X). Residuals are projections
of Y onto col(X)*.

Normal assumptions

We assume in addition to Ee = 0, Vare = ¢%I, that € is MVN, i.e.

e ~ N(0,0%I,)

02 is usually unknown, so the parameters in the model are (3,0%). We'll see that mle

of B is the least squares estimator .

Normal linear model

Take Y = XB+¢, e ~ N(0,02I). MLE: 2 parameters: 3 € RP, 02 € R, . Log-likelihood:

1
1(8,02) = const + glogUQ —55lY - X8|

For any 02 > 0, we can see that I(3, 0?) is maximised as a function of 3 at the minimiser
of ||[Y — XBJ?, i.e. the least squares estimator 3. Now find:

1(B,0”
arg max (B,07)

. 1 .
1(8,0?) = const — gloga2 - ﬁHY - XB|?

~ 5 2
As 02 — 1(3,0?) is concave, there is unique maximiser where al(c,f;g ) — ¢

Y — X3|2 I — P)Y|?
eIy -xBP - PY

n n
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Theorem. (1) 3~ N(8,0%(XTX)™ 1)

)
(2) SGn~xz,

(3) B, 62 are independent(!)

Proof. 3 is linear in Y, hence MVN. We already know E3 = 3, Var 3 = o?(XTx)~ L
This proves (1). For (2) note

ne? (- P)Y|?
o o2
ILEIE SR X
I(I = P)el®
2

o
~ X?ank(I—P)
rank(I — P) = Tr(I — P) =n —p. (X € R"P has full rank).
For (3), note &AQ is a function of (I — P)e. We'll show that £ is a function of Pe, which
implies 62 1L 3 since Pe 1L (I — P)e.
B=(XTX)"'XTYy

= (X' X)X (XB +e)

=B+ (XTX)1XTe

=B+ (X"X) X TPe

since X'TP=XT". O

Corollary. 62 is biased

Student’s ¢-distribution

If U ~N(0,1), V ~x2, U 1LV then we say T = \/XU/Tn has a t,, distribution.

The [ distribution
IV~ W~x2, VI W then we say

_V/n
F= W/m

o7



has an F, ,, distribution.

Confidence sets for

Suppose we want a 100(1 — «)% confidence interval for one of the coefficients (WLOG
take 7). Note:

B — B

———— ~N(0,1)
UQ(XTX)ﬁl

because 41 ~ N(B1,0%(X T X)1}'). Also,
)
Zon~xd,
and these two statistics are independent.
B1—pa
. /(AXTX)ﬁ ~ by
D Xiip/ (0 =

Now this only depends on 1 and not on o2, so we can use this as a pivot.

IP)B70'2 —tn— p(a> w/n p tn p =1—-«
/XTX na

We use that t,, distribution is symmetric around 0.

Rearranging the inequalities, we get

3 (XTX)p'62 3 _
Pg ;2 ﬁl_tnfp<2) W<51§51+M =1—-«

=M

We conclude that

ey (5) 20

is a (1 —«a) - 100% confidence interval for J;.

o8



[ Remark. This is not asymptotic. ]

By the duality between tests of significance and confidence intervals, we can find a size
a test for Hy: By = 8" vs Hy: By # B*. Simply reject Hy if 5 is not contained in the
100 - (1 — )% confidence interval for 3;.

Confidence ellipsoids for

Note 3 — 8 ~ N(0,02(XTX)™1). As X has full rank, X ' X is positive definite. So it
has eigendecomposition
(X"X)y=UDU"

where D;; > 0 for i = 1,...,p. Define

(X' X)*=UD*UT

DY - 0
Da: . T :
0 - Dg

(XTX)'2( - B) ~ N(0,0°I)
Hence

IXTX)2(53 - B)II?

o2

2
NXp

_Ixa-n)12
= Pl

o

This is a function of B , 80 it’s independent of
&n 9
_ IX@-8IP _,
— pn—p
62n/"(n ~ p)

This only depends on 3, not on o2, so it can be used as a pivot. For all 3, 0%

1X(3 - 81%/p L
Py2 g (5271/(71—17) < Fp,n—p(“)) =1
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T

)

s/
FP,/lvpé’(\

So, we can say that the set

A 2

is a 100(1 — )% confidence set for 3.

(2

Principal axes are given by eigenvectors of (X T X).

In the next section we’ll talk about hypothesis tests for Hy: 81 = --- = 8, = 0, Hi:
B € RP.
Start of
lecture 16 The F-test
Y :XB—F&T, g~ N(O,O’QI). H()Z 51 = 52 == Bpo = 0. H1: B € RP. Let X = (.1'0,391)
(Xoisn xppand X; isn X (p—po))
50 Bo Bpo+1
RCO I ) I
Bpo Bp
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Null: 4% = 0. This is a normal linear model:
Y =X8" +¢

Write P = X(XTX)7'XT, P, = X1(X{ X1)7'X/. As X, P have full rank, so do X7,
P;. Recall that the maximum log-likelihood in a linear model is

max(8,0%) = 1(8,5%)

o2>0

I—-p)Y|?

= —ﬁlog <|(p)||> + const
2 n

The generalised log likelihood ratio statistic is

2log A =2 1(B,0%) — (B, o>
og max (8,07 max (8,07
02>0 BLERP—PO
02>0

20 (g (WP | (WU POVIEY)

This is a monotone increasing function in
| -P)Y|? |[U-P+P—P)Y|?
(1= P)Y|> I(I = P)Y?
I = P)Y|* + (P = P)Y|* +2Y T (I = =hn)Y
I = P)Y|]?
(The cancel takes place because the columns of P — P; are in col(X)). This is monotone
increasing in

(P — P)Y|?/po

e

“F statistic”.

Lemma. P — P; is an orthogonal projection with rank pg.

Proof. P — P; is symmetric as both P and P; are
(P—P)P—-P)=P+P —-2PP=P—-P
—~—
=P,
rank(P — Py) = Tr(P — Pp)

= Tr(P) — Tr(Py)

=p—(p—po)

=Po
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To recap the generalised LRT rejects Hy when F' is large. What is the null distribution
of F'?7 Under Hy:

(P—P)Y = (P—P)(XB+¢)
= (P~ P1)(X18' +¢)
= (P — P1)€

Therefore, under Hy:
P = P)el/po
S I(I = P)el?/(n —p)

2 2
. X . Xp
with numerator ~ (p"(f) and denominator ~ <n”_1§’> Furthermore,

(P - P1)€

(I — P)e
is MVN with Cov((P — Py)e, (I — P)e) = 0?(P—P —1)(I — P) = 0. Hence (P — P)e L
1 (I — P)e. Hence numerator 1l denominator in F. We conclude that

F~ Fpo,n—zn

so the test rejects Hy with size « if
F > Fpyn—pla)

Last time we derived a size «a test for Hyp: 1 = 0 using the 100 - (1 — )% confidence
interval for 51. That test rejects Hyp when

a) &2n(XTX)

o (8
’/81’>np 9 n—p

Lemma. This test is equivalent to the F-test with py = 1.

Proof. Exercise. O

Categorical predictors
Example. Y; € R: clinical response, z; € {control, treatment 1, treatment 2}.
Let

Lij = l{zi:j} - I[{subject i was in group j}

x; € R? this is numerical.
Y = a+ Bixi1 + Powio + B3xi3

Problem:
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Qo Pl
C S[ywﬂ

) fqe

This has rank 3 < 4. Corner point constraint: call one of the groups the “baseline” and
remove it from the linear model. Interpretation of 8; depends on baseline. §; is effect of
being in group j relative to baseline. f; is effect of being in group j relative to baseline.

However, col(X) and matrix P are insensitive of choice of baseline, and therefore so are
the fitted values

Y = PY.

This can be extended to a model with more than 1 categorical predictor, for example
group and gender.

ANOVA: Analysis of Variance. The F-test for

e Hy: Bj = 0 for a categorical predictor o # 0.

e Hi: (%1) € R3.

In this case, we can write the F' statistic in a simpler way.

1 10
1 1
C/ E]_ ‘09 %cs/oupﬁ
< X = o 1
X | o\ i faen
2 ‘ °
I] o ?) j')(owPS
baseline
= car-ou,of(
P projection onto constant vectors.
1
P =-11"
n
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P = projection onto vectors which are constant for each group

(P — P1)Y|?/po

F =
1L =p)Y[I?/(n —p)
Y
Y 1 &
Py =|. V= Z Y;
o =1
Y
Y,
Y,
?2 554 E;"l:l Yl-]l{z:]} .
Py=1|< Y, = /————"—% = average response for group j
Yy T Y Ly
Y3
Y3

_ YN —-Y)%)2
S Y (Vi — Y)%/(3N — 3)

Assume all groups of size N (n = 3N). Numerator is variance between groups, denomi-
nator is variance within groups.
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