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Start of
lecture 1 0 Introduction

Statistics: The science of making informed decisions. Can include:

� Design of experiments

� Graphical exploration of data

� Formal statistical inference ∈ Decision theory

� Communication of results.

Let X1, X2, . . . , Xn be independent observations from some distribution fX(• | θ), with
parameter θ. We wish to infer the value of θ from X1, . . . , Xn.

� Estimating θ

� Quantifying uncertainty in estimator

� Testing a hypothesis about θ.

0.1 Probability Review

Let Ω be the sample space of outcomes in an experiment. A “nice” or measurable subset
of Ω is called an event, we denote the set of events F . A function P : F → [0, 1] is called
a probability measure if:

� P(ϕ) = 0

� P(Ω) = 1

� P (
⋃∞

i=1Ai) =
∑∞

i=1 P(Ai) if (Ai) are disjoint.

A random variable is a (measurable) function X : R → R. For example: tossing a coin
twice Ω = {HH,HT, TH, TT}. X: number of heads.

X(HH) = 2 X(TH) = X(HT ) = 1 X(TT ) = 0

The distribution function of X is

FX(x) = P(X ≤ x)

A discrete random variable takes values in a countable X ∈ R, its probability mass
function or pmf is pX(x) = P(X = x). We say X has continuous distribution if it has a
probability density function or pdf satisfying

P(X ∈ A) =

∫
A
fX(x)dx
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for any “nice” set A.

The expectation of X is

EX =

{∑
x∈X xpX(x) if X is discrete∫
xfX(x)dx if X is continuous

If g : R → R,
Eg(x) =

∫
g(x)fX(x)dx

The variance of X is
Var(X) = E((X − EX)2)

We say that X1, X2, . . . , Xn are independent if for all x1, . . . , xn

P(X1 ≤ x2, . . . , Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn)

If the variables have pdf’s, then

fX(x) =

n∏
i=1

fXi(xi)

(x = (x1, . . . , xn), X = (X1, . . . , Xn)).

Linear transformations

If a1, . . . , an ∈ R

E(a1X1 + · · ·+ anXn) = a1EX1 + · · ·+ anEXn

Var(a1X1 + · · ·+ anXn) =
∑
i,j

aiaJ Cov(Xi, Xj)

(Cov(Xi, Xi) = E((Xi − EXi)(Xj − EXj))). If X = (X1, . . . , Xn)
⊤

EX = (EX1, . . . ,EXn)
⊤

E(a⊤X) = a⊤EX
Var(a⊤X) = a⊤ Var(X)︸ ︷︷ ︸

(Var(X))ij=Cov(Xi,Xj)

a

Moment generating functions

MX(t) = E(etX)

This may only exist for t in some neighbourhood of 0.

� E(Xn) = dn

dtnMX(0)

� MX = MY =⇒ FX = FY

� Makes it easy to find the distribution function of sums of IID variables.
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Example. Let X1, . . . , Xn be IID Poisson(µ)

MX1(t) = EetX1

=

∞∑
x=0

etx · e
−µµx

x!

= e−µ
∞∑
x=0

(etµ)x

x!

= e−µeµ exp t

= e−µ(1−et)

Sn = X1 + · · ·+Xn.

MSn(t) = Eet(X1+···Xn)

=

n∏
i=1

EetXi (independent)

= e−µ(1−et)n

Observe this is Poisson(µn) mgf. So Sn ∼ Poisson(µn).

Limit Theorems

Weak law of large numbers (WLLN). X1, . . . , Xn are IID with EX1 = µ.

Xn =
1

n

n∑
i=1

Xi

is the “sample mean”. For all ε > 0,

P( |Xn − µ| > ε︸ ︷︷ ︸
event that depends only on X1, . . . , Xn

) → 0 as n → ∞

Strong law of large numbers (SLLN)

P(Xn
n→∞−→ µ) = 1

(This event depends on whole sequence X1, X2, . . . . Xn → µ ⇐⇒ ∀ε > 0∃N∀n >
N |Xn − µ| < ε.

Central Limit Theorem

Zn =
√
n(Xn−µ)

σ where σ2 = Var(Xi). Then Zn is approximately N(0, 1) as n → ∞.

P(Zn ≤ z) → Φ(z) as n → ∞ ∀z ∈ R

where Φ is the distribution function of a N(0, 1) variable.
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Conditioning

Let X and Y be discrete random variables. Their joint pmf is

pX,Y (x, y) = P(X = x, Y = y)

The marginal pmf

pX(x) = P(X = x) =
∑
y∈Y

pX,Y (x, y)

Conditional pmf of X given Y = y is

pX|Y (x | y) = P(X = x | Y = y)

=
P(X = x, Y = y)

P(Y = y)

=
pX,Y (x, y)

pY (y)

(defined = 0 if pY (y) = 0). If X,Y are continuous, the joint pdf fX,y has

P(X ≤ x′, Y ≤ y′) =

∫ x′

−∞

∫ y′

−∞
fX,Y (x, y)dydx

The marginal pdf of Y is

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

The conditional pdf of X given Y is

fX|Y (x | y) =
fX,Y (x, y)

fY (y)

Conditional expectation:

E(X | Y ) =

{∑
x xpX|Y (x | y)∫∞

−∞ xfX|Y (x | y)dx

(this is treated as a random variable, which is a function of Y ).

Tourer property:
E(E(X | Y )) = EX

Conditional variance formula:

Var(X) = E(X2)− (EX)2

= E(E(X2 | Y ))− (E(E(X | Y )))2

= E(E(X2 | Y )− [E(X | Y )]2) + E[E(X | Y )2]− E[(X | Y )]

= EVar(X | Y ) + Var(E(X | Y ))

Start of
lecture 2
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Change of Variables (in 2D)

Let (x, y) 7→ (u, v) is a differentiable bijection. Then

fU,V (u, v) = fX,Y (x(u, v), y(u, v)) · | det J |

J =
∂(x, y)

∂(u, v)
=

[∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
Important Distributions

X ∼ Negbin(k, p): In successive IID Ber(p) trials X is the time at which k-th success
occurs.

X ∼ Poisson(λ) is the limit of a Bin(n, λ/n) as n → ∞.

If Xi ∼ Γ(αi, λ) for i = 1, . . . , n with X1, . . . , Xn independent. What is the distribution
of Sn = X1 + · · ·+Xn?

MSn(t) =
n∏

i=1

MXi(t) =

(
λ

λ− t

)α1+···+αn

This is the MGF of a Γ(
∑

αi, λ). Hence Sn ∼ Γ(
∑

αi, λ). Also, if X ∼ Γ(a, λ), then for
any b ∈ (c,∞), bX ∼ Γ(α, λ/b).

Special cases

Γ(1, λ) = Exp(λ), Γ(k/2, 1/2) = χ2
k “Chi-squared with k degrees of freedom.” Sum of k

independent squared N(0, 1) random variables.

0.2 Estimation

Suppose we observe data X1, X2, . . . , Xn which are IID from some PDF (pmf) fX(x | θ),
with θ unknown.

Definition (Estimator). An estimator is a statistic or a function of the data T (X) =
θ̂, which we use to approximate the true parameter θ. The distribution of T (X) is
called the sampling distrbution.

Example. X1, . . . , Xn
IID∼ N(µ, 1).

µ̂ = T (X) =
1

h

n∑
i=1

Xi

The sampling distribution of µ̂ is N
(
µ, 1

n

)
.
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Definition. The bias of θ̂ = T (X) is

bias(θ̂) = Eθ(θ̂)− θ

Note. In general, the bias is a function of θ, even if notation bias(θ̂) does not make
it explicit.

Definition. We say that θ̂ is unbiased if bias(θ̂) = 0 for all θ ∈ Θ.

Example (Continuing from previous). µ̂ = 1
n

∑n
i=1Xi is unbiased because Eµ(µ̂) =

µ for all µ ∈ R.

Definition. The mean squared error (mse) of θ̂ is

mse(θ̂) = Eθ((θ̂ − θ)2)

Note. Like the bias, mse(θ̂) is a function of θ!

Bias-variance decomposition

mse(θ̂) = Eθ[(θ̂ − θ)2]

= Eθ[(θ̂ − Eθθ̂ + Eθθ̂ − θ)2]

= Varθ(θ̂) + bias2(θ̂) +�������
[Eθ(θ̂ − Eθθ̂)](Eθθ̂ − θ)

The two terms on the RHS are ≥ 0.

There is a trade off between bias and variance.
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Example. X ∼ Bin(n, θ). Suppose n known, we wish to estimate θ. Standard
estimator Tu = X

n , then EθTu = EθX
n = θ (holds for all θ). Hence Tu is unbiased.

mse(Tu) = Varθ(Tu)

=
Varθ X

h2

=
nθ(1− θ)

h2

=
θ(1− θ)

h

Consider a second estimator

TB =
X + 1

n+ 2
= ω

X

n
+ (1− ω)

1

2

with ω = n
n+2 . If X = 8, n = 10 (8 successes in 10 trials), then Tu = 0.8, TB = 9

12 =
0.75.

bias(TB) = EθTB − θ

= E
(
X + 1

n+ 2

)
− θ

=
n

n+ 2
θ +

1

n+ 2
− θ

This is ̸= 0 for all but one value of θ. Hence Tb is biased.

Varθ(TB) =
1

(n+ 2)2
nθ(1− θ) =

ω2θ(1− θ)

n

mse(TB) = Varθ(TB) + bias2(TB)

= ω2 θ(1− θ)

n
+ (1− ω)2

(
1

2
− θ

)2
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Message: Our prior judgements about θ affect our choice of estimator (for example in
this previous example, if we knew the Xi represent coin flips, then we expect θ to be
near 1

2 , so we should use mse(TB)).

Unbiasedness is not necessarily desirable. Consider this pathological example:

Example. Suppose X ∼ Poisson(λ). We wish to estimate θ = P(X = 0)2 = e−2λ.
For an estimator T (X) to be unbiased we must have for all λ

Eλ[θ̂] =
∞∑
x=0

T (X)
e−λλx

x!
= e−2λ = θ

⇐⇒
∞∑
x=0

T (x)
λx

x!
= e−λ =

∞∑
x=0

(−1)x
λx

x!

for this to hold ∀λ ≥ 0, we need

T (x) = (−1)x

This estimator makes no sense!

Start of
lecture 3 0.3 Sufficiency

X1, . . . , Xn are IID random variables from a distribution with pdf (or pmf) fX(• | θ).
Let X = (X1, . . . , Xn).

Question: Is there a statistic T (X) which contains all information in X needed to esti-
mate θ?

Definition (Sufficiency). A statistic T is sufficient for θ if the conditional distri-
bution of X given T (X) does not depend on θ.

Remark. θ and T (X) could be vector-valued.
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Example. X1, . . . , Xn
IID∼ Ber(θ) for θ ∈ [0, 1].

fX(• | θ) =
n∏

i=1

θxi(1− θ)1−xi

= θ
∑

xi(1− θ)n−
∑

xi

Note. This only depends on X through T (X) =
∑n

i=1Xi.

For x with
∑

xi = t,

fX|T=t(x | T (x) = t) =
Pθ(X = x, T (X) = t)

Pθ(T (X) = t)

=
Pθ(X = x)

Pθ(T (X) = t

=
θ
∑

xi(1− θ)n−
∑

xi(
n
t

)
θt(1− θ)n−t

=

(
n

t

)−2

As this doesn’t depend on θ, T (X) is sufficient for θ.

Theorem (Factorisation criterion). T is sufficient for θ if and only if

fX(x | θ) = g(T (x), θ) · h(x)

for suitable functions g, h.

Proof. (Discrete case)

Suppose fX(x | θ) = g(T (X), θ)h(X). If T (x) = t, then

fX|T=t(x | T = t) =
∂Pθ(X = x,�����T (X) = t

∂Pθ(T (X) = t)

=
g(T (X), θ)h(X)∑

x′ : T (x′)=t g(T (x; ), θ)h(x
′)

=
����g(t, θ)

����g(t, θ)

h(x)∑
x′ : T (x′)=t h(x

′)

As this doesn’t depend on θ, T (X) is sufficient.
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Conversely, suppose T (X) is sufficient, then

Pθ(X = τ) = Pθ(X = x, T (X) = t)

= Pθ(T (X) = t)︸ ︷︷ ︸
g(t,θ)

·Pθ(X = x | T (X) = t)︸ ︷︷ ︸
h(x)

Then by sufficiency of T , h(x) doesn’t depend on θ (so it is a function of x). Thus the
pmf of X, fX(• | θ) factorises as in the statement of the theorem.

Example. X1, . . . , Xn
IID∼ Ber(θ).

fX(x | θ) = θ
∑

xi(1− θ)n−
∑

xi

Take g(t, θ) = θt(1 − θ)n−t, h(x) = 1. This immediately implies T (X) =
∑

xi is
sufficient.

Example. X1, . . . , Xn
IID∼ Unif([0, θ]), θ > 0. Then

fX(x | θ) =
n∏

i=1

1

θ
1xi∈[0,θ]

=
1

θn
1{maxi xi≤θ}︸ ︷︷ ︸
T (x),θ)

1{mini xi≥0}︸ ︷︷ ︸
h(x)

T (x) = maxi xi. Then by factorisation lemma, T (x) = maxi xi is sufficient for θ.

Minimal Sufficiency

Sufficient stats are not unique. Indeed any 1-to-1 function of a sufficient statistic is also
sufficient. Also T (X) = X is always sufficient by not very useful.

Definition. A sufficient statistic T is minimal sufficient if it is a function of any
other sufficient statistic. That is, if T ′ is also sufficient, then

T ′(x) = T ′(y) =⇒ T (x) = T (y)

for all x, y ∈ X n.
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Remark. Any two minimal sufficient statistics, T, T ′ are “in bijection with each
other”:

T (x) = T (y) ⇐⇒ T ′(x) = T ′(y)

Useful condition to check minimal sufficiency.

Theorem (Minimal Sufficiency Theorem). Suppose that T (X) is a statistic such
that fX(x | θ)/fX(y | θ) is constant as a function of θ if and only if T (x) = T (y).
Then T is minimal sufficient.

Let x
1∼ y if fX(x|θ)

fX(y|θ) is constant in θ. It’s easy to check that
1∼ is an equivalence relation.

Similarly, for a given statistic T , x
2∼ y if T (x) = T (y) defines another equivalence

relation. The condition of theorem says
1∼ and

2∼ are the same.

Note. We can always construct a statistic T which is constant on the equivalence

classes of
1∼, which by the theorem is minimal sufficient.

Proof. For any value t of T , let zt be a representative from the equivalence class

{x | T (x) = t}

Then

fX(x | θ) = fX(zT (x) | θ)︸ ︷︷ ︸
g(T (x),θ)

fX(x | θ)
fX(zT (x) | θ)︸ ︷︷ ︸

h(x)

Where h(x) does not depend on θ by the hypothesis, as x
1∼ zT (x). By factorisation

criterion, T is sufficient.

To prove that T is minimal, take any other sufficient statistic S. Want to prove that
if S(x) = S(y) then T (x) = T (y). By factorisation criterion, there are functions gS , hS
such that

fX(x | θ) = gS(S(x), θ)hS(x)

Suppose S(x) = S(y). Then

fX(x | θ)
fX(y | θ)

= ������
gS(S(x), θ)hS(x)

������
gS(S(y), θ)hS(y)

which doesn’t depend on θ. Hence x
1∼ y. By hypothesis, x

2∼, hence T (x) = T (y).
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Remark. Sometimes the range of X depends on θ (for example X1, . . . , Xn
IID∼

Unif([0, θ]). In this case we can interpret

“ fX(x|θ
fX(y|θ) is constant in θ”

to mean that fX(x | θ) = c(x, y)fX(y | θ) for some function c which does not depend
on θ.

Start of
lecture 4

Example. Suppose thatX1, . . . , Xn
IID∼ N(µ, σ2), with parameters (µ, σ2) unknown.

fX(x | θ)
fX(y | θ)

=
(2πσ2)−π/2 exp

{
− 1

2σ2

∑n
i=1(xi − µ)2

}
(2πσ2)−π/2 exp

{
− 1

2σ2

∑n
i=1(yi − µ)2

}
= exp

{
− 1

2σ2

(
n∑

i=1

x2i −
n∑

i=1

y2i

)
µ

σ2
(

n∑
i=1

xI −
n∑

i=1

yi

}

If
∑n

i=1 x
2
i =

∑n
i=1 y

2
i and

∑n
i=1 xi =

∑n
i=1 yi, this ratio does not depend on

(µ, σ2). The converse is also true: if the ratio does not depend on (µ, σ2) then
we must have

∑n
i=1 x

2
i =

∑n
i=1 y

2
i and

∑n
i=1 xi =

∑n
i=1 yi. By the theorem,

T (X) = (
∑n

i=1X
2
i ,
∑n

i=1Xi) is minimal sufficient.

Recall that bijections of T are also minimal sufficient. A more common way of expressing
a minimal sufficient statistic in this model is

S(X) = (X,SXX)

X =
1

n

∑
i

Xi SXX =
∑
i

(Xi −X)2

In this example, (µ, σ2) and T (X) are both 2-dimensional. In general, the parameter
and sufficient statistic can have different dimensions.

Example. X1, . . . , Xn
IID∼ N(µ, µ2), µ ≥ 0. Here, the minimal sufficient statistic is

S(X) = (X,SXX).

Rao-Blackwell Theorem

Note. So far we’ve written Eθ, Pθ to denote expectations and probabilities in the

model where X1, . . . , Xn
IID∼ fX(• | θ). From now on, I’ll drop the subscript θ.
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Theorem (Rao-Blackwell). Let T be a sufficient statistic for θ. Let θ̃ be some
estimator for θ, with E(θ̃2) < ∞, for all θ. Define a new estimator θ̂ = Eθ(θ̃ | T (X)).
Then, for all θ,

E[(θ̂ − θ)2] ≤ E[(θ̃ − θ)2]

(mse(θ̂) ≤ mse(θ̃)). The inequality is strict unless θ̃ is a function of T (X).

Remark. θ̂ is a valid estimator, i.e. it does not depend on θ, only depends on X,
because T is sufficient.

θ̂(T (X)) =

∫
θ̃(X)︸ ︷︷ ︸

estimator, so does not depend on θ

fX|T (x | T )︸ ︷︷ ︸
does not depend on θ, because T is sufficient

dx

Moral. We can improve the mse of any estimator θ̃ by taking a conditional expec-
tation given T (X).

Proof. By the tower property:

Eθ̂ = E[E[θ̃ | T ] = Eθ̃

So bias(θ̂) = bias(θ̃) for all θ. By the conditional variance formula,

Var(θ̃) = E(Var(θ̃ | T )) + Var(E(θ̃ | T ))
= E[Var(θ̃ | T )︸ ︷︷ ︸

≥0 with P=1

] + Var(θ̂)

=⇒ Var(θ̃) ≥ Var(θ̂)

for all θ. Therefore mse(θ̃) ≥ mse(θ̂).

Note: Var(θ̃ | T ) > 0 with some positive probability unless θ̃ is a function of T (X). So
mse(θ̃) > mse(θ̂) unless θ̃ is a function of T (X).
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Example. Say X1, . . . , Xn
IID∼ Poisson(λ). We wish to estimate θ = P(X1 = 0) =

e−λ.

fX(x | λ) + e−nλλ
∑

xi∏
i xi!

=⇒ fX(x | θ) = θn(− log θ)
∑

xi∏
i xi!

Letting h(x) = 1∏
xi!

, g(T (X), θ) = θn(− log θ)T (X), then by factorisation criterion,

T (X) =
∑

Xi is a sufficient statistic. Let θ̃ = 1{X1=0} (unbiased: only uses one
observation X1).

θ̂ = E[θ̃ | T = t]

= P

(
X1 = 0 |

n∑
i=1

Xi = t

)

=
P (X1 = 0,

∑n
i=2Xi = t)

P (
∑n

i=1Xi = t)

=
P(X1 = 0)P (

∑n
i=2Xi = t)

P (
∑n

i=1Xi = t)

= · · ·

=

(
n− 1

n

)t

So ê =
(
1− 1

n

)∑xi is an estimator which by the Rao-Blackwell theorem has

mse(θ̂) < mse(θ̃)

Sanity check: What happens as n → ∞?

θ̂ =

(
1− 1

n

)nx
n→∞−→ e−x

and by the Strong Law of Large Numbers, X → EX1 = λ so θn ≈ e−λ = θ as h
grows large.
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Example. Let X1, . . . , Xn
IID∼ Unif([0, θ]), θ unknown. θ ≥ 0. Recall T (X) =

maxiXi is sufficient for θ. Let θ̃ = 2X1, which is unbiased. Then

θ̂ = E[θ̃ | T = t]

= 2E[X1 | max
i

Xi = t]

= 2E[X1 | max
i

Xi = t,max
i

Xi = X1]P[max
i

Xi = X1 | maxXi = t]

+ E[X1 | max
i

Xi = t,max
i

Xi ̸= X1]P[max
i

Xi ̸= X1maxXi = t]

=
2t

n
+

2(n− 1)

n
E[X1 | X1 ≤ t, max

1≤i≤n
Xi = t]

=
2t

n
+

2(n− 1)

n

t

2

So θ̂ = n+1
n maxiXi is a valid estimator with

mse(θ̂) < mse(θ̃)

Start of
lecture 5 0.4 Maximum likelihood Estimation

Let X = (X1, . . . , Xn) have f=joint pdf (or pmf) fX(x | θ).

Definition (Likelihood function). The likelihood function is

L : θ 7→ fX(X | θ)

The maximum likelihood estimator (mle) is any value of θ maximising L(θ).

If X1, . . . , Xn are IID each with pdf (or pmf) fX(• | θ), then

L(θ) =
n∏

i=1

fX(xi | θ)

We’ll denote the logarithm

l(θ) = logL(θ) =
n∑

i=1

log fX(xi | θ)

18

https://notes.ggim.me/Stats#lecturelink.5


Example. X1, . . . , Xn
IID∼ Ber(θ).

l(θ) =
(∑

Xi

)
log θ +

(
n−

∑
Xi

)
log(1− θ)

∂l

∂θ
=

∑
Xi

θ
− n−

∑
Xi

1− θ

This is equal to 0 if and only if θ = 1
n

∑
Xi = X. Hence X is the mle for θ. This is

unbiased as EX = θ.

Example. X1, . . . , Xn
IID∼ N(µ, σ2)

l(µ, σ2) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − µ)2

This is maximised when ∂l
∂µ = ∂l

∂σ2 = 0

∂l

∂µ
= − 1

σ2

n∑
i=1

(Xi − µ)

equal to 0 when µ = X (∀σ2)

∂l

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2

This is equal to 0 when σ2 = 1
n

∑n
i=1(Xi − X)2 = 1

nSXX . Hence (µ̂, σ̂2) =
(X,SXX/n) are the mle in this model.

Note that µ = X is unbiased. Is σ̂2 biased? We could compute Eσ̂2 directly. Later
in the course, we’ll show that

SXX

σ2
=

nσ̂2

σ2
∼ χ2

n−1

Eσ̂2 = E(χ2
n−1)

σ2

n
=

n− 1

n
σ2 ̸= σ2

So σ̂2 is biased, but asymptotically unbiased:

bias(σ̂2)
n→∞−→ 0 ∀σ2
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Example. X1, . . . , Xn
IID∼ Unif[0, θ]

L(θ) =
1

θn
1{maxi Xi≤θ}

We an see from the plot that θ̂ = maxiXi is the mle for θ. Last time we started
from unbiased estimator θ̃ = 2X1 and using the R-B theorem we found an estimator

θ̂ =
n+ 1

n
max

i
Xi

This is also unbiased. So in this model the mle is biased as

Eθ̂mle = E
[
n+ 1

n
θ̂

]
=

n

n+ 1
θ

but it is asymptotically unbiased.

Properties of the mle

(1) If T is a sufficient statistic then the mle is a function of T (X). By the factorisation
criterion:

L(θ) = g(T (x), θ)h(x)

If T (x) = T (y) the likelihood function with data x or y is the same up to a multi-
plicative constant. Hence, the mle in each case is the same.

(2) If ϕ = h(θ) where h is a bijection, then the mle of ϕ is ϕ̂ = h(θ̂) where θ̂ is the mle
of θ.

(3) Asymptotic normality:
√
n(θ̂ − θ) is approximately normal with mean 0 when n is

large. Under some regularity conditions, for a “nice set” A,

P(
√
n(θ̂ − θ) ∈ A)

n→∞−→ P(z ∈ A)

where z ∼ N(0,Σ). This holds for all “regular” values of θ.
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Here Σ is some function of l, and there is a theorem (Cramer-Rao) which says this
is the smallest variable attainable.

(4) Sometimes if the mle is not available analytically, we can find it numerically.

Confidence Intervals

Example. Vaccine has 76% efficacy in a 3-month period, with a 95% confidence
interval (59%, 86%)

Definition (Confidence Interval). A (100 · γ)%-confidence interval for a parameter
θ is a random interval (A(X), B(X)) such that

P(A(X) ≤ θ ≤ B(X)) = γ

for all values of θ. (A and B are random, and θ is fixed).

Correct or frequentist interpretation:

There exists some fixed true parameter θ. We repeat the experiment many times. On
average, 100 · γ% of the time the interval (A(X), B(X)) contains θ.

Misleading interpretation:
“Having observed X = x, there is a probability γ that θ is in (A(x), B(x)).”
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Example. X1, . . . , Xn
IID∼ N(θ, 1). Find a 95% confidence interval for θ. We know

that

X =
1

n

∑
Xi ∼ N

(
θ,

1

n

)
=⇒ z :=

√
n(X − θ) ∼ N(0, 1)

z has this distribution for all θ.

Let z1, z2 be any two numbers such that Φ(z2)− Φ(z1) = 0.95.

Then
P(z1 ≤

√
n(X − θ) ≤ z2) = 0.95

Rearrange:

P
(
X − z2√

n
≤ θ ≤ X

z1√
n

)
= 0.95

Then
(
X − z2√

n
, X + z2√

n

)
is a 95% confidence interval. How to choose z1, z2? Usu-

ally we minimise the width of interval. In this case this is achieved by

z1 = Φ−1(0.025), z2 = Φ−1(0.975)

Start of
lecture 6 Recipe for Confidence Interval

(1) Find some quantity R(X, θ) such that the Pθ-distribution of R(X, θ) does not depend
on θ. This is called a pivot. For example

z =
√
n(X − µ) ∼ N(0, 1) ∀µ

(2) Write down a probability statement about the pivot of the form

P(c1 ≤ R(X, θ) ≤ c2) = γ

by using the quantities c1, c2 of the distribution of R(X, θ) [typically a N(0, 1) or χ2
p

distribution).
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(3) Rearrange the inequalities to leave θ in the middle.

Proposition. If T is a monotone increasing function T : R → R, and (A(x), B(X))
is a 100γ% confidence interval for θ, then (T (A(X)), T (B(X))) is a confidence in-
terval for T (θ).

Remark. When θ is a vector, we talk about confidence sets.

Example. X1, . . . , Xn
IID∼ N(0, σ2). Find a 95% confidence interval for σ2.

(1) Note that Xi
σ ∼ N(0, 1)

=⇒
n∑

i=1

X2
i

σ2
∼ χ2

n

Hence R(X,σ2) =
∑

i
X2

i
σ2 is a pivot.

(2) Let C1 = F−1
χ2
n
(0.025), c2 = F−1

χ2
n
(0.975). Then

P

(
c1 ≤

1

σ2

∑
i

X2
i ≤ c2

)
= 0.95

(3) Rearranging:

P
(∑

X2
i

c2
≤ σ2 ≤

∑
X2

i

c1

)
= 0.95

Hence
[∑

X2
i

c2
,
∑

X2
i

c1

]
is a 95% confidence interval for σ2.

Hence, using the proposition above,

[√∑
X2

i
c2

,

√
X2

i
c1

]
is a 95% confidence interval

for σ.
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Example. X1, . . . , Xn
IID∼ Ber(p), n is large. Find an approximate 95% confidence

interval for p.

(1) The mle for p is p̂ = 1
n

∑n
i=1Xi. By the Central limit theorem when n is large, p̂

is approximately N
(
p, p(1−p)

n

)
. Therefore

√
n (p̂−p)√

p(1−p)
is approximately N(0, 1).

(2) z = Φ−1(0.975)

P

(
−z ≤

√
n(p̂− p)√
p(1− p)

≤ z

)
≈ 0.95

(3) Rearranging this is tricky. Argue that as n → ∞, p̂(1 − p̂) → p(1 − p). So
replace denominator:

P

(
−z ≤

√
n(p̂− p)√
p̂(1− p̂)

≤ z

)
≈ 0.95

Now it’s easier to rearrange:

P

(
p̂− z

√
p̂(1− p̂)√

n
≤ p ≤ p̂+ z

√
p̂(1− p̂)√

n

)
≈ 0.95

So

[
p̂± z

√
p̂(1−p̂j√

n

]
is an approximate 95% confidence interval for p.

Note. � z ≈ 1.95

�

√
p̂(1− p̂) ≤ 1

2 for all p̂ ∈ (0, 1)

So a “conservative” confidence interval is
[
p̂± 1.96 · 1

2 · 1√
n

]
.

0.5 Interpreting Confidence intervals

Suppose X1, X2
IID∼ Unif

[
θ − 1

2 , θ +
1
2

]
. What is a sensible 50% confidence interval for

θ? Consider

P(θ is between X1, X2) = P(min(X1, X2) ≤ θ ≤ max(X1, X2))

= P(X1 ≤ θ ≤ X2) + P(X2 ≤ θ ≤ X1)

=
1

2
× 1

2
+

1

2
× 1

2

=
1

2
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Immediately conclude that (min(X1, X2),max(X1, X2)) is a 50% confidence interval for
θ.

But we observe X1 = x1, X2 = x2 with |x1 − x2| > 1
2 . In this case we can be sure that

θ is in (min(x1, x2),max(x1, x2).

Frequentist interpretation of confidence interval is entirely correct! If we repeat the
experiment many times θ ∈ (min(X1, X2),max(X1, X2)) exactly 50% of the time. How-
ever, we cannot say that given a specific observation (x1, x2) we are “50% certain that
θ ∈ C.I..

Bayesian Inference

So far, we have assume that there is some true parameter θ. That data X has pdf (or
pmf) fX(• | θ).

Bayesian analysis is a different framework, where we treat θ as a random variable taking
values in Θ.

We being by assigning to θ a prior distribution π(θ), which represents the investigator’s
opinions or information about θ before seeing any data. Conditional on θ, the data X
has pdf (or pmf) fX(x | θ). Havign observed a specific value of X = x, this information
is combined with the prior to form the posterior distribution. π(θ | x) which is the
conditional distribution of θ given X = x.

By Bayes rule:

π(θ | x) = π(θ) · fX(x | θ)
fX(x)

where fX(x) is the marginal probability of X and:

fX(x) =

{∫
Θ fX(x | θ)π(θ)dθ if θ is constant∑
θ∈Θ fX(x | θ)π(θ) if θ is discrete

Start of
lecture 7 Bayesian Analysis

Idea: treat θ as a random variable.
Prior distribution: π(θ) (Info about θ before seeing data)
Joint distribution of X, θ:

fX(x | θ) · π(θ)
Posterior distribution:

π(θ | x) = fX(f | θ)π(θ)∫
fX(x | θ)π(θ)dθ

∝ fX(x | θ)π(θ)

(likelihood times prior).
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Example (Prior choice clear). Patient gets a COVID test:

θ =

{
0 patient does not have COVID

1 patient does have COVID

Data:

X =

{
0 negative test

1 positive test

We know: Sensitivity of test:

fX(X = 1 | θ = 1)

Specificity of test:
fX(X = 0 | θ = 0)

What prior? Suppose we don’t know anything about patient but we know that a
proportion p of people in the UK are infected today. Natural choice:

π(θ = 1) = p

Chance of infection given true test?

π(θ = 1 | X = 1) =
π(θ = 1)fX(X = 1 | θ = 1)

π(θ = 0)fX(X = 1 | θ = 0) + π(θ = 1)fX(X = 1 | θ = 1)

If π(θ = 0) ≫ π(θ = 1), this posterior can be small.
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Example. θ ∈ [0, 1] mortality rate for new surgery at addenbrookes. In the first 10
operations, there were no deaths. Model: Xi ∼ Ber(θ), Xi = 1 if i-th operation is
death, 0 otherwise.

fX(x | θ) = θ
∑

Xi(1− θ)10−
∑

Xi

Prior: We’re told that the surgery is performed in other hospitals with a mortality
rate ranging from 3% to 20%, with an average of 10%. We’ll say that π(θ) is
Beta(a, b). We choose a = 3, b = 27, so that the mean of π(θ) is 0.1 and

π(0.03 < θ < 0.2) = 0.9

Posterior:

π(θ | x) ∝ π(θ)× fX(x | θ)
∝ θa−1(1− θ)b−1θ

∑
xi(1− θ)10−

∑
xi

= θ
∑

xi+a−1(1− θ)b+10−
∑

xi−1

(we ommitted the normalising constant of Beta(a, b) because it does not depend on
θ). We deduce this is a Beta (

∑
xi + a, 10−

∑
xi + b) distribution. In our case

10∑
i=1

xi = 0, a = 0, b = 27

=⇒ Beta(3, 37)
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Note. Here prior and posterior are in the same family of distrbutions. This is
known as conjugacy.

What to do with posterior? The information in π(G | x) can be used to make decisions
under uncertainty.

Formal Process

(1) We must pick a decision δ ∈ D.

(2) The loss function L(θ, δ) is the loss incurred when we make decision δ and true
parameter has value θ. For example δ = {0, 1}, δ = 1 means we ask the patient to
self isolate. Then, L(θ = 0, δ = 1) is the loss incurred when we ask a non-infected
patient to self-isolate.

(3) We pick decision which minimises the posterior expected loss:

δ∗ = argmin
δ∈D

∫
Θ
L(θ, δ)π(θ | x)dθ

(Von Neumann-Morgenstern theorem)

Point estimation:
The decision is a “best guess” for the true parameter, so δ ∈ Θ. The Bayes estimator
θ̂(b) minimises

h(δ) =

∫
Θ
L(θ, δ)π(θ | x)dθ

Example. Quadratic loss L(θ, δ) = (θ − δ)2

h(δ) =

∫
(θ − δ)2π(θ | x)dθ

h′(δ) = 0 if ∫
(θ − δ)π(θ | x)dθ = 0

⇐⇒
∫

θπ(θ | x)dθ = δ

∫
π(θ | x)dθ︸ ︷︷ ︸

=1

Hence θ̂(b) equals the posterior mean of θ.
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Example. Absolute error loss L(θ, δ) = |θ − δ|

h(δ) =

∫
|θ − δ|π(θ | x)dθ

=

∫ δ

−∞
−(θ − δ)π(θ | x)dθ +

∫ ∞

δ
(θ − δ)π(θ | x)dθ

= −
∫ δ

−∞
θπ(θ | x)dθ +

∫ ∞

δ
θπ(θ | x)dθ + δ

∫ δ

−∞
π(θ | x)dθ − δ

∫ ∞

δ
π(θ | x)dθ

Take derivative with respect to δ. By the FTC,

h′(δ) =

∫ δ

−∞
π(θ | x)dθ −

∫ ∞

δ
π(θ | x)dθ

So h′(δ) = 0 if and only if∫ δ

−∞
π(θ | x)dθ =

∫ ∞

δ
π(θ | x)dθ

So in this case
θ̂(b) = median of the posterior

Credible Interval

A 100γ% credible interval (A(x), B(x)) is one which satisfies

π(A(x) ≤ θ ≤ B(x) | x) = γ

(A and B are fixed at the observed data x, but θ is random).∫ B(x)

A(x)
π(θ | x)dθ = γ

In example sheet 2:
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Note. We can interpret intervals conditionally (“given x, we are 100γ% sure that
θ ∈ [A(x), B(x)]”).

Note. If T is a sufficient statistic, π(θ | x) only depends on x through T (x).

π(θ | x) ∝ π(θ)× fX(x | θ)
= π(θ)g(T (x), θ)h(x)

∝ π(θ)g(T (x), θ)

Start of
lecture 8

Example. X1, . . . , Xn
IID∼ N(µ, 1). Prior: π(µ) is N

(
0, 1

τ2

)
π(µ | x) ∝ fX(x | µ) · π(µ)

∝ exp

[
−1

2

n∑
i=1

(xi − µ)2

]
exp

[
−µ2τ2

2

]

∝ exp

[
−
(
1

2

)(n+τ2){
µ−

∑
xi

n+ τ2

}2
]

we recognise this as a

N

( ∑
xi

n+ τ2
,

1

n+ τ2

)
distribution. The Bayes estimator µ̂(b) =

∑
xi

n+τ2
for both quadratic loss and absolute

error loss (µ̂mle =
∑

xi

n ). A 95% credible interval is(
µ̂(b) − 1.96√

n+ τ2
, µ̂(b) +

1.96
√
n+ τ

2

)

This is close to a 95% confidence interval when n ≫ τ2.
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Example. X1, . . . , Xn
IID∼ Poisson(λ). Prior: π(λ) is Exp(1), π(λ) = e−λ, λ > 0.

π(λ | x) ∝ fX(x | λ) · π(λ)

∝ e−nλλ
∑

xi

����∏
i xi!

e−λ λ > 0

= e−(n+1)λλ
∑

xi λ > 0

THis is a Γ (1 +
∑

xi, n+ 1) distribution. The Bayes estimator under quadratic loss
is the posterior mean

λ̂(b) =

∑
xi + 1

n+ 1

n→∞−→
∑

xi
n

= λ̂mle

Under the absolute error loss the bayes estimator λ̃(b) has∫ λ̃(b)

0

(n+ 1)
∑

xi−1

(
∑

xi)!
x
∑

xie−(n+1)λdλ =
1

2

Simple Hypothesis

A hypothesis is some assumption about the distribution of the data X. Scientific ques-
tions are phrased as a choice between a null hypothesis H0 (base case, simple model,
no effect) and an alternative hypothesis H1 (complex model, interesting case, positive or
negative effect).

Examples and non-examples of simple hypotheses (no explanation yet)

(1) X1, . . . , Xn
IID∼ Ber(θ), H0: θ = 1

2 (fair coin), H1: θ = 3
4 . This is a valid pair.

(2) As in the previous but H0: θ = 1
2 and H1: θ ̸= 1

2 . This is not a valid pair.

(3) X1, . . . , Xn takes values in N0. H0: Xi
IID∼ Poisson(λ) for some λ > 0, H2: Xi

IID∼ f1
for some other f1. This is not a valid pair.

(4) X has pdf f(• | θ), θ ∈ Θ. H0: θ ∈ Θ0 ⊂ Θ, H1: θ ̸∈ Θ0. This is simple if Θ0 = {θ0}.

A hypothesis is said to be simple if it fully specifies the distribution of X. Otherwise we
say it is composite.

A test of H0 is defined by a critical region C ⊆ X . When X ∈ C we “reject” H0 and
when X ̸∈ C we say we “fail to reject” or “find no evidence against” H0.

Type I error: we reject H0 when H0 is true.
Type II error: we fail to reject H0 when H0 is false.
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When H0 and H1 are simple, we define

α = PH0(H0 is rejected) = PH0(X ∈ C)

“probability of type I error”.

β = PH2(H0 is not rejected) = PH1(X ̸∈ C)

“probability of type II error”.

The size of the test is α. The power of the test is 1 − β. Tradeoff between minimising
size and maximising power. Usually we fix an acceptable size (say α = 1%), then pick
test of size α which maximises the power.

Neyman-Pearson Lemma

Let H0, H1 be simple. Let X have pdf fi under Hi, i = 0, 1. The likelihood ratio statistic

Λx(H0, H1) =
f1(X)

f0(X)

A likelihood ratio test (LRT) rejects H0 when

X ∈ C = {x : Λx(H0, H1) > k}

for some threshold or “critical value” k.

Theorem (Neyman-Pearson Lemma). Suppose that f0, f1 are non-zero on the same
sets. Suppose there exists k such that the LRT with critical region

C = {x : Λx(H0, H1) > k}

has size exactly α. Then, this is the test with the smallest β (highest power) out of
all tests of size ≤ α.

Remark. A LRT of size α need not exist (try to think of an example). Even then,
there is a “randomised LRT” with size α.

Proof. Let C be complement of C. The LRT has

α = PH0(X ∈ C) =

∫
C
f0(x)dx

β = PH1(X ̸∈ C) =

∫
C
f1(x)dx
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Let C∗ be critical region of another test with size α∗, power 1− β∗, with α∗ ≤ α. Want
to prove that β ≤ β∗ or β − β∗ ≤ 0.

β − β∗ =

∫
C
f1(x)dx−

∫
C∗

f1(x)dx

=

∫
C∩C∗

f1(x)dx−
∫
C∗∩C

f1(x)dx

=

∫
C∩C∗

f1(x)

f0(x)︸ ︷︷ ︸
≤R on C

f0(x)dx−
∫
C∗∩C

f1(x)

f(x)︸ ︷︷ ︸
>R on C

f0(x)dx

≤ k

[∫
C∩C∗

f0(x)dx−
∫
C∗∩C

f0(x)dx

]
= k

[∫
C∗

f0(x)dx−
∫
C
f0(x)dx

]
= k(α∗ − α)

≤ 0

Start of
lecture 9 Lemma. If C is a LRT with size α, and C∗ is another test of size ≤ α, then C is

more powerful than C∗, i.e.

β = PH1(x ̸∈ C) ≤ PH1(x ̸∈ C∗) = β∗
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Example. X1, . . . , Xn
IID∼ N(µ, σ2

0), σ
2
0 is known. Want the best size α test for H0:

mu = µ0, H1: µ = µ1 for some fixed µ1 > µ0

Λx(H0;H1) =
�����
(2πσ2)−

1
2 exp

(
− 1

2σ2
0

∑
(xi − µ1)

2
)

�����
(2πσ2

0)
1
2 exp

(
− 1

2σ2
0

∑
(xi − µ0)2

)
= exp

(
(µ1 − µ0)

σ2
0

nx+
n(µ2

0 − µ2
1)

2σ2
0

)
Λx(H0;H1) is monotone increasing in x = 1

n

∑
xi. Hence, for any k, there is a c,

such that Λx(H0;H1) > k ⇐⇒ x > c. Thus the LRT critical region is {x : x > a}
for some constant c. By the same logic the LRT is of the form

C = {
√
n
(x− µ0)

σ0
< c′}

want to pick c′ such that

PH0

(√
n
(x− µ0)

σ0
> c′

)
= α

But
√
n (x−µ0)

σ0
∼ N(0, 1) (this is a pivot). So if we take c′ = Φ−1(1−α) · zα. Finally

the LRT has critical region {
x :

√
n(x− µ0)

σ0
> zα

}
By N-D lemma, this is the most powerful test of size α. This is called a “z-test”

because we use a z statistic z =
√
n
(
x−µ0

σ0

)
to define the critical region.

P-value

For any test with critical region of the form {x : T (x) > k} for some statistic T , a p-value
or observed significance level is

p = PH0(T (X) > T (X∗))

where x∗ is the observed date. In example we just saw, let µ0 = 5, µ1 = 6, σ0 = 1,
α = 0.05, observe

x∗ = (5.1, 5.5, 4.9, 5.3)

x∗ = 5.2, z∗ = 0.4. zα = Φ−1(1− α) = 1.645
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Here, we fail to reject H0: µ0 = 5, p = 0.35.

Proposition. Under H0, p has a Unif(0, 1) distribution. p is a function of x∗; null
distribution assumes x∗ ∼ PH0 .

Proof.
PH0(p < u) = PH0(1− F (T ) < u)

where F is the cdf of T .

= PH0(F (T ) > 1− u))

= PH0(T > F−1(1− u))

= 1− F (F−1(1− u))

= u

for all u ∈ [0, 1]. Thus p ∼ Unif(0, 1).

Composite Hypotheses

X ∼ fX(• | θ), θ ∈ Θ. H0: θ ∈ Θ0 ⊂ Θ, H1: θ ∈ Θ1 ⊂ Θ. Type I, II error probabilities
depend on the value of θ within Θ0 or Θ1 respectively. Let C be some critical region.
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Definition (Power Function and UMP test). The power function of the test C is

W (θ) = Pθ( x ∈ C︸ ︷︷ ︸
H0 rejected

)

The size of c is the worst case Type I error probability:

α = sup
θ∈Θ

W (θ)

We say that C is uniformly most powerful (UMP) of size α for H0 against H1 if:

(1) supθ∈Θ0
W (θ) = α

(2) For any other test C∗ of size ≤ α, with power function W ∗, we have W (θ) ≥
W ∗(θ) for all θ ∈ Θ1.

Note. UMP test need not exist. But, in some simple cases, the LRT is UMP.
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Example. X1, . . . , Xn
IID∼ N(µ, σ2

0): σ
2
0 known. We wish to test H0: µ ≤ µ0 against

H1: µ > µ0 for some fixed µ0. We just studied the simple hypothesis:

H ′
0 : µ = µ0, H ′

1 : µ = µ1 (µ1 > µ0)

LRT was:

C =

{
x : z =

√
n(x− µ0)

σ0
> zα

}
Claim: the same test C is UMP for H0 against H1. The power function for C is

W (µ) = Pµ(X ∈ C) = Pµ

(√
n(x− µ0)

σ0
> zα

)
= Pµ

(√
n(x− µ)

σ0
> zα +

√
n(x− µ)

σ0

)
= 1− Φ

(
zα +

√
n(µ0 − µ)

σ0

)
This is monotone increasing in µ ∈ (−∞,∞)

The test has size α as supµ∈Θ0
W (µ) = α. It remains to show that if C∗ is another

test of size ≤ α with power function W ∗ then W (µ1) ≥ W ∗(µ1) for all µ1 > µ0.
Main observation: critical region only depends on µ0. And C is the LRT for the
simple hypothesis H ′

0: µ = µ0, H
′
1: µ = µ1. Any test C∗ of H0 vs H1 of size ≤ α

also has size ≤ α for H ′
0 vs H ′

1.

W ∗(µ0) ≤ sup
µ∈Θ0

W ∗(µ) ≤ α

Hence by N-D lemma, we know W (µ1) ≥ W (µ2). As we can apply this argument
for any µ1 > µ0, we have

W ∗(µ1) ≤ W (µ1) ∀µ1 > µ0

Start of
lecture 10
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Generalised Likelihood Ratio Tests

X ∼ fX(• | θ), H0: θ ∈ Θ0, H1: θ ∈ Θ1. The generalised likelihood ratio statistic:

Λx(H0;H1) =
supθ∈Θ1

fX(x | θ)
supθ∈Θ0

fX(x | θ)

Large values of Λx indicate larger departure from H0.

Example. X1, . . . , Xn
IID∼ N(µ, σ2

0), σ0 is known. Wish to test H0: µ = µ0, H1:
µ ̸= µ0 for fixed µ0. Here Θ0 = {µ0}, Θ1 = R \ {µ0}. The GLR is

Λx(H0;H1) =
(2πσ2

0)
−π/2 exp

(
− 1

2σ2
0

∑
i(xi − x)2

)
(2πσ2

0)
π/2 exp

(
− 1

2σ2
0

∑
i(xi − µ0)2

)
Taking 2 · log of Λx (monotone increasing transformation)

2 log Λx =
n

σ2
0

(x− µ0)
2

The GLR test rejects H0 when Λx is large (or when 2 log Λx is large), i.e. when∣∣∣∣√n
(x− µ0

σ0

∣∣∣∣
is large. (Under H0, the expression in the modulus has a N(0, 1) distribution). For
a test of size α, reject when∣∣∣∣√n

(x− µ0)

σ0

∣∣∣∣ > zα/2 = Φ−1
(
1− α

2

)

This is called a 2-sided test.

Note. 2 log Λx = n (x−µ0)
σ2
0

∼ χ2
1 under H0.
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We can also define the critical region of the GLR test as{
x : n

(x− µ0)

σ2
0

> χ2
1(α)

}
In general, we can approximate the distribution of 2 log Λx with a χ2

1 distribution when
n is large(!)

Wilks’ Theorem

Suppose θ is k-dimensional θ = (θ1, . . . , θk). The dimension of a hypothesis H0: θ ∈ Θ0

is the number of “free parameters” in Θ0.

(1) Θ0 = {θ ∈ Rk : θ1 = θ2 = · · · = θp = 0} for some p < k. Here dim(θ0) = k − p.

(2) Let A ∈ Rp×k, b ∈ Rp, p < k¿

Θ0 = {θ ∈ Rk : Aθ = b}

dim(Θ0) = k − p if rows of A are linearly independent (Θ0 is a hyperplane).

(3) Θ0 = {θ ∈ Rk : θ0 = fi(ϕ), ϕ ∈ Rp}, p < l. Here ϕ are the free parameters; fi need
not be linear. Under regularity conditions dim(θ0) = p.

Theorem (Wilk’s Theorem). Suppose Θ0 ⊂ Θ1 (“nested hypotheses”)

dim(Θ1)− dim(Θ0) = p

If X1, . . . , Xn are iid from fX(• | θ0, then as n → ∞, the limiting distribution of
2 log Λx under H0 is χ2

p. That is, for any θ ∈ Θ0, any l > 0,

Pθ(z log Λx ≤ l)
n→∞−→ P(Z ≤ l)

where Z ∼ χ2
p.

How to use this? If we reject H0 when 2 log Λx ≥ χ2
p(α) then when n is large, the size of

the test is ≈ α. (!!!)

Example. In the two-sided normal mean test

Θ0 = {µ0}, Θ1 = R \ {µ0}

we found 2 log Λx ∼ χ2
1. If we take Θ1 = R, the GLR statistic doesn’t change, so

2 log Λx ∼ χ2
1.

dim(θ1)− dim(Θ0) = 1− 0 = 1

The prediction of Wilk’s theorem is exact.

Proof. Wait for Part II Principles of Statistics :(
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Tests of goodness of fit

X1, . . . , Xn are iid samples from a distribution on {1, 2, . . . , k}. Let pi = P(X1 = i), let
Ni be the number of observations equal to i. So,

k∑
i=1

pi = 1,
k∑

i=1

Ni = n

Goodness of fit test: H0: p = p̃ for some fixed distribution p̃ on {1, . . . , k}. H1: p is any
distribution with

∑k
i=1 pi = 1, pi ≥ 0.
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Example. Mendel crossed n = 556 smooth yellow peas with wrinkled green peas.
Each member of the progeny can have any combination of the 2 features: SY , SG,
WY , WG. Let (p1, p2, p3, p4) be the probabilities of each type, and (N1, . . . , N4)
are the number of progeny of each type,

∑
Ni = n = 556.

Mendel’s hypothesis:

H0 : p =

(
9

16
,
3

16
,
3

16
,
1

16

)
:= p̃

Is there any evidence in N1, . . . , N4 to reject H0? The model can be written
(N1, . . . , Nk) ∼ Multinomial(n; p1, . . . , pk). Likelihood: L(p) ∝ pN1

1 · · · pNk
k

=⇒ l(p) = const +
∑
i

Ni log pi

We can test H0 against H1 using a GLR test:

2 log Λx = 2

(
sup
p∈Θ1

l(p)− sup
p∈Θ0

l(p)

)

Since Θ0 = {p̃}, supp∈Θ0
l(p) = l(p̃). In the alternative p must satisfy

∑
pi = 1.

sup
p∈Θ1

l(p) = sup
p:
∑

pi=1

∑
i

Ni log pi

Use Lagrangian L(p, λ) =
∑

iNi log pi − λ (
∑

i pi − 1). We find that p̂i =
Ni
n (the

observed propoertion of samples of type i).

2 log Λ = 2(l(p̂)− l(p̃))

= 2
∑
i

Ni log

(
Ni

n · p̃i

)
Wilk’s theorem tells us that 2 log Λx is approximately χ2

p with

p = dim(Θ1)− dim(Θ0) = (k − 1)− 0 = k − 1

So we can reject the H0 with size ≈ α when

2 log Λx > χ2
k−1(α)

Start of
lecture 11 Tests of Goodness of fit and Independence

It’s common to write

2 log Λ = 2
∑
i

oi log

(
oi
ei

)
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where oi = Ni “observed number of type i” and ei = n · p̃i “expected number of type i
under null”.

Pearson’s statistic: Let δi = oi − ei. Then

2 log Λ = 2
∑
i

(ei + δi) log

(
1 +

δi
ei

)
︸ ︷︷ ︸

=
δi
ei
−

δ2
i

2e2
i

+O

(
δ3
i

e3
i

)

≈ 2
∑
i

 ��δi︸︷︷︸∑
i δi=

∑
i(oi−ei)=n−n=0

+
δ2i
ei

− δ2i
2ei


=
∑ δ2i

ei

=
∑
i

(oi − ei)
2

ei

This is called Preason’s statistic. This is also referred to a χ2
k−1 distribution when n is

large.

Example. Mendel’s data:

(n1, n2, n3, n4) = (315, 108, 102, 31)

2 log Λ ≈ 0.618,
∑

i
(oi−ei)

2

ei
≈ 0.604. We refer each statistic to a χ2

k−1 = χ2
3 distri-

bution.
χ2
3(0.05) = 7.815

We don’t reject H0 at size 5%. The p-value is P(χ2
3 > 0.6) ≈ 0.96. The data fir the

null model almost too well.

Goodness of fit test for composite null

H0: pi = pi(θ) for some parameter θ. H1: p can be any distribution on {1, . . . , k}.
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Example. Individuals can have 3 genotypes. H0: p1 = θ2, p2 = 2θ(1 − θ), p3 =
(1− θ)2, for some θ ∈ [0, 1].

2 log Λ = 2

(
sup

p:
∑

pi=1
l(p)− sup

θ
l(p(θ))

)
= 2(l(p̂)− l(p(θ̂))

where p̂ is the mle in the alternative H1; θ̂ is the mle in null H0. Last time we found
p̂i =

Ni
n . θ̂ would need to be computed for the null model in question.

2 log Λ = 2
∑
i

Ni log

(
Ni

npi(θ̂)

)

= 2
∑
i

oi log

(
oi
ei

)

oi = Ni “observed number of type i”, ei = n · pi(θ̂) “expected number of type i

under H0”. We can define a Pearson statistic
∑

i
(oi−ei)

2

ei
using the same argument

as before.

Each statistic can be referred to a χ2
d when n is large by Wilke’s theorem.

d = dim(Θ1)− dim(Θ0)

= (k − 1)− dim(Θ0)

Example. l(θ) =
∑

iNi log pi(θ) = 2N1 log θ +N2 log(2θ(1 − θ)) + 2N3 log(1 − θ).

Maximising over θ ∈ [0, 1] gives θ̂ = 2N1+N2
2n (exercise). In this model 2 log Λ and∑

i
(oi−ei)

2

ei
have a χ2

d distribution with d = (k−1)−dim(Θ0) = (k−1)−1 = k−2 =
3− 2 = 1.

Testing independence in contingency tables

(X1, Y1), . . . , (Xn, Yn) are iid with Xi taking values in {1, . . . , r}, Yi taking values in
{1, . . . , c}. The entries in a contingency table are

Nij = #{l : 1 ≤ l ≤ n, (Xl, Yl) = (i, j)}

(# samples of type (i, j))

Example. COVID-19 deaths. Xi: age of i-th death. Yi: week on which it fell.
Question: are deaths decreasing faster for older age grou that had been vaccinated?
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Probability Model

We’ll assume n is fixed. A sample (Xl, Yl) has probability pij of falling in (i, j) entry of
table.

(N11, . . . , N1c, N21, . . . , N2c, . . . , Nrc) ∼ Multinomial(n; p11, . . . , p1c, . . . , prc)

Remark. Fixing n may not be natural; we’ll consider other models later.

Null hypothesis

Week of death is independent of age. Xi independent of Yi for each sample. Let

pi+ =

n∑
j=1

pij p+j =

r∑
i=1

pij

H0: pij = pi+p+j . (P(Xl = i, Yl = j) = P(Xl = i)P(Yl = j)). H1: (pij) is unconstrained
except for pij ≥ 0,

∑
i,j pij = 1. The generalised LRT:

2 log Λ = 2
∑
i,j

oij log

(
oij
eij

)
oij = Nij , eij = np̂ij , where p̂ is the mle under independence model H0. Using Lagrange
multipliers we can find

p̂ij = p̂i+p̂+j

where

p̂i+ =
Ni+

n
p̂+j =

N+j

n

Ni+ =
∑
j

Nij N+j =
∑
i

Nij

=⇒ 2 log Λ = 2

r∑
i=1

c∑
j=1

Nij log

(
Nij

n · p̂i+p̂+j

)
≈
∑
i,j

(oij − eij)
2

eij

Wilke’s: The asymptotic distribution of these statistics is χ2
d with

d = dim(Θ1)− dim(Θ0)

= (rc− 1)− [(r − 1) + (c− 1)]

(r − 1)(c− 1)

((r − 1) and (c− 1) → degrees of freedom in (p1+, . . . , pr+) and (p+1, . . . , p+c))
Start of
lecture 12

44

https://notes.ggim.me/Stats#lecturelink.12


Testing independence in contingency tables

Nij : number of samples of type (i, j).

(Nij) ∼ Multinomial(n, (pij))

H0: pij = pi+ × p+j

H1: (pij) unconstrained.
Found 2 log Λ, which has asymptotic χ2

(r−1)(c−1) distribution.

Example (COVID-19 deaths). Problems with χ2 independence test:

(1) χ2 approximation can be bad when we have large tables. Rule of thumb: Need
Nij ≥ 5 for all i, j.

Solution (non-examinable): exact testing. Idea: under H0, the margins of N
(Ni+), (N+j) are sufficient statistics for p. therefore 2 tables N , Ñ with the
same margins are equally likely under H0. An exact test contrasts the test
statistic observed 2 log Λ(N) with the distribution of this statistic for the set of
tables with the same margins as N . This gives a test of exact size α.

(2) 2 log Λ can detect deviations from H0 in any direction. =⇒ Low power,
especially when r, c is large. This is why H0 is not rejected in a test of size 1%
in COVID-19 example. Solutions:

(1) Define a parametric alternative H1 with fewer degrees of freedom.

(2) Lump categories in the table.

Tests of Homogeneity

Instead of assuming
∑

i,j Nij fixed, we assume row totals are fixed.
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Example. 150 patients, split into groups of 50 for placebo, half-dose, full-dose. We
record whether each patient improved, showed no difference or got worse.

I N.D. W

Placebo
Half
Full

Now row totals are fixed. Null of homogeneity: probability of each outcome is the
same in each treatment group.

Model:
(Ni1, . . . , Nic) ∼ Multinomial(ni+, pi1, . . . , pic)

independent for i = 1, . . . , r. Paramters satisfy
∑

j pij = 1 for all i. H0: p1j = p2j =
· · · prj for all j = 1, . . . , c. H1: (pi1, . . . , pic) is a probability vector for all i.

L(p) =

r∏
i=1

ni+!

Ni1! · · ·Nic!
pNi1
i1 · · · pNic

ic

l(p) = const +
∑
i,j

Nij log pij

To find 2 log Λ we need to maximise l(p) over H0, H1. H1: use Lagrange multipliers
with constraints

∑
j pij = 1 for all i. Then the mle is

p̂ij =
Nij

ni+

H0: let pj = p1j = · · · = p+j .

l(p) = const +

c∑
j=1

N+j log pj

hence the mle is p̂j =
N+j

n++
, n++ =

∑
i ni+. Thus

2 log Λ = 2
∑
i,j

Nij log

(
Nij

ni+N+j/n++

)
This is exactly the same statistic as 2 log Λ for the independence test. Let oij = Nij ,

eij = ni+p̂j = ni+
N+j

n++

=⇒ 2 log Λ = 2
∑
i,j

oij log

(
oij
eij

)

≈
∑
i,j

(oij − eij)
2

eij

This is also the same as Pearson’s statistic for independence test.
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Wilk’s implies 2 log Λ is approximately χ2
d,

d = dim(Θ1)− dim(Θ0)

= (c− 1)r − (c− 1)

= (c− 1)(r − 1)

Asymptotic distribution of 2 log Λ is also the same as in the independence test.

Testing independence or homogeneity with size α always has the same conclusion.

Relationship between tests and confidence sets

Define the acceptance ragion A of a test to be the complement of the critical region. Let
X ∼ fX(• | θ) for some θ ∈ Θ.

Theorem. (1) Suppose that for each θ0 ∈ Θ there is a test of H0: θ = θ0 of size α
with acceptance region A(θ0). Then, the set

I(X) = {θ : X ∈ A(θ)}

is a 100(1− α)% confidence set.

(2) Suppose I(X) is a 100(1− α)% confidence set for θ. Then

A(θ0) = {x : θ0 ∈ I(X)}

is the acceptance region of a size α test for H0: θ = θ0.

Proof. In each part:
θ0 ∈ I(X) ⇐⇒ X ∈ A(θ0)

For part (1), we calculate:

Pθ0(I(X) ∋ θ0) = Pθ0(x ∈ A(θ0))

= 1− Pθ0(x ∈ C(θ0))

= 1− α

as desired. For part (2):

Pθ0(X ∈ C(θ0)) = Pθ0(X ̸∈ A(θ0))

= Pθ0(I(X) ̸∋ θ0)

= 1− Pθ0(I(x) ∋ θ0)

= 1− (1− α)

= α

as desired.
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Example. X1, . . . , Xn
IID∼ N(µ, σ2

0), σ
2 known.

I(X) =

(
X ±

zα/2σ0√
n

)
confidence interval. Test: H0: µ = µ0, H1: µ ̸= µ0. Critical region:{

x :

∣∣∣∣√n
(X −X

σ0

∣∣∣∣ > zα/2

}

Start of
lecture 13 Multivariate Normal Theory

Recall: if X is a random vector, then

E[AX + b] = AEX + b

Var(AX + b) = AVar(X)A⊤

Definition. We say X has a multivariate normal distribution if for any t ∈ Rn,
t⊤X is normal.

Proposition. If X is MVN then AX + b is MVN.

Proof. Say AX + b is in Rm. Take t ∈ Rm.

t⊤(X + b) = (A⊤t)⊤X + t⊤b

Since X is MVN, A⊤t)⊤X is a normal distribution, and since t⊤b is a constant, this
means that t⊤(AX + b) is normal.

Proposition. A MVN distribution is fully specified by its mean and variance.

Proof. Take X1, X2 both MVN with mean µ and variance Σ. We’ll show that their
mgf’s are equal, hence X1 and X2 have the same distribution.

Ee1·t
⊤X1 = Mt⊤X1

(1) t⊤X1 is Normal

= exp

(
1 · E(t⊤X1) +

1

2
Var(t⊤X1) · 12

)
= exp

(
t⊤µ+

1

2
t⊤Σt

)
This just depends on µ, Σ, so it is the same for X1, X2.
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Orthogonal projections

Definition. (1) We say P ∈ Rn×n is an orthogonal projection if it is:

� Idempotent: PP = P .

� Symmetric: P⊤ = P .

(2) Or equivalently, P ∈ Rn×n is an orthogonal projection if for any v ∈ col(P ),
Pv = v, and for any w ∈ col(P )⊥, Pw = 0.

Proposition. (1) and (2) are equivalent.

Proof.(1) =⇒ (2) Take v ∈ col(P ), so v = Pa for some a ∈ Rn. Then

Pv = PPa = Pa = v

Take w ∈ col(P )⊥. Then P⊤w = 0. Hence

Pw = P⊤w = 0

(2) =⇒ (1) We can write any a ∈ Rn uniquely as a = v + w, w ∈ col(P )⊥, v ∈ col(P ). Then

P 2a = PP (v + w) = Pv = P (v + w) = Pa

As a was arbitrary, P = P 2. For symmetry, take u1, u2 ∈ Rn. Then

⊤
(Pu1)︸ ︷︷ ︸
∈col(P )

((I − P )u2)︸ ︷︷ ︸
∈col(P )⊥

= 0

=⇒ u⊤1 (P
⊤ − P⊤P )u2 = 0. Since this holds for all u1, u2 ∈ Rn, P⊤ = P⊤P . But

P⊤P is symmetric, hence P⊤ is symmetric, hence P symmetric.

Corollary. If P is orthogonal projection, then I − P is as well.

Proof.
(I − P )⊤ = I − P⊤ = I − P

and
(I − P )(I − P ) = I − 2P + PP = I − P
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Proposition. If P ∈ Rn×n is an orthogonal projection then

P = UU⊤

where the columns of U form an orthogonal basis for col(P ). (if k = rank(P ), then
U ∈ Rn×k).

Proof. UU⊤ is cleraly symmetric and also idempotent

U U⊤U︸ ︷︷ ︸
Ik

U⊤ = UU⊤

So UU⊤ is an orthogonal projection. To show it is equal to P , note col(P ) = col(UU⊤)
by construction.

Corollary.
k = rank(P ) = Tr(U⊤U︸ ︷︷ ︸

Ik

) = Tr(UU⊤) = Tr(P )

Theorem. If X is MVN, X ∼ N(0, σ2I) and P is an orthogonal projection, then

(1) PX ∼ N(9, σ2P ), (I − P )X ∼ N(0, σ2(I − P )), PX, (I − P )X independent.

(2) ∥PX∥2
σ2 ∼ χ2

rank(P )

Proof. The vector (
P

I − P

)
X

is MVN, because it is a linear function of X. The distribution is specified by the mean
and variance:

E
[

PX
(I − P )X

](
P

I − P

)
EX = 0

and:

Var

(
PX

(I − P )X

)
=

(
P

I − P

)
Var(X)

(
P

I − P

)⊤

=

(
P

I − P

)
σ2I

(
P

I − P

)⊤

= σ2

[
P �����P (I − P )

�����(I − P )P I − P

]
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Let Z ∼ N(0, σ2P ), Z ′ ∼ N(0, σ2(I − P )), Z,Z ′ independent. Then(
Z
Z ′

)
∼ N

(
0, σ2

[
P 0
0 I − P

])
So (

PX
(I − P )X

)
d
=

(
Z
Z ′

)
hence PX, (I − P )X independent. This proves (1).

For (2):
∥PX∥2

σ2
=

(PX)⊤PX

σ2
=

X⊤(UU⊤)⊤UU⊤X

σ2
=

X⊤UU⊤X

σ2

Cols of U form orthogonal basis for col(P )

=⇒ ∥PX∥2

σ2
=

∥U⊤X∥2

σ2
=

rank(P )∑
i=1

(U⊤X)2i
σ2

But U⊤X ∼ N(0, σ2I)

Var(U⊤X) = U⊤Var(X)U = σ2U⊤U = σ2I

Therefore (U⊤X)i, i = 1, . . . , rank(P ) are IID N(0, σ2)

=⇒ (U⊤X)i
σ

IID∼ N(0, 1)

Hence ∥PX∥2
σ2 is the sum of rank(P ) squared independent N(0, 1) variables, i.e. χ2

rank(P ).

Application

X1, . . . , Xn
IID∼ N(µ, σ2). Both µ, σ2 unknown. Recall that the mle for µ is X = 1

n

∑
Xi.

The mle for σ2 is σ̂2 = SXX
n , where SXX =

∑
i(Xi −X)2.

Theorem. (i) X ∼ N(µ, σ2/n)

(ii) SXX
σ2 ∼ χ2

n−1

(iii) X, SXX independent.

Proof. Let 1 = (1, . . . , 1)⊤ ∈ Rn. Let P = 1
n11

⊤ be an orthogonal projection onto
span(1). Easy to check that P = P⊤ = P 2. We can write

X =


X1

X2
...

Xn

 = µ1+ ε
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where ε ∼ N(0, σ2I). Note:

� X is a function of PX
PX = µ1+ Pε

because X = (PX)1. In particular, X is function of Pε.

�

SXX =
∑
i

(Xi −X)2

= ∥X − 1X∥2

= ∥(I − P )X∥2

= ∥(I − P )ε∥2

so SXX is a function of (I − P )ε. By previous theorem, Pε ⊥⊥ (I − P )ε. Hence
X ⊥⊥ SXX . Part (i) we’ve shown before. Also,

SXX

σ2
=

∥(I − P )ε∥2

σ2
∼ χ2

Tr(I − P )︸ ︷︷ ︸
n−1

Start of
lecture 14 0.6 The linear Model

Data are pairs (x1, Y1), . . ., (xn, Yn). Yi ∈ R: “responses”, random. xi ∈ Rp: “predic-
tors”, fixed.

Example. Yi: number of insurance claims for client i. xi: (age, number of claims
in 2-21, years with driver’s license, . . .).

In a linear model, we assume

Yi =�α+ β1xi1 + β2xi2 + · · ·+ βpxip + εi

� α is an intercept.

� β1, . . . , βp are coefficients.

� ε1, . . . , εn are random noise variables.

Remark. We normally remove intercept by including a dummy predictor which is
equal to 1 for all i, i.e. xi1 = 1 for all i = 1, . . . , n.
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Remark. We can also model non-linear relationships between Yi and xi using a
linear model, for example by using xi = (age, age2, log(age)).

Remark. βj is the effect on Yi of increasing xij by a unit, whilst keeping all other
predictors constant. Estimates of β should not be interpreted causally, unless we
have a randomised experiment.

Matrix formulation:

Y =

Y1
...
Yn

 X =


x11 x12 · · · x1p
x21 x22 · · ·x2p
...

...
. . .

...
xn1 xn2 · · · xnp


︸ ︷︷ ︸

“design matrix”

β =

β1
...
βp

 ε =

ε1
...
εn


Y = Xβ + ε

Moment assumptions on ε:

(1) Eε = 0 =⇒ EY = Xβ.

(2) Var ε = σ2I =⇒ Var(εi) = σ2 for all i “homoscedasticity”. Cov(εi, εj) = 0 for all
i ̸= j.

We’ll assume throughout that x ∈ Rk×p has full rank. In particular, p ≤ n (more samples
than predictors).

Least squares estimator

β̂ minimises the residual sum of squares

S(β) = ∥Y −Xβ∥2

=
n∑

i=1

(Yi − x⊤i β)
2

This is a quadratic (positive definite) polynomial in β so β̂ satisfies

∇S(β)|β=β̂ = 0
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=⇒ ∂S(β)

∂βk

∣∣∣∣
β=β̂

= −2
n∑

i=1

xik

Yi −
p∑

j=1

xij β̂j

 = 0

for each k = 1, . . . , p. Equivalent matrix form:

X⊤Xβ̂ = X⊤Y

As X has rank p, the matrix X⊤X ∈ Rp×p is invertible, hence

β̂ = (X⊤X)−1X⊤Y

(linear in Y !). Check:

Eβ̂ = E[(X⊤X)−1X⊤Y ]

= (X⊤X)−1X⊤EY
=�����

(X⊤X)−1���
X⊤Xβ

= β

Hence β̂ is unbiased. We can also calculate:

Var(β̂) = Var((X⊤X)−1X⊤Y )

= (X⊤X)−1X⊤Var(Y )X(X⊤X)−1

= (X⊤X)−1X⊤σ2IX(X⊤X)−1

= σ2(X⊤X)−1

Theorem (Gauss-Markov). Let β∗ = CY be any linear estimator of β which is
unbiased. Then for any t ∈ Rp,

Var(t⊤β̂) ≤ Var(t⊤β∗)

We say β̂ is “Best Linear Unbiased Estimator” (BLUE).

Remark. Think of t ∈ Rp as the value of the predictors for a new sample. Then
t⊤β̂, t⊤β∗ are estimators of the mean response. These are both unbiased, so the
mse is the variance of t⊤β̂, t⊤β∗. Theorem says variance is “best” using the least
squares estimator.

Proof.
Var(t⊤β∗)−Var(t⊤β̂) = t⊤(Varβ∗ −Var β̂)t ≥ 0
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This holds for all t ∈ Rp if and only if the matrix Varβ∗−Var β̂ is positive semi-definite.
Recall β∗ = CY , β̂ = (X⊤X)−1X⊤Y . Let A = C − (X⊤X)−1X⊤. Note:

EAY = Eβ∗ − Eβ̂ = β − β = 0

(since β∗ and β̂ are unbiased). But also note

EAY = AEY = AXβ = 0

for all β ∈ Rp, so we must have AX = 0. Then

Varβ∗ = Var((A+ (X⊤X)−1X⊤)Y )

= (A+ (X⊤X)−1X⊤)VarY (A+ (X⊤X)−1X⊤)⊤

= σ2(AA⊤ + (X⊤X)−1 +(((((((
AX(X⊤X)−1 +(((((((((

(X⊤X)−1X⊤A⊤)

= σ2AA⊤ +Var(β̂)

=⇒ Varβ∗ −Var β̂ = σ2AA⊤

and this is positive definite, as desired.

Fitted values and residuals: fitted values

Ŷ = XB̂ = X(X⊤X)−1X⊤︸ ︷︷ ︸
P “hat matrix”

Y

Residuals: Y − Ŷ = (I − P )Y .

Proposition. P is the orthogonal projection onto col(X).

Proof. P is clearly symmetric. Also,

P 2 = X(X⊤X)−1���
X⊤X�����

(X⊤X)−1X⊤ = P

Therefore P is an orthogonal projection onto col(P ). We need to show col(P ) = col(X).
For any a, Pa = X[(X⊤X)−1X⊤a] ∈ col(X). Also, if b = Xc is a vector in col(X), then

b = Xc = X(X⊤X)−1X⊤Xc = Pb ∈ col(P )
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Corollary. Fitted values are projections of Y onto col(X). Residuals are projections
of Y onto col(X)⊥.

Normal assumptions

We assume in addition to Eε = 0, Var ε = σ2I, that ε is MVN, i.e.

ε ∼ N(0, σ2In)

σ2 is usually unknown, so the parameters in the model are (β, σ2). We’ll see that mle
of β is the least squares estimator β̂.

Start of
lecture 15 Normal linear model

Take Y = XB+ε, ε ∼ N(0, σ2I). MLE: 2 parameters: β ∈ Rp, σ2 ∈ R+. Log-likelihood:

l(β, σ2) = const +
n

2
log σ2 − 1

2σ2
∥Y −Xβ∥2

For any σ2 > 0, we can see that l(β, σ2) is maximised as a function of β at the minimiser
of ∥Y −XB∥2, i.e. the least squares estimator β̂. Now find:

argmax
σ2≥0

l(β̂, σ2)

l(β̂, σ2) = const− n

2
log σ2 − 1

2σ2
∥Y −Xβ̂∥2

As σ2 7→ l(β̂, σ2) is concave, there is unique maximiser where ∂l(β̂,σ2)
∂σ2 = 0

=⇒ σ̂2 =
∥Y −Xβ∥2

n
=

∥(I − P )Y ∥2

n
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Theorem. (1) β̂ ∼ N(β, σ2(X⊤X)−1)

(2) σ̂2

σ2n ∼ χ2
n−p

(3) β̂, σ̂2 are independent(!)

Proof. β̂ is linear in Y , hence MVN. We already know Eβ̂ = β, Var β̂ = σ2(X⊤X)−1.
This proves (1). For (2) note

nσ̂2

σ
=

∥(I − P )Y ∥2

σ2

=
∥(I − P )(Xβ + ε)∥2

σ2
(I − P )X = 0

=
∥(I − P )ε∥2

σ2

∼ χ2
rank(I−P )

rank(I − P ) = Tr(I − P ) = n− p. (X ∈ Rn−p has full rank).

For (3), note σ̂2 is a function of (I − P )ε. We’ll show that β̂ is a function of Pε, which
implies σ̂2 ⊥⊥ β̂ since Pε ⊥⊥ (I − P )ε.

β̂ = (X⊤X)−1X⊤Y

= (X⊤X)−1X⊤(Xβ + ε)

= β + (X⊤X)−1X⊤ε

= β + (X⊤X)−1X⊤Pε

since X⊤P = X⊤.

Corollary. σ̂2 is biased

E
σ̂2n

σ2
= n− p =⇒ Eσ̂2 =

(
n− p

n

)
σ2

Student’s t-distribution

If U ∼ N(0, 1), V ∼ χ2
n, U ⊥⊥ V then we say T = U√

V/n
has a tn distribution.

The F distribution

If V ∼ χ2
n, W ∼ χ2

n, V ⊥⊥ W then we say

F =
V/n

W/m
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has an Fn,m distribution.

Confidence sets for β

Suppose we want a 100(1 − α)% confidence interval for one of the coefficients (WLOG
take β1). Note:

β1 − β̂1√
σ2(X⊤X)−1

11

∼ N(0, 1)

because β̂1 ∼ N(β1, σ
2(X⊤X)−1

11 ). Also,

σ̂2

σ2
n ∼ χ2

n−p

and these two statistics are independent.

=⇒
β̂1−β1√

��σ2(X⊤X)−1
11√

σ̂2

��σ2
n

n−p

∼ N(0, 1)√
χ2
n−p/(n− p)

∼ tn−p

Now this only depends on β1 and not on σ2, so we can use this as a pivot.

Pβ,σ2

−tn−p

(α
2

)
≤ β̂1 − β1√

(X⊤X)−1
11

√
n− p

nσ̂2
≤ tn−p

(α
2

) = 1− α

We use that tn distribution is symmetric around 0.

Rearranging the inequalities, we get

Pβ,σ2

β̂1 − tn−p

(α
2

)√(X⊤X)−1
11 σ̂

2

(n− p)/n︸ ︷︷ ︸
=M

≤ β1 ≤ β̂1 +M

 = 1− α

We conclude that β̂1 ± tn−p

(α
2

)√(X⊤X)−1
11 σ̂

2

(n− p)/n


is a (1− α) · 100% confidence interval for β1.
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Remark. This is not asymptotic.

By the duality between tests of significance and confidence intervals, we can find a size
α test for H0: β1 = β∗ vs H1: β1 ̸= β∗. Simply reject H0 if β∗ is not contained in the
100 · (1− α)% confidence interval for β1.

Confidence ellipsoids for β

Note β̂ − β ∼ N(0, σ2(X⊤X)−1). As X has full rank, X⊤X is positive definite. So it
has eigendecomposition

(X⊤X) = UDU⊤

where Dii > 0 for i = 1, . . . , p. Define

(X⊤X)α = UDαU⊤

Dα =

Dα
11 · · · 0
...

. . .
...

0 · · · Dα
pp


(X⊤X)1/2(β̂ − β) ∼ N(0, σ2I)

Hence

∥(X⊤X)1/2(β̂ − β)∥2

σ2︸ ︷︷ ︸
=

∥X(β̂−β)∥2
σ2

∼ χ2
p

This is a function of β̂, so it’s independent of

σ̂2n

σ2
∼ χ2

n−p

=⇒ ∥X(β̂ − β)∥2/��σ2p

σ̂2n/��σ
2(n− p)

∼ Fp,n−p

This only depends on β, not on σ2, so it can be used as a pivot. For all β, σ2:

Pσ2,β

(
∥X(β̂ − β∥2/p
σ̂2n/(n− p)

≤ Fp,n−p(α)

)
= 1− α
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So, we can say that the set{
β ∈ Rp :

∥(X(β̂ − β)∥2/p
σ̂2n/(n− p)

≤ Fp,n−p(α)

}

is a 100(1− α)% confidence set for β.

Principal axes are given by eigenvectors of (X⊤X).

In the next section we’ll talk about hypothesis tests for H0: β1 = · · · = βp = 0, H1:
β ∈ Rp.

Start of
lecture 16 The F -test

Y = Xβ+ε, ε ∼ N(0, σ2I). H0: β1 = β2 = · · · = βp0 = 0. H1: β ∈ Rp. Let X = (x0, x1)
(X0 is n× p0 and X1 is n× (p− p0))

β =

(
β0

β1

)
β0 =

 β0
...

βp0

 β1 =

βp0+1
...
βp



60

https://notes.ggim.me/Stats#lecturelink.16


Null: β0 = 0. This is a normal linear model:

Y = X1β
1 + ε

Write P = X(X⊤X)−1X⊤, P1 = X1(X
⊤
1 X1)

−1X⊤
1 . As X, P have full rank, so do X1,

P1. Recall that the maximum log-likelihood in a linear model is

max
β∈Rp

σ2>0

l(β, σ2) = l(β̂, σ̂2)

= −n

2
log

(
∥(I − p)Y ∥2

n

)
+ const

The generalised log likelihood ratio statistic is

2 log Λ = 2

max
β∈Rp

σ2>0

l(β, σ2)− max
β0=0

β1∈Rp−p0

σ2>0

l(β, σ2)


=

2n

2

(
− log

(
∥(I − P )Y ∥2

n

)
+ log

(
∥(I − P1)Y ∥2

n

))
This is a monotone increasing function in

∥(I − P1)Y ∥2

∥(I − P )Y ∥2
=

∥(I − P + P − P1)Y ∥2

∥(I − P )Y ∥2

=
∥(I − P )Y ∥2 + ∥(P − P1)Y ∥2 + 2Y ⊤

(((((((((
(I − P )(P − P1)Y

∥(I − P )Y ∥2

(The cancel takes place because the columns of P −P1 are in col(X)). This is monotone
increasing in

∥(P − P1)Y ∥2/p0
∥(I − P )Y ∥2/(n− p)

:= F

“F statistic”.

Lemma. P − P1 is an orthogonal projection with rank p0.

Proof. P − P1 is symmetric as both P and P1 are

(P − P1)(P − P1) = P + P1 − 2PP1︸︷︷︸
=P2

= P − P1

rank(P − P1) = Tr(P − P1)

= Tr(P )− Tr(P1)

= p− (p− p0)

= p0
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To recap the generalised LRT rejects H0 when F is large. What is the null distribution
of F? Under H0:

(P − P1)Y = (P − P1)(Xβ + ε)

= (P − P1)(X1β
1 + ε)

= (P − P1)ε

Therefore, under H0:

F =
1
σ2 ∥(P − P1)ε∥2/p0

1
σ2 ∥(I − P )ε∥2/(n− p)

with numerator ∼
(

χ2
p0
p0

)
and denominator ∼

(
χ2
n−p

n−p

)
. Furthermore,(

(P − P1)ε
(I − P )ε

)
is MVN with Cov((P −P1)ε, (I −P )ε) = σ2(P −P − 1)(I −P ) = 0. Hence (P −P1)ε ⊥
⊥ (I − P )ε. Hence numerator ⊥⊥ denominator in F . We conclude that

F ∼ Fp0,n−p,

so the test rejects H0 with size α if

F ≥ Fp0,n−p(α)

Last time we derived a size α test for H0: β1 = 0 using the 100 · (1 − α)% confidence
interval for β1. That test rejects H0 when

|β1| > tn−p

(α
2

)√ σ̂2n(X⊤X)−1
11

n− p

Lemma. This test is equivalent to the F -test with p0 = 1.

Proof. Exercise.

Categorical predictors

Example. Yi ∈ R: clinical response, zi ∈ {control, treatment 1, treatment 2}.

Let
xi,j = 1{zi=j} = 1{subject i was in group j}

xi ∈ R3 this is numerical.

Yi = α+ β1xi,1 + β2xi,2 + β3xi,3

Problem:
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This has rank 3 < 4. Corner point constraint: call one of the groups the “baseline” and
remove it from the linear model. Interpretation of βj depends on baseline. βj is effect of
being in group j relative to baseline. βj is effect of being in group j relative to baseline.
However, col(X) and matrix P are insensitive of choice of baseline, and therefore so are
the fitted values

Ŷ = PY.

This can be extended to a model with more than 1 categorical predictor, for example
group and gender.

ANOVA: Analysis of Variance. The F -test for

� H0: βj = 0 for a categorical predictor α ̸= 0.

� H1:

(
α1

β

)
∈ R3.

In this case, we can write the F statistic in a simpler way.

P1 projection onto constant vectors.

P1 =
1

n
11⊤
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P = projection onto vectors which are constant for each group

F =
∥(P − P1)Y ∥2/p0

∥(I − p)Y ∥2/(n− p)

P1Y =


Y

Y
...

Y

 Y =
1

n

n∑
i=1

Yi

Py =



Y 1

Y 1
...

Y 2

Y 2
...

Y 3

Y 3


Y j =

∑n
i=1 Yi1{zi=j}∑n
i=1 1{zi=j}

= average response for group j

F =

∑3
i=1N(Y j − Y )2/2∑N

i=1

∑3
j=1(Yij − Y j)2/(3N − 3)

Assume all groups of size N (n = 3N). Numerator is variance between groups, denomi-
nator is variance within groups.
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