Statistics

June 5, 2023

Contents

0	Introduction				
	0.1	Probability Review	3		
	0.2	Estimation	7		
	0.3	Sufficiency	L		
	0.4	Maximum likelihood Estimation 18	3		
	0.5	Interpreting Confidence intervals	1		
	0.6	The linear Model	2		

Lectures

Lecture 1Lecture 2 Lecture 3 Lecture 4 Lecture 5Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10Lecture 11Lecture 12 Lecture 13Lecture 14 Lecture 15 Lecture 16 Start of lecture 1

0 Introduction

Statistics: The science of making informed decisions. Can include:

- Design of experiments
- Graphical exploration of data
- Formal statistical inference \in Decision theory
- Communication of results.

Let X_1, X_2, \ldots, X_n be independent observations from some distribution $f_X(\bullet \mid \theta)$, with parameter θ . We wish to infer the value of θ from X_1, \ldots, X_n .

- Estimating θ
- Quantifying uncertainty in estimator
- Testing a hypothesis about θ .

0.1 Probability Review

Let Ω be the sample space of outcomes in an experiment. A "nice" or measurable subset of Ω is called an *event*, we denote the set of events \mathcal{F} . A function $\mathbb{P} : \mathcal{F} \to [0, 1]$ is called a *probability measure* if:

- $\mathbb{P}(\phi) = 0$
- $\mathbb{P}(\Omega) = 1$
- $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ if (A_i) are disjoint.

A random variable is a (measurable) function $X \colon \mathbb{R} \to \mathbb{R}$. For example: tossing a coin twice $\Omega = \{HH, HT, TH, TT\}$. X: number of heads.

$$X(HH) = 2 \qquad X(TH) = X(HT) = 1 \qquad X(TT) = 0$$

The distribution function of X is

$$F_X(x) = \mathbb{P}(X \le x)$$

A discrete random variable takes values in a countable $\mathcal{X} \in \mathbb{R}$, its probability mass function or pmf is $p_X(x) = \mathbb{P}(X = x)$. We say X has continuous distribution if it has a probability density function or pdf satisfying

$$\mathbb{P}(X \in A) = \int_A f_X(x) \mathrm{d}x$$

for any "nice" set A.

The *expectation* of X is

$$\mathbb{E}X = \begin{cases} \sum_{x \in \mathcal{X}} x p_X(x) & \text{if } X \text{ is discrete} \\ \int x f_X(x) \mathrm{d}x & \text{if } X \text{ is continuous} \end{cases}$$

If $g : \mathbb{R} \to \mathbb{R}$,

$$\mathbb{E}g(x) = \int g(x) f_X(x) \mathrm{d}x$$

The variance of X is

$$\operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}X)^2)$$

We say that X_1, X_2, \ldots, X_n are independent if for all x_1, \ldots, x_n

$$\mathbb{P}(X_1 \le x_2, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdots \mathbb{P}(X_n \le x_n)$$

If the variables have pdf's, then

$$f_X(x) = \prod_{i=1}^n f_{X_i}(x_i)$$

$$(x = (x_1, \ldots, x_n), X = (X_1, \ldots, X_n)).$$

Linear transformations

If $a_1, \ldots, a_n \in \mathbb{R}$

$$\mathbb{E}(a_1X_1 + \dots + a_nX_n) = a_1\mathbb{E}X_1 + \dots + a_n\mathbb{E}X_n$$
$$\operatorname{Var}(a_1X_1 + \dots + a_nX_n) = \sum_{i,j} a_ia_J\operatorname{Cov}(X_i, X_j)$$
$$(\operatorname{Cov}(X_i, X_i) = \mathbb{E}((X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j))). \text{ If } X = (X_1, \dots, X_n)^\top$$
$$\mathbb{E}X = (\mathbb{E}X_1, \dots, \mathbb{E}X_n)^\top$$
$$\mathbb{E}(a^\top X) = a^\top \mathbb{E}X$$
$$\operatorname{Var}(a^\top X) = a^\top \underbrace{\operatorname{Var}(X)}_{(\operatorname{Var}(X))_{ij} = \operatorname{Cov}(X_i, X_j)} a$$

Moment generating functions

$$M_X(t) = \mathbb{E}(e^{tX})$$

This may only exist for t in some neighbourhood of 0.

- $\mathbb{E}(X^n) = \frac{\mathrm{d}^n}{\mathrm{d}t^n} M_X(0)$
- $M_X = M_Y \implies F_X = F_Y$
- Makes it easy to find the distribution function of sums of IID variables.

Example. Let X_1, \ldots, X_n be IID Poisson (μ)

$$M_{X_1}(t) = \mathbb{E}e^{tX_1}$$

$$= \sum_{x=0}^{\infty} e^{tx} \cdot \frac{e^{-\mu}\mu^x}{x!}$$

$$= e^{-\mu} \sum_{x=0}^{\infty} \frac{(e^t\mu)^x}{x!}$$

$$= e^{-\mu}e^{\mu\exp t}$$

$$= e^{-\mu(1-e^t)}$$

$$S_n = X_1 + \dots + X_n.$$

$$M_{S_n}(t) = \mathbb{E}e^{t(X_1 + \dots + X_n)}$$

$$= \prod_{i=1}^n \mathbb{E}e^{tX_i} \qquad \text{(independent)}$$

Observe this is $Poisson(\mu n)$ mgf. So $S_n \sim Poisson(\mu n)$.

 $= e^{-\mu(1-e^t)n}$

Limit Theorems

Weak law of large numbers (WLLN). X_1, \ldots, X_n are IID with $\mathbb{E}X_1 = \mu$.

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

is the "sample mean". For all $\varepsilon > 0$,

$$\mathbb{P}(\underbrace{|\overline{X}_n - \mu| > \varepsilon}_{\text{event that depends only on } X_1, \dots, X_n}) \to 0 \quad \text{as } n \to \infty$$

Strong law of large numbers (SLLN)

$$\mathbb{P}(\overline{X}_n \stackrel{n \to \infty}{\longrightarrow} \mu) = 1$$

(This event depends on whole sequence $X_1, X_2, \ldots, \overline{X}_n \to \mu \iff \forall \varepsilon > 0 \exists N \forall n > N | \overline{X}_n - \mu | < \varepsilon$.

Central Limit Theorem

$$Z_n = \frac{\sqrt{n}(X_n - \mu)}{\sigma} \text{ where } \sigma^2 = \operatorname{Var}(X_i). \text{ Then } Z_n \text{ is approximately } \mathcal{N}(0, 1) \text{ as } n \to \infty$$
$$\mathbb{P}(Z_n \le z) \to \Phi(z) \quad \text{ as } n \to \infty \quad \forall z \in \mathbb{R}$$

where Φ is the distribution function of a N(0, 1) variable.

Conditioning

Let X and Y be discrete random variables. Their joint pmf is

$$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$$

The marginal pmf

$$p_X(x) = \mathbb{P}(X = x) = \sum_{y \in Y} p_{X,Y}(x,y)$$

Conditional pmf of X given Y = y is

$$p_{X|Y}(x \mid y) = \mathbb{P}(X = x \mid Y = y)$$
$$= \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$
$$= \frac{p_{X,Y}(x, y)}{p_Y(y)}$$

(defined = 0 if $p_Y(y) = 0$). If X, Y are continuous, the joint pdf $f_{X,y}$ has

$$\mathbb{P}(X \le x', Y \le y') = \int_{-\infty}^{x'} \int_{-\infty}^{y'} f_{X,Y}(x, y) \mathrm{d}y \mathrm{d}x$$

The marginal pdf of Y is

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \mathrm{d}x$$

The conditional pdf of X given Y is

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Conditional expectation:

$$\mathbb{E}(X \mid Y) = \begin{cases} \sum_{x} x p_{X|Y}(x \mid y) \\ \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) dx \end{cases}$$

(this is treated as a random variable, which is a function of Y).

Tourer property:

$$\mathbb{E}(\mathbb{E}(X \mid Y)) = \mathbb{E}X$$

Conditional variance formula:

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2$$

= $\mathbb{E}(\mathbb{E}(X^2 \mid Y)) - (\mathbb{E}(\mathbb{E}(X \mid Y)))^2$
= $\mathbb{E}(\mathbb{E}(X^2 \mid Y) - [\mathbb{E}(X \mid Y)]^2) + \mathbb{E}[\mathbb{E}(X \mid Y)^2] - \mathbb{E}[(X \mid Y)]$
= $\mathbb{E}Var(X \mid Y) + Var(\mathbb{E}(X \mid Y))$

Start of lecture 2

Change of Variables (in 2D)

Let $(x, y) \mapsto (u, v)$ is a differentiable bijection. Then

$$f_{U,V}(u,v) = f_{X,Y}(x(u,v), y(u,v)) \cdot |\det J|$$
$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}$$

Important Distributions

 $X \sim \text{Negbin}(k, p)$: In successive IID Ber(p) trials X is the time at which k-th success occurs.

 $X \sim \text{Poisson}(\lambda)$ is the limit of a $\text{Bin}(n, \lambda/n)$ as $n \to \infty$.

If $X_i \sim \Gamma(\alpha_i, \lambda)$ for i = 1, ..., n with $X_1, ..., X_n$ independent. What is the distribution of $S_n = X_1 + \cdots + X_n$?

$$M_{S_n}(t) = \prod_{i=1}^n M_{X_i}(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha_1 + \dots + \alpha}$$

This is the MGF of a $\Gamma(\sum \alpha_i, \lambda)$. Hence $S_n \sim \Gamma(\sum \alpha_i, \lambda)$. Also, if $X \sim \Gamma(a, \lambda)$, then for any $b \in (c, \infty)$, $bX \sim \Gamma(\alpha, \lambda/b)$.

Special cases

 $\Gamma(1,\lambda) = \operatorname{Exp}(\lambda), \ \Gamma(k/2,1/2) = \chi_k^2$ "Chi-squared with k degrees of freedom." Sum of k independent squared N(0,1) random variables.

0.2 Estimation

Suppose we observe data X_1, X_2, \ldots, X_n which are IID from some PDF (pmf) $f_X(x \mid \theta)$, with θ unknown.

Definition (Estimator). An *estimator* is a statistic or a function of the data $T(X) = \hat{\theta}$, which we use to approximate the true parameter θ . The distribution of T(X) is called the *sampling distribution*.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu, 1).$

$$\hat{\mu} = T(X) = \frac{1}{h} \sum_{i=1}^{n} X_i$$

The sampling distribution of $\hat{\mu}$ is N $(\mu, \frac{1}{n})$.

Definition. The bias of $\hat{\theta} = T(X)$ is

 $bias(\hat{\theta}) = \mathbb{E}_{\theta}(\hat{\theta}) - \theta$

Note. In general, the bias is a function of θ , even if notation $bias(\hat{\theta})$ does not make it explicit.

Definition. We say that $\hat{\theta}$ is *unbiased* if $bias(\hat{\theta}) = 0$ for all $\theta \in \Theta$.

Example (Continuing from previous). $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is unbiased because $\mathbb{E}_{\mu}(\hat{\mu}) = \mu$ for all $\mu \in \mathbb{R}$.

Definition. The mean squared error (mse) of $\hat{\theta}$ is

$$mse(\hat{\theta}) = \mathbb{E}_{\theta}((\hat{\theta} - \theta)^2)$$

Note. Like the bias, $mse(\hat{\theta})$ is a function of θ !

Bias-variance decomposition

$$mse(\hat{\theta}) = \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^{2}]$$
$$= \mathbb{E}_{\theta}[(\hat{\theta} - \mathbb{E}_{\theta}\hat{\theta} + \mathbb{E}_{\theta}\hat{\theta} - \theta)^{2}]$$
$$= Var_{\theta}(\hat{\theta}) + bias^{2}(\hat{\theta}) + [\mathbb{E}_{\theta}(\hat{\theta} - \mathbb{E}_{\theta}\hat{\theta})](\mathbb{E}_{\theta}\hat{\theta} - \theta)$$

The two terms on the RHS are $\geq 0.$

There is a trade off between bias and variance.

Example. $X \sim \text{Bin}(n, \theta)$. Suppose *n* known, we wish to estimate θ . Standard estimator $T_u = \frac{X}{n}$, then $\mathbb{E}_{\theta}T_u = \frac{\mathbb{E}_{\theta}X}{n} = \theta$ (holds for all θ). Hence T_u is unbiased.

$$\begin{aligned} \operatorname{mse}(T_u) &= \operatorname{Var}_{\theta}(T_u) \\ &= \frac{\operatorname{Var}_{\theta} X}{h^2} \\ &= \frac{n\theta(1-\theta)}{h^2} \\ &= \frac{\theta(1-\theta)}{h} \end{aligned}$$

Consider a second estimator

$$T_B = \frac{X+1}{n+2} = \omega \frac{X}{n} + (1-\omega)\frac{1}{2}$$

with $\omega = \frac{n}{n+2}$. If X = 8, n = 10 (8 successes in 10 trials), then $T_u = 0.8$, $T_B = \frac{9}{12} = 0.75$.

$$bias(T_B) = \mathbb{E}_{\theta}T_B - \theta$$
$$= \mathbb{E}\left(\frac{X+1}{n+2}\right) - \theta$$
$$= \frac{n}{n+2}\theta + \frac{1}{n+2} - \theta$$

 θ

This is $\neq 0$ for all but one value of θ . Hence T_b is biased.

$$\operatorname{Var}_{\theta}(T_B) = \frac{1}{(n+2)^2} n\theta(1-\theta) = \frac{\omega^2 \theta(1-\theta)}{n}$$

$$\operatorname{mse}(T_B) = \operatorname{Var}_{\theta}(T_B) + \operatorname{bias}^2(T_B)$$
$$= \omega^2 \frac{\theta(1-\theta)}{n} + (1-\omega)^2 \left(\frac{1}{2} - \theta\right)^2$$

10

Message: Our prior judgements about θ affect our choice of estimator (for example in this previous example, if we knew the X_i represent coin flips, then we expect θ to be near $\frac{1}{2}$, so we should use mse (T_B)).

Unbiasedness is not necessarily desirable. Consider this pathological example:

Example. Suppose $X \sim \text{Poisson}(\lambda)$. We wish to estimate $\theta = \mathbb{P}(X = 0)^2 = e^{-2\lambda}$. For an estimator T(X) to be unbiased we must have for all λ

$$\mathbb{E}_{\lambda}[\hat{\theta}] = \sum_{x=0}^{\infty} T(X) \frac{e^{-\lambda} \lambda^x}{x!} = e^{-2\lambda} = \theta$$

$$\iff \sum_{x=0}^{\infty} T(x) \frac{\lambda^x}{x!} = e^{-\lambda} = \sum_{x=0}^{\infty} (-1)^x \frac{\lambda^x}{x!}$$

for this to hold $\forall \lambda \geq 0$, we need

$$T(x) = (-1)^x$$

This estimator makes no sense!

lecture 3 **0.3 Sufficiency**

Start of

 X_1, \ldots, X_n are IID random variables from a distribution with pdf (or pmf) $f_X(\bullet \mid \theta)$. Let $X = (X_1, \ldots, X_n)$.

Question: Is there a statistic T(X) which contains all information in X needed to estimate θ ?

Definition (Sufficiency). A statistic T is sufficient for θ if the conditional distribution of X given T(X) does not depend on θ .

Remark. θ and T(X) could be vector-valued.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(\theta)$ for $\theta \in [0, 1]$.

$$f_X(\bullet \mid \theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$$
$$= \theta^{\sum x_i} (1-\theta)^{n-\sum x_i}$$

Note. This only depends on X through $T(X) = \sum_{i=1}^{n} X_i$.

For x with $\sum x_i = t$,

$$f_{X|T=t}(x \mid T(x) = t) = \frac{\mathbb{P}_{\theta}(X = x, T(X) = t)}{\mathbb{P}_{\theta}(T(X) = t)}$$
$$= \frac{\mathbb{P}_{\theta}(X = x)}{\mathbb{P}_{\theta}(T(X) = t)}$$
$$= \frac{\theta^{\sum x_i}(1 - \theta)^{n - \sum x_i}}{\binom{n}{t}\theta^t(1 - \theta)^{n - t}}$$
$$= \binom{n}{t}^{-2}$$

As this doesn't depend on θ , T(X) is sufficient for θ .

Theorem (Factorisation criterion). T is sufficient for θ if and only if

 $f_X(x \mid \theta) = g(T(x), \theta) \cdot h(x)$

for suitable functions g, h.

Proof. (Discrete case)

Suppose $f_X(x \mid \theta) = g(T(X), \theta)h(X)$. If T(x) = t, then

$$f_{X|T=t}(x \mid T=t) = \frac{\partial \mathbb{P}_{\theta}(X = x, \underline{T}(X) = t)}{\partial \mathbb{P}_{\theta}(T(X) = t)}$$
$$= \frac{g(T(X), \theta)h(X)}{\sum_{x': T(x')=t} g(T(x;), \theta)h(x')}$$
$$= \frac{g(t, \theta)}{g(t, \theta)} \frac{h(x)}{\sum_{x': T(x')=t} h(x')}$$

As this doesn't depend on θ , T(X) is sufficient.

Conversely, suppose T(X) is sufficient, then

$$\mathbb{P}_{\theta}(X = \tau) = \mathbb{P}_{\theta}(X = x, T(X) = t)$$
$$= \underbrace{\mathbb{P}_{\theta}(T(X) = t)}_{q(t,\theta)} \cdot \underbrace{\mathbb{P}_{\theta}(X = x \mid T(X) = t)}_{h(x)}$$

Then by sufficiency of T, h(x) doesn't depend on θ (so it is a function of x). Thus the pmf of X, $f_X(\bullet \mid \theta)$ factorises as in the statement of the theorem. \Box

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(\theta)$. $f_X(x \mid \theta) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$ Take $a(t, \theta) = \theta^t (1 - \theta)^{n - t}$ h(x) = 1 This immediately implied by h(x) = 1.

Take $g(t, \theta) = \theta^t (1 - \theta)^{n-t}$, h(x) = 1. This immediately implies $T(X) = \sum x_i$ is sufficient.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Unif}([0, \theta]), \theta > 0.$ Then

$$f_X(x \mid \theta) = \prod_{i=1}^n \frac{1}{\theta} \mathbb{1}_{x_i \in [0,\theta]}$$
$$= \underbrace{\frac{1}{\theta^n} \mathbb{1}_{\{\max_i x_i \le \theta\}}}_{T(x),\theta} \underbrace{\mathbb{1}_{\{\min_i x_i \ge 0\}}}_{h(x)}$$

 $T(x) = \max_i x_i$. Then by factorisation lemma, $T(x) = \max_i x_i$ is sufficient for θ .

Minimal Sufficiency

Sufficient stats are *not* unique. Indeed any 1-to-1 function of a sufficient statistic is also sufficient. Also T(X) = X is always sufficient by not very useful.

Definition. A sufficient statistic T is minimal sufficient if it is a function of any other sufficient statistic. That is, if T' is also sufficient, then

$$T'(x) = T'(y) \implies T(x) = T(y)$$

for all $x, y \in \mathcal{X}^n$.

Remark. Any two minimal sufficient statistics, T, T' are "in bijection with each other":

$$T(x) = T(y) \iff T'(x) = T'(y)$$

Useful condition to check minimal sufficiency.

Theorem (Minimal Sufficiency Theorem). Suppose that T(X) is a statistic such that $f_X(x \mid \theta)/f_X(y \mid \theta)$ is constant as a function of θ if and only if T(x) = T(y). Then T is minimal sufficient.

Let $x \stackrel{1}{\sim} y$ if $\frac{f_X(x|\theta)}{f_X(y|\theta)}$ is constant in θ . It's easy to check that $\stackrel{1}{\sim}$ is an equivalence relation. Similarly, for a given statistic T, $x \stackrel{2}{\sim} y$ if T(x) = T(y) defines another equivalence relation. The condition of theorem says $\stackrel{1}{\sim}$ and $\stackrel{2}{\sim}$ are the same.

Note. We can always construct a statistic T which is constant on the equivalence classes of $\stackrel{1}{\sim}$, which by the theorem is minimal sufficient.

Proof. For any value t of T, let z_t be a representative from the equivalence class

$$\{x \mid T(x) = t\}$$

Then

$$f_X(x \mid \theta) = \underbrace{f_X(z_{T(x)} \mid \theta)}_{g(T(x),\theta)} \underbrace{\frac{f_X(x \mid \theta)}{f_X(z_{T(x)} \mid \theta)}}_{h(x)}$$

Where h(x) does not depend on θ by the hypothesis, as $x \stackrel{1}{\sim} z_{T(x)}$. By factorisation criterion, T is sufficient.

To prove that T is minimal, take any other sufficient statistic S. Want to prove that if S(x) = S(y) then T(x) = T(y). By factorisation criterion, there are functions g_S, h_S such that

$$f_X(x \mid \theta) = g_S(S(x), \theta)h_S(x)$$

Suppose S(x) = S(y). Then

$$\frac{f_X(x \mid \theta)}{f_X(y \mid \theta)} = \frac{g_S(S(x), \theta)h_S(x)}{g_S(S(y), \theta)h_S(y)}$$

which doesn't depend on θ . Hence $x \stackrel{1}{\sim} y$. By hypothesis, $x \stackrel{2}{\sim}$, hence T(x) = T(y). \Box

Remark. Sometimes the range of X depends on θ (for example $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim}$ Unif $([0, \theta])$. In this case we can interpret

$$\frac{f_X(x|\theta)}{f_X(y|\theta)}$$
 is constant in θ '

to mean that $f_X(x \mid \theta) = c(x, y) f_X(y \mid \theta)$ for some function c which does not depend on θ .

Start of lecture 4

Example. Suppose that $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, with parameters (μ, σ^2) unknown.

$$\frac{f_X(x \mid \theta)}{f_X(y \mid \theta)} = \frac{(2\pi\sigma^2)^{-\pi/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\}}{(2\pi\sigma^2)^{-\pi/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right\}}$$
$$= \exp\left\{-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2\right) \frac{\mu}{\sigma^2} (\sum_{i=1}^n x_I - \sum_{i=1}^n y_i^2)\right\}$$

If $\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2$ and $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, this ratio does not depend on (μ, σ^2) . The converse is also true: if the ratio does not depend on (μ, σ^2) then we must have $\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2$ and $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$. By the theorem, $T(X) = (\sum_{i=1}^{n} X_i^2, \sum_{i=1}^{n} X_i)$ is minimal sufficient.

Recall that bijections of T are also minimal sufficient. A more common way of expressing a minimal sufficient statistic in this model is

$$S(X) = (\overline{X}, S_{XX})$$
$$\overline{X} = \frac{1}{n} \sum_{i} X_{i} \qquad S_{X}X = \sum_{i} (X_{i} - \overline{X})^{2}$$

In this example, (μ, σ^2) and T(X) are both 2-dimensional. In general, the parameter and sufficient statistic can have different dimensions.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu, \mu^2), \ \mu \ge 0$. Here, the minimal sufficient statistic is $S(X) = (\overline{X}, S_{XX}).$

Rao-Blackwell Theorem

Note. So far we've written \mathbb{E}_{θ} , \mathbb{P}_{θ} to denote expectations and probabilities in the model where $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} f_X(\bullet \mid \theta)$. From now on, I'll drop the subscript θ .

Theorem (Rao-Blackwell). Let T be a sufficient statistic for θ . Let $\tilde{\theta}$ be some estimator for θ , with $\mathbb{E}(\tilde{\theta}^2) < \infty$, for all θ . Define a new estimator $\hat{\theta} = \mathbb{E}_{\theta}(\tilde{\theta} \mid T(X))$. Then, for all θ ,

$$\mathbb{E}[(\hat{\theta} - \theta)^2] \le \mathbb{E}[(\tilde{\theta} - \theta)^2]$$

 $(\operatorname{mse}(\hat{\theta}) \leq \operatorname{mse}(\tilde{\theta}))$. The inequality is strict unless $\tilde{\theta}$ is a function of T(X).

Remark. $\hat{\theta}$ is a valid estimator, i.e. it does not depend on θ , only depends on X, because T is sufficient.

$$\hat{\theta}(T(X)) = \int \underbrace{\tilde{\theta}(X)}_{\text{estimator, so does not depend on } \theta \text{ does not depend on } \theta} \underbrace{f_{X|T}(x \mid T)}_{f_{X|T}(x \mid T)} dx$$

Moral. We can improve the mse of any estimator $\tilde{\theta}$ by taking a conditional expectation given T(X).

Proof. By the tower property:

$$\mathbb{E}\hat{\theta} = \mathbb{E}[\mathbb{E}[\tilde{\theta} \mid T] = \mathbb{E}\tilde{\theta}$$

So $bias(\hat{\theta}) = bias(\tilde{\theta})$ for all θ . By the conditional variance formula,

$$\operatorname{Var}(\tilde{\theta}) = \mathbb{E}(\operatorname{Var}(\tilde{\theta} \mid T)) + \operatorname{Var}(\mathbb{E}(\tilde{\theta} \mid T))$$
$$= \mathbb{E}[\underbrace{\operatorname{Var}(\tilde{\theta} \mid T)}_{\geq 0 \text{ with } \mathbb{P}=1}] + \operatorname{Var}(\hat{\theta})$$
$$\Longrightarrow \operatorname{Var}(\tilde{\theta}) \geq \operatorname{Var}(\hat{\theta})$$

for all θ . Therefore $\mathrm{mse}(\tilde{\theta}) \geq \mathrm{mse}(\hat{\theta})$.

Note: $\operatorname{Var}(\tilde{\theta} \mid T) > 0$ with some positive probability unless $\tilde{\theta}$ is a function of T(X). So $\operatorname{mse}(\tilde{\theta}) > \operatorname{mse}(\hat{\theta})$ unless $\tilde{\theta}$ is a function of T(X). \Box

Example. Say $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Poisson}(\lambda)$. We wish to estimate $\theta = \mathbb{P}(X_1 = 0) = e^{-\lambda}$.

$$f_X(x \mid \lambda) + \frac{e^{-n\lambda}\lambda^{\sum x_i}}{\prod_i x_i!}$$
$$\implies f_X(x \mid \theta) = \frac{\theta^n(-\log \theta)^{\sum x_i}}{\prod_i x_i!}$$

Letting $h(x) = \frac{1}{\prod x_i!}$, $g(T(X), \theta) = \theta^n (-\log \theta)^{T(X)}$, then by factorisation criterion, $T(X) = \sum X_i$ is a sufficient statistic. Let $\tilde{\theta} = \mathbb{1}_{\{X_1=0\}}$ (unbiased: only uses one observation X_1).

$$\hat{\theta} = \mathbb{E}[\tilde{\theta} \mid T = t]$$

$$= \mathbb{P}\left(X_1 = 0 \mid \sum_{i=1}^n X_i = t\right)$$

$$= \frac{\mathbb{P}\left(X_1 = 0, \sum_{i=2}^n X_i = t\right)}{\mathbb{P}\left(\sum_{i=1}^n X_i = t\right)}$$

$$= \frac{\mathbb{P}(X_1 = 0)\mathbb{P}\left(\sum_{i=1}^n X_i = t\right)}{\mathbb{P}\left(\sum_{i=1}^n X_i = t\right)}$$

$$= \cdots$$

$$= \left(\frac{n-1}{n}\right)^t$$

So $\hat{e} = \left(1 - \frac{1}{n}\right)^{\sum x_i}$ is an estimator which by the Rao-Blackwell theorem has

 $\operatorname{mse}(\hat{\theta}) < \operatorname{mse}(\tilde{\theta})$

Sanity check: What happens as $n \to \infty$?

$$\hat{\theta} = \left(1 - \frac{1}{n}\right)^{n\overline{x}} \stackrel{n \to \infty}{\longrightarrow} e^{-\overline{x}}$$

and by the Strong Law of Large Numbers, $\overline{X} \to \mathbb{E}X_1 = \lambda$ so $\theta^n \approx e^{-\lambda} = \theta$ as h grows large.

Example. Let $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Unif}([0, \theta]), \theta$ unknown. $\theta \ge 0$. Recall $T(X) = \max_i X_i$ is sufficient for θ . Let $\tilde{\theta} = 2X_1$, which is unbiased. Then

$$\hat{\theta} = \mathbb{E}[\tilde{\theta} \mid T = t]$$

$$= 2\mathbb{E}[X_1 \mid \max_i X_i = t]$$

$$= 2\mathbb{E}[X_1 \mid \max_i X_i = t, \max_i X_i = X_1]\mathbb{P}[\max_i X_i = X_1 \mid \max X_i = t]$$

$$+ \mathbb{E}[X_1 \mid \max_i X_i = t, \max_i X_i \neq X_1]\mathbb{P}[\max_i X_i \neq X_1 \max X_i = t]$$

$$= \frac{2t}{n} + \frac{2(n-1)}{n}\mathbb{E}[X_1 \mid X_1 \leq t, \max_{1 \leq i \leq n} X_i = t]$$

$$= \frac{2t}{n} + \frac{2(n-1)}{n}\frac{t}{2}$$

So $\hat{\theta} = \frac{n+1}{n} \max_i X_i$ is a valid estimator with

 $\mathrm{mse}(\hat{\theta}) < \mathrm{mse}(\tilde{\theta})$

Start of lecture 5

0.4 Maximum likelihood Estimation

Let $X = (X_1, \ldots, X_n)$ have f=joint pdf (or pmf) $f_X(x \mid \theta)$.

Definition (Likelihood function). The likelihood function is

 $L: \theta \mapsto f_X(X \mid \theta)$

The maximum likelihood estimator (mle) is any value of θ maximising $L(\theta)$.

If X_1, \ldots, X_n are IID each with pdf (or pmf) $f_X(\bullet \mid \theta)$, then

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i \mid \theta)$$

We'll denote the logarithm

$$l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f_X(x_i \mid \theta)$$

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(\theta).$

$$l(\theta) = \left(\sum X_i\right)\log\theta + \left(n - \sum X_i\right)\log(1 - \theta)$$
$$\frac{\partial l}{\partial \theta} = \frac{\sum X_i}{\theta} - \frac{n - \sum X_i}{1 - \theta}$$

This is equal to 0 if and only if $\theta = \frac{1}{n} \sum X_i = \overline{X}$. Hence \overline{X} is the mle for θ . This is unbiased as $\mathbb{E}\overline{X} = \theta$.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$

$$l(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

This is maximised when $\frac{\partial l}{\partial \mu} = \frac{\partial l}{\partial \sigma^2} = 0$

$$\frac{\partial l}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)$$

equal to 0 when $\mu = \overline{X} \; (\forall \sigma^2)$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (X_i - \mu)^2$$

This is equal to 0 when $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n} S_{XX}$. Hence $(\hat{\mu}, \hat{\sigma}^2) = (\overline{X}, S_X X/n)$ are the mle in this model.

Note that $\overline{\mu} = \overline{X}$ is unbiased. Is $\hat{\sigma}^2$ biased? We could compute $\mathbb{E}\hat{\sigma}^2$ directly. Later in the course, we'll show that

$$\frac{S_{XX}}{\sigma^2} = \frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-1}$$
$$\mathbb{E}\hat{\sigma}^2 = \mathbb{E}(\chi^2_{n-1})\frac{\sigma^2}{n} = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$

So $\hat{\sigma}^2$ is biased, but asymptotically unbiased:

$$\operatorname{bias}(\hat{\sigma}^2) \xrightarrow{n \to \infty} 0 \qquad \forall \sigma^2$$

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Unif}[0, \theta]$

We an see from the plot that $\hat{\theta} = \max_i X_i$ is the mle for θ . Last time we started from unbiased estimator $\tilde{\theta} = 2X_1$ and using the R-B theorem we found an estimator

$$\hat{\theta} = \frac{n+1}{n} \max_{i} X_i$$

This is also unbiased. So in this model the mle is biased as

$$\mathbb{E}\hat{\theta}_{mle} = \mathbb{E}\left[\frac{n+1}{n}\hat{\theta}\right] = \frac{n}{n+1}\theta$$

but it is asymptotically unbiased.

Properties of the mle

(1) If T is a sufficient statistic then the mle is a function of T(X). By the factorisation criterion:

$$L(\theta) = g(T(x), \theta)h(x)$$

If T(x) = T(y) the likelihood function with data x or y is the same up to a multiplicative constant. Hence, the mle in each case is the same.

- (2) If $\phi = h(\theta)$ where h is a bijection, then the mle of ϕ is $\hat{\phi} = h(\hat{\theta})$ where $\hat{\theta}$ is the mle of θ .
- (3) Asymptotic normality: $\sqrt{n}(\hat{\theta} \theta)$ is approximately normal with mean 0 when n is large. Under some regularity conditions, for a "nice set" A,

$$\mathbb{P}(\sqrt{n}(\hat{\theta} - \theta) \in A) \xrightarrow{n \to \infty} \mathbb{P}(z \in A)$$

where $z \sim N(0, \underline{\Sigma})$. This holds for all "regular" values of θ .

Here Σ is some function of l, and there is a theorem (Cramer-Rao) which says this is the smallest variable attainable.

(4) Sometimes if the mle is not available analytically, we can find it numerically.

Confidence Intervals

Example. Vaccine has 76% efficacy in a 3-month period, with a 95% confidence interval (59%, 86%)

Definition (Confidence Interval). A $(100 \cdot \gamma)$ %-confidence interval for a parameter θ is a random interval (A(X), B(X)) such that

$$\mathbb{P}(A(X) \le \theta \le B(X)) = \gamma$$

for all values of θ . (A and B are random, and θ is fixed).

Correct or frequentist interpretation:

There exists some fixed true parameter θ . We repeat the experiment many times. On average, $100 \cdot \gamma\%$ of the time the interval (A(X), B(X)) contains θ .

Misleading interpretation:

"Having observed X = x, there is a probability γ that θ is in (A(x), B(x))."

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} N(\theta, 1)$. Find a 95% confidence interval for θ . We know that

$$\overline{X} = \frac{1}{n} \sum X_i \sim \mathcal{N}\left(\theta, \frac{1}{n}\right)$$
$$\implies z := \sqrt{n}(\overline{X} - \theta) \sim \mathcal{N}(0, 1)$$

z has this distribution for all $\theta.$

Let z_1, z_2 be any two numbers such that $\Phi(z_2) - \Phi(z_1) = 0.95$.

Then

$$\mathbb{P}(z_1 \le \sqrt{n}(\overline{X} - \theta) \le z_2) = 0.95$$

Rearrange:

$$\mathbb{P}\left(\overline{X} - \frac{z_2}{\sqrt{n}} \le \theta \le \overline{X}\frac{z_1}{\sqrt{n}}\right) = 0.95$$

Then $\left(\overline{X} - \frac{z_2}{\sqrt{n}}, \overline{X} + \frac{z_2}{\sqrt{n}}\right)$ is a 95% confidence interval. How to choose z_1, z_2 ? Usually we minimise the width of interval. In this case this is achieved by

$$z_1 = \Phi^{-1}(0.025), \qquad z_2 = \Phi^{-1}(0.975)$$

Start of lecture 6

Recipe for Confidence Interval

(1) Find some quantity $R(X, \theta)$ such that the \mathbb{P}_{θ} -distribution of $R(X, \theta)$ does not depend on θ . This is called a *pivot*. For example

$$z = \sqrt{n}(\overline{X} - \mu) \sim \mathcal{N}(0, 1) \qquad \forall \mu$$

(2) Write down a probability statement about the pivot of the form

$$\mathbb{P}(c_1 \le R(X,\theta) \le c_2) = \gamma$$

by using the quantities c_1, c_2 of the distribution of $R(X, \theta)$ [typically a N(0, 1) or χ_p^2 distribution).

(3) Rearrange the inequalities to leave θ in the middle.

Proposition. If T is a monotone increasing function $T : \mathbb{R} \to \mathbb{R}$, and (A(x), B(X)) is a 100 γ % confidence interval for θ , then (T(A(X)), T(B(X))) is a confidence interval for $T(\theta)$.

Remark. When θ is a vector, we talk about confidence sets.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$. Find a 95% confidence interval for σ^2 . (1) Note that $\frac{X_i}{\sigma} \sim N(0, 1)$ $\implies \sum_{i=1}^n \frac{X_i^2}{\sigma^2} \sim \chi_n^2$ Hence $R(X, \sigma^2) = \sum_i \frac{X_i^2}{\sigma^2}$ is a pivot. (2) Let $C_1 = F_{\chi_n^2}^{-1}(0.025), c_2 = F_{\chi_n^2}^{-1}(0.975)$. Then $\mathbb{P}\left(c_1 \leq \frac{1}{\sigma^2} \sum_i X_i^2 \leq c_2\right) = 0.95$ (3) Rearranging: $= \left(\sum_{i=1}^n X_i^2 - 2\sum_i X_i^2\right)$ and X_i^2

$$\mathbb{P}\left(\frac{\sum X_i^2}{c_2} \le \sigma^2 \le \frac{\sum X_i^2}{c_1}\right) = 0.95$$

Hence $\left[\frac{\sum X_i^2}{c_2}, \frac{\sum X_i^2}{c_1}\right]$ is a 95% confidence interval for σ^2 .

Hence, using the proposition above, $\left[\sqrt{\frac{\sum X_i^2}{c_2}}, \sqrt{\frac{X_i^2}{c_1}}\right]$ is a 95% confidence interval for σ .

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(p), n \text{ is large. Find an approximate 95% confidence interval for <math>p$.

(1) The mle for p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$. By the Central limit theorem when n is large, \hat{p} is approximately $N\left(p, \frac{p(1-p)}{n}\right)$. Therefore $\sqrt{n} \frac{(\hat{p}-p)}{\sqrt{p(1-p)}}$ is approximately N(0, 1).

(2)
$$z = \Phi^{-1}(0.975)$$

$$\mathbb{P}\left(-z \le \frac{\sqrt{n}(\hat{p}-p)}{\sqrt{p(1-p)}} \le z\right) \approx 0.95$$

(3) Rearranging this is tricky. Argue that as $n \to \infty$, $\hat{p}(1-\hat{p}) \to p(1-p)$. So replace denominator:

$$\mathbb{P}\left(-z \le \frac{\sqrt{n}(\hat{p}-p)}{\sqrt{\hat{p}(1-\hat{p})}} \le z\right) \approx 0.95$$

Now it's easier to rearrange:

$$\mathbb{P}\left(\hat{p} - z\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \le p \le \hat{p} + z\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right) \approx 0.95$$

So $\left[\hat{p} \pm z \frac{\sqrt{\hat{p}(1-\hat{p}j)}}{\sqrt{n}}\right]$ is an approximate 95% confidence interval for p.

Note. • $z \approx 1.95$ • $\sqrt{\hat{p}(1-\hat{p})} \leq \frac{1}{2}$ for all $\hat{p} \in (0,1)$ So a "conservative" confidence interval is $\left[\hat{p} \pm 1.96 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{n}}\right]$.

0.5 Interpreting Confidence intervals

Suppose $X_1, X_2 \stackrel{\text{IID}}{\sim} \text{Unif} \left[\theta - \frac{1}{2}, \theta + \frac{1}{2} \right]$. What is a sensible 50% confidence interval for θ ? Consider

$$\mathbb{P}(\theta \text{ is between } X_1, X_2) = \mathbb{P}(\min(X_1, X_2) \le \theta \le \max(X_1, X_2))$$
$$= \mathbb{P}(X_1 \le \theta \le X_2) + \mathbb{P}(X_2 \le \theta \le X_1)$$
$$= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{1}{2}$$

Immediately conclude that $(\min(X_1, X_2), \max(X_1, X_2))$ is a 50% confidence interval for θ .

But we observe $X_1 = x_1$, $X_2 = x_2$ with $|x_1 - x_2| > \frac{1}{2}$. In this case we can be sure that θ is in $(\min(x_1, x_2), \max(x_1, x_2))$.

Frequentist interpretation of confidence interval is entirely correct! If we repeat the experiment many times $\theta \in (\min(X_1, X_2), \max(X_1, X_2))$ exactly 50% of the time. However, we cannot say that given a specific observation (x_1, x_2) we are "50% certain that $\theta \in C.I.$

Bayesian Inference

So far, we have assume that there is some true parameter θ . That data X has pdf (or pmf) $f_X(\bullet \mid \theta)$.

Bayesian analysis is a different framework, where we treat θ as a random variable taking values in Θ .

We being by assigning to θ a prior distribution $\pi(\theta)$, which represents the investigator's opinions or information about θ before seeing any data. Conditional on θ , the data X has pdf (or pmf) $f_X(x \mid \theta)$. Havign observed a specific value of X = x, this information is combined with the prior to form the posterior distribution. $\pi(\theta \mid x)$ which is the conditional distribution of θ given X = x.

By Bayes rule:

$$\pi(\theta \mid x) = \frac{\pi(\theta) \cdot f_X(x \mid \theta)}{f_X(x)}$$

where $f_X(x)$ is the marginal probability of X and:

$$f_X(x) = \begin{cases} \int_{\Theta} f_X(x \mid \theta) \pi(\theta) d\theta & \text{if } \theta \text{ is constant} \\ \sum_{\theta \in \Theta} f_X(x \mid \theta) \pi(\theta) & \text{if } \theta \text{ is discrete} \end{cases}$$

Start of lecture 7

Bayesian Analysis

Idea: treat θ as a random variable. Prior distribution: $\pi(\theta)$ (Info about θ before seeing data) Joint distribution of X, θ :

$$f_X(x \mid \theta) \cdot \pi(\theta)$$

Posterior distribution:

$$\pi(\theta \mid x) = \frac{f_X(f \mid \theta)\pi(\theta)}{\int f_X(x \mid \theta)\pi(\theta)d\theta}$$
$$\propto f_X(x \mid \theta)\pi(\theta)$$

(likelihood times prior).

Example (Prior choice clear). Patient gets a COVID test:

$$\theta = \begin{cases} 0 & \text{patient does not have COVID} \\ 1 & \text{patient does have COVID} \end{cases}$$

Data:

$$X = \begin{cases} 0 & \text{negative test} \\ 1 & \text{positive test} \end{cases}$$

We know: Sensitivity of test:

$$f_X(X=1 \mid \theta=1)$$

Specificity of test:

$$f_X(X=0 \mid \theta=0)$$

What prior? Suppose we don't know anything about patient but we know that a proportion p of people in the UK are infected today. Natural choice:

$$\pi(\theta = 1) = p$$

Chance of infection given true test?

$$\pi(\theta = 1 \mid X = 1) = \frac{\pi(\theta = 1)f_X(X = 1 \mid \theta = 1)}{\pi(\theta = 0)f_X(X = 1 \mid \theta = 0) + \pi(\theta = 1)f_X(X = 1 \mid \theta = 1)}$$

If $\pi(\theta = 0) \gg \pi(\theta = 1)$, this posterior can be small.

Example. $\theta \in [0, 1]$ mortality rate for new surgery at addenbrookes. In the first 10 operations, there were no deaths. Model: $X_i \sim \text{Ber}(\theta)$, $X_i = 1$ if *i*-th operation is death, 0 otherwise.

$$f_X(x \mid \theta) = \theta^{\sum X_i} (1 - \theta)^{10 - \sum X_i}$$

Prior: We're told that the surgery is performed in other hospitals with a mortality rate ranging from 3% to 20%, with an average of 10%. We'll say that $\pi(\theta)$ is Beta(a, b). We choose a = 3, b = 27, so that the mean of $\pi(\theta)$ is 0.1 and

$$\pi(0.03 < \theta < 0.2) = 0.9$$

Posterior:

$$\pi(\theta \mid x) \propto \pi(\theta) \times f_X(x \mid \theta)$$
$$\propto \theta^{a-1} (1-\theta)^{b-1} \theta^{\sum x_i} (1-\theta)^{10-\sum x_i}$$
$$= \theta^{\sum x_i+a-1} (1-\theta)^{b+10-\sum x_i-1}$$

(we ommitted the normalising constant of Beta(a, b) because it does not depend on θ). We deduce this is a Beta $(\sum x_i + a, 10 - \sum x_i + b)$ distribution. In our case

$$\sum_{i=1}^{10} x_i = 0, \quad a = 0, \quad b = 27$$

Note. Here prior and posterior are in the same family of distrbutions. This is known as conjugacy.

What to do with posterior? The information in $\pi(G \mid x)$ can be used to make decisions under uncertainty.

Formal Process

- (1) We must pick a decision $\delta \in D$.
- (2) The loss function $L(\theta, \delta)$ is the loss incurred when we make decision δ and true parameter has value θ . For example $\delta = \{0, 1\}, \delta = 1$ means we ask the patient to self isolate. Then, $L(\theta = 0, \delta = 1)$ is the loss incurred when we ask a non-infected patient to self-isolate.
- (3) We pick decision which minimises the posterior expected loss:

$$\delta^* = \arg\min_{\delta \in D} \int_{\Theta} L(\theta, \delta) \pi(\theta \mid x) \mathrm{d}\theta$$

(Von Neumann-Morgenstern theorem)

Point estimation:

The decision is a "best guess" for the true parameter, so $\delta \in \Theta$. The *Bayes estimator* $\hat{\theta}^{(b)}$ minimises

$$h(\delta) = \int_{\Theta} L(\theta, \delta) \pi(\theta \mid x) \mathrm{d}\theta$$

Example. Quadratic loss $L(\theta, \delta) = (\theta - \delta)^2$ $h(\delta) = \int (\theta - \delta)^2 \pi(\theta \mid x) d\theta$ $h'(\delta) = 0$ if $\int (\theta - \delta) \pi(\theta \mid x) d\theta = 0$ $\iff \int \theta \pi(\theta \mid x) d\theta = \delta \underbrace{\int \pi(\theta \mid x) d\theta}_{=1}$

Hence $\hat{\theta}^{(b)}$ equals the posterior mean of θ .

Example. Absolute error loss $L(\theta, \delta) = |\theta - \delta|$

$$h(\delta) = \int |\theta - \delta| \pi(\theta \mid x) d\theta$$

= $\int_{-\infty}^{\delta} -(\theta - \delta) \pi(\theta \mid x) d\theta + \int_{\delta}^{\infty} (\theta - \delta) \pi(\theta \mid x) d\theta$
= $-\int_{-\infty}^{\delta} \theta \pi(\theta \mid x) d\theta + \int_{\delta}^{\infty} \theta \pi(\theta \mid x) d\theta + \delta \int_{-\infty}^{\delta} \pi(\theta \mid x) d\theta - \delta \int_{\delta}^{\infty} \pi(\theta \mid x) d\theta$

Take derivative with respect to δ . By the FTC,

$$h'(\delta) = \int_{-\infty}^{\delta} \pi(\theta \mid x) \mathrm{d}\theta - \int_{\delta}^{\infty} \pi(\theta \mid x) \mathrm{d}\theta$$

So $h'(\delta) = 0$ if and only if

$$\int_{-\infty}^{\delta} \pi(\theta \mid x) \mathrm{d}\theta = \int_{\delta}^{\infty} \pi(\theta \mid x) \mathrm{d}\theta$$

So in this case

$$\hat{\theta}^{(b)} =$$
median of the posterior

Credible Interval

A 100 $\gamma\%$ credible interval (A(x), B(x)) is one which satisfies

$$\pi(A(x) \leq \theta \leq B(x) \mid x) = \gamma$$

(A and B are fixed at the observed data x, but θ is random).

$$\int_{A(x)}^{B(x)} \pi(\theta \mid x) \mathrm{d}\theta = \gamma$$

In example sheet 2:

Note. We can interpret intervals conditionally ("given x, we are $100\gamma\%$ sure that $\theta \in [A(x), B(x)]$ ").

Note. If T is a sufficient statistic, $\pi(\theta \mid x)$ only depends on x through T(x).

$$\pi(\theta \mid x) \propto \pi(\theta) \times f_X(x \mid \theta) \\ = \pi(\theta)g(T(x), \theta)h(x) \\ \propto \pi(\theta)g(T(x), \theta)$$

Start of lecture 8

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu, 1)$. Prior: $\pi(\mu)$ is $\mathcal{N}\left(0, \frac{1}{\tau^2}\right)$

$$\pi(\mu \mid x) \propto f_X(x \mid \mu) \cdot \pi(\mu)$$

$$\propto \exp\left[-\frac{1}{2}\sum_{i=1}^n (x_i - \mu)^2\right] \exp\left[-\frac{\mu^2 \tau^2}{2}\right]$$

$$\propto \exp\left[-\left(\frac{1}{2}\right)^{(n+\tau^2)} \left\{\mu - \frac{\sum x_i}{n+\tau^2}\right\}^2\right]$$

we recognise this as a

$$\mathcal{N}\left(\frac{\sum x_i}{n+\tau^2}, \frac{1}{n+\tau^2}\right)$$

distribution. The Bayes estimator $\hat{\mu}^{(b)} = \frac{\sum x_i}{n+\tau^2}$ for both quadratic loss and absolute error loss $(\hat{\mu}^{\text{mle}} = \frac{\sum x_i}{n})$. A 95% credible interval is

$$\left(\hat{\mu}^{(b)} - \frac{1.96}{\sqrt{n+\tau^2}}, \hat{\mu}^{(b)} + \frac{1.96}{\sqrt{n+\tau^2}}\right)$$

This is close to a 95% confidence interval when $n \gg \tau^2$.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Poisson}(\lambda)$. Prior: $\pi(\lambda)$ is $\text{Exp}(1), \pi(\lambda) = e^{-\lambda}, \lambda > 0$.

$$\pi(\lambda \mid x) \propto f_X(x \mid \lambda) \cdot \pi(\lambda)$$

$$\propto \frac{e^{-n\lambda}\lambda^{\sum x_i}}{\prod_i x_i!} e^{-\lambda} \qquad \lambda > 0$$

$$= e^{-(n+1)\lambda}\lambda^{\sum x_i} \qquad \lambda > 0$$

THis is a $\Gamma(1 + \sum x_i, n+1)$ distribution. The Bayes estimator under quadratic loss is the posterior mean

$$\hat{\lambda}^{(b)} = \frac{\sum x_i + 1}{n+1} \xrightarrow{n \to \infty} \frac{\sum x_i}{n} = \hat{\lambda}^{\text{mle}}$$

Under the absolute error loss the bayes estimator $\tilde{\lambda}^{(b)}$ has

$$\int_0^{\hat{\lambda}^{(b)}} \frac{(n+1)^{\sum x_i-1}}{(\sum x_i)!} x^{\sum x_i} e^{-(n+1)\lambda} \mathrm{d}\lambda = \frac{1}{2}$$

Simple Hypothesis

A hypothesis is some assumption about the distribution of the data X. Scientific questions are phrased as a choice between a null hypothesis H_0 (base case, simple model, no effect) and an alternative hypothesis H_1 (complex model, interesting case, positive or negative effect).

Examples and non-examples of simple hypotheses (no explanation yet)

- (1) $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(\theta), H_0: \theta = \frac{1}{2}$ (fair coin), $H_1: \theta = \frac{3}{4}$. This is a valid pair.
- (2) As in the previous but H_0 : $\theta = \frac{1}{2}$ and H_1 : $\theta \neq \frac{1}{2}$. This is not a valid pair.
- (3) X_1, \ldots, X_n takes values in \mathbb{N}_0 . $H_0: X_i \stackrel{\text{IID}}{\sim} \text{Poisson}(\lambda)$ for some $\lambda > 0, H_2: X_i \stackrel{\text{IID}}{\sim} f_1$ for some other f_1 . This is not a valid pair.
- (4) X has pdf $f(\bullet \mid \theta), \theta \in \Theta$. $H_0: \theta \in \Theta_0 \subset \Theta, H_1: \theta \notin \Theta_0$. This is simple if $\Theta_0 = \{\theta_0\}$.

A hypothesis is said to be *simple* if it fully specifies the distribution of X. Otherwise we say it is *composite*.

A test of H_0 is defined by a *critical region* $C \subseteq \mathcal{X}$. When $X \in C$ we "reject" H_0 and when $X \notin C$ we say we "fail to reject" or "find no evidence against" H_0 .

Type I error: we reject H_0 when H_0 is true. Type II error: we fail to reject H_0 when H_0 is false. When H_0 and H_1 are simple, we define

$$\alpha = \mathbb{P}_{H_0}(H_0 \text{ is rejected}) = \mathbb{P}_{H_0}(X \in C)$$

"probability of type I error".

$$\beta = \mathbb{P}_{H_2}(H_0 \text{ is not rejected}) = \mathbb{P}_{H_1}(X \notin C)$$

"probability of type II error".

The size of the test is α . The power of the test is $1 - \beta$. Tradeoff between minimising size and maximising power. Usually we fix an acceptable size (say $\alpha = 1\%$), then pick test of size α which maximises the power.

Neyman-Pearson Lemma

Let H_0, H_1 be simple. Let X have pdf f_i under $H_i, i = 0, 1$. The likelihood ratio statistic

$$\Lambda_x(H_0, H_1) = \frac{f_1(X)}{f_0(X)}$$

A likelihood ratio test (LRT) rejects H_0 when

$$X \in C = \{x : \Lambda_x(H_0, H_1) > k\}$$

for some threshold or "critical value" k.

Theorem (Neyman-Pearson Lemma). Suppose that f_0, f_1 are non-zero on the same sets. Suppose there exists k such that the LRT with critical region

$$C = \{x : \Lambda_x(H_0, H_1) > k\}$$

has size exactly α . Then, this is the test with the smallest β (highest power) out of all tests of size $\leq \alpha$.

Remark. A LRT of size α need not exist (try to think of an example). Even then, there is a "randomised LRT" with size α .

Proof. Let \overline{C} be complement of C. The LRT has

$$\alpha = \mathbb{P}_{H_0}(X \in C) \qquad \qquad = \int_C f_0(x) dx$$
$$\beta = \mathbb{P}_{H_1}(X \notin C) \qquad \qquad = \int_{\overline{C}} f_1(x) dx$$

Let C^* be critical region of another test with size α^* , power $1 - \beta^*$, with $\alpha^* \leq \alpha$. Want to prove that $\beta \leq \beta^*$ or $\beta - \beta^* \leq 0$.

$$\begin{split} \beta - \beta^* &= \int_{\overline{C}} f_1(x) \mathrm{d}x - \int_{\overline{C^*}} f_1(x) \mathrm{d}x \\ &= \int_{\overline{C} \cap C^*} f_1(x) \mathrm{d}x - \int_{\overline{C^*} \cap C} f_1(x) \mathrm{d}x \\ &= \int_{\overline{C} \cap C^*} \underbrace{\frac{f_1(x)}{f_0(x)}}_{\leq R \text{ on } \overline{C}} f_0(x) \mathrm{d}x - \int_{\overline{C^*} \cap C} \underbrace{\frac{f_1(x)}{f(x)}}_{>R \text{ on } \overline{C}} f_0(x) \mathrm{d}x \\ &\leq k \left[\int_{C \cap C^*} f_0(x) \mathrm{d}x - \int_{\overline{C^*} \cap C} f_0(x) \mathrm{d}x \right] \\ &= k \left[\int_{C^*} f_0(x) \mathrm{d}x - \int_C f_0(x) \mathrm{d}x \right] \\ &= k (\alpha^* - \alpha) \\ &\leq 0 \end{split}$$

Start of lecture 9

Lemma. If C is a LRT with size α , and C^* is another test of size $\leq \alpha$, then C is more powerful than C^* , i.e.

$$\beta = \mathbb{P}_{H_1}(x \notin C) \le \mathbb{P}_{H_1}(x \notin C^*) = \beta^*$$

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} N(\mu, \sigma_0^2), \sigma_0^2$ is known. Want the best size α test for H_0 : $mu = \mu_0, H_1$: $\mu = \mu_1$ for some fixed $\mu_1 > \mu_0$

$$\Lambda_x(H_0; H_1) = \frac{(2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma_0^2} \sum (x_i - \mu_1)^2\right)}{(2\pi\sigma_0^2)^{\frac{1}{2}} \exp\left(-\frac{1}{2\sigma_0^2} \sum (x_i - \mu_0)^2\right)}$$
$$= \exp\left(\frac{(\mu_1 - \mu_0)}{\sigma_0^2} n\overline{x} + \frac{n(\mu_0^2 - \mu_1^2)}{2\sigma_0^2}\right)$$

 $\Lambda_x(H_0; H_1)$ is monotone increasing in $\overline{x} = \frac{1}{n} \sum x_i$. Hence, for any k, there is a c, such that $\Lambda_x(H_0; H_1) > k \iff \overline{x} > c$. Thus the LRT critical region is $\{x : \overline{x} > a\}$ for some constant c. By the same logic the LRT is of the form

$$C = \{\sqrt{n} \frac{(\overline{x} - \mu_0)}{\sigma_0} < c'\}$$

want to pick c' such that

$$\mathbb{P}_{H_0}\left(\sqrt{n}\frac{(\overline{x}-\mu_0)}{\sigma_0} > c'\right) = \alpha$$

But $\sqrt{n} \frac{(\bar{x}-\mu_0)}{\sigma_0} \sim N(0,1)$ (this is a pivot). So if we take $c' = \Phi^{-1}(1-\alpha) \cdot z_{\alpha}$. Finally the LRT has critical region

$$\left\{x:\frac{\sqrt{n}(\overline{x}-\mu_0)}{\sigma_0}>z_\alpha\right\}$$

By N-D lemma, this is the most powerful test of size α . This is called a "z-test" because we use a z statistic $z = \sqrt{n} \left(\frac{\overline{x} - \mu_0}{\sigma_0}\right)$ to define the critical region.

P-value

For any test with critical region of the form $\{x: T(x) > k\}$ for some statistic T, a *p*-value or observed significance level is

$$p = \mathbb{P}_{H_0}(T(X) > T(X^*))$$

where x^* is the observed date. In example we just saw, let $\mu_0 = 5$, $\mu_1 = 6$, $\sigma_0 = 1$, $\alpha = 0.05$, observe

$$x^* = (5.1, 5.5, 4.9, 5.3)$$

 $\overline{x^*} = 5.2, \ z^* = 0.4. \ z_{\alpha} = \Phi^{-1}(1-\alpha) = 1.645$

Here, we fail to reject H_0 : $\mu_0 = 5$, p = 0.35.

Proposition. Under H_0 , p has a Unif(0, 1) distribution. p is a function of x^* ; null distribution assumes $x^* \sim \mathbb{P}_{H_0}$.

Proof.

$$\mathbb{P}_{H_0}(p < u) = \mathbb{P}_{H_0}(1 - F(T) < u)$$

where F is the cdf of T.

$$= \mathbb{P}_{H_0}(F(T) > 1 - u))$$

= $\mathbb{P}_{H_0}(T > F^{-1}(1 - u))$
= $1 - F(F^{-1}(1 - u))$
= u

for all $u \in [0, 1]$. Thus $p \sim \text{Unif}(0, 1)$.

Composite Hypotheses

 $X \sim f_X(\bullet \mid \theta), \theta \in \Theta.$ $H_0: \theta \in \Theta_0 \subset \Theta, H_1: \theta \in \Theta_1 \subset \Theta.$ Type I, II error probabilities depend on the value of θ within Θ_0 or Θ_1 respectively. Let C be some critical region.

Definition (Power Function and UMP test). The *power function* of the test C is

$$W(\theta) = \mathbb{P}_{\theta}(\underbrace{x \in C}_{H_0 \text{ rejected}})$$

The *size* of c is the worst case Type I error probability:

$$\alpha = \sup_{\theta \in \Theta} W(\theta)$$

We say that C is uniformly most powerful (UMP) of size α for H_0 against H_1 if:

- (1) $\sup_{\theta \in \Theta_0} W(\theta) = \alpha$
- (2) For any other test C^* of size $\leq \alpha$, with power function W^* , we have $W(\theta) \geq W^*(\theta)$ for all $\theta \in \Theta_1$.

Note. UMP test need not exist. But, in some simple cases, the LRT is UMP.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} N(\mu, \sigma_0^2)$: σ_0^2 known. We wish to test H_0 : $\mu \leq \mu_0$ against H_1 : $\mu > \mu_0$ for some fixed μ_0 . We just studied the simple hypothesis:

$$H'_0: \mu = \mu_0, \qquad H'_1: \mu = \mu_1 \qquad (\mu_1 > \mu_0)$$

LRT was:

$$C = \left\{ x : z = \frac{\sqrt{n}(\overline{x} - \mu_0)}{\sigma_0} > z_\alpha \right\}$$

Claim: the same test C is UMP for H_0 against H_1 . The power function for C is

$$W(\mu) = \mathbb{P}_{\mu}(X \in C) = \mathbb{P}_{\mu}\left(\frac{\sqrt{n}(\overline{x} - \mu_{0})}{\sigma_{0}} > z_{\alpha}\right)$$
$$= \mathbb{P}_{\mu}\left(\frac{\sqrt{n}(\overline{x} - \mu)}{\sigma_{0}} > z_{\alpha} + \frac{\sqrt{n}(\overline{x} - \mu)}{\sigma_{0}}\right)$$
$$= 1 - \Phi\left(z_{\alpha} + \frac{\sqrt{n}(\mu_{0} - \mu)}{\sigma_{0}}\right)$$

This is monotone increasing in $\mu \in (-\infty, \infty)$

The test has size α as $\sup_{\mu \in \Theta_0} W(\mu) = \alpha$. It remains to show that if C^* is another test of size $\leq \alpha$ with power function W^* then $W(\mu_1) \geq W^*(\mu_1)$ for all $\mu_1 > \mu_0$. Main observation: critical region only depends on μ_0 . And C is the LRT for the simple hypothesis H'_0 : $\mu = \mu_0$, H'_1 : $\mu = \mu_1$. Any test C^* of H_0 vs H_1 of size $\leq \alpha$ also has size $\leq \alpha$ for H'_0 vs H'_1 .

$$W^*(\mu_0) \le \sup_{\mu \in \Theta_0} W^*(\mu) \le \alpha$$

Hence by N-D lemma, we know $W(\mu_1) \ge W(\mu_2)$. As we can apply this argument for any $\mu_1 > \mu_0$, we have

$$W^*(\mu_1) \le W(\mu_1) \qquad \forall \mu_1 > \mu_0$$

Start of lecture 10

Generalised Likelihood Ratio Tests

 $X \sim f_X(\bullet \mid \theta), H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1$. The generalised likelihood ratio statistic:

$$\Lambda_x(H_0; H_1) = \frac{\sup_{\theta \in \Theta_1} f_X(x \mid \theta)}{\sup_{\theta \in \Theta_0} f_X(x \mid \theta)}$$

Large values of Λ_x indicate larger departure from H_0 .

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} N(\mu, \sigma_0^2), \sigma_0$ is known. Wish to test H_0 : $\mu = \mu_0, H_1$: $\mu \neq \mu_0$ for fixed μ_0 . Here $\Theta_0 = \{\mu_0\}, \Theta_1 = \mathbb{R} \setminus \{\mu_0\}$. The GLR is

$$\Lambda_x(H_0; H_1) = \frac{(2\pi\sigma_0^2)^{-\pi/2} \exp\left(-\frac{1}{2\sigma_0^2}\sum_i (x_i - \overline{x})^2\right)}{(2\pi\sigma_0^2)^{\pi/2} \exp\left(-\frac{1}{2\sigma_0^2}\sum_i (x_i - \mu_0)^2\right)}$$

Taking $2 \cdot \log$ of Λ_x (monotone increasing transformation)

$$2\log \Lambda x = \frac{n}{\sigma_0^2} (\overline{x} - \mu_0)^2$$

The GLR test rejects H_0 when Λ_x is large (or when $2 \log \Lambda_x$ is large), i.e. when

$$\left|\sqrt{n}\frac{(\overline{x}-\mu_0}{\sigma_0}\right|$$

is large. (Under H_0 , the expression in the modulus has a N(0, 1) distribution). For a test of size α , reject when

This is called a 2-sided test.

Note. $2 \log \Lambda_x = n \frac{(\overline{x} - \mu_0)}{\sigma_0^2} \sim \chi_1^2$ under H_0 .

We can also define the critical region of the GLR test as

$$\left\{x:n\frac{(\overline{x}-\mu_0)}{\sigma_0^2}>\chi_1^2(\alpha)\right\}$$

In general, we can approximate the distribution of $2 \log \Lambda_x$ with a χ_1^2 distribution when n is large(!)

Wilks' Theorem

Suppose θ is k-dimensional $\theta = (\theta_1, \ldots, \theta_k)$. The dimension of a hypothesis $H_0: \theta \in \Theta_0$ is the number of "free parameters" in Θ_0 .

- (1) $\Theta_0 = \{\theta \in \mathbb{R}^k : \theta_1 = \theta_2 = \dots = \theta_p = 0\}$ for some p < k. Here dim $(\theta_0) = k p$.
- (2) Let $A \in \mathbb{R}^{p \times k}$, $b \in \mathbb{R}^p$, p < k;

$$\Theta_0 = \{\theta \in \mathbb{R}^k : A\theta = b\}$$

 $\dim(\Theta_0) = k - p$ if rows of A are linearly independent (Θ_0 is a hyperplane).

(3) $\Theta_0 = \{\theta \in \mathbb{R}^k : \theta_0 = f_i(\phi), \phi \in \mathbb{R}^p\}, p < l.$ Here ϕ are the free parameters; f_i need not be linear. Under regularity conditions $\dim(\theta_0) = p$.

Theorem (Wilk's Theorem). Suppose $\Theta_0 \subset \Theta_1$ ("nested hypotheses")

$$\dim(\Theta_1) - \dim(\Theta_0) = p$$

If X_1, \ldots, X_n are iid from $f_X(\bullet \mid \theta 0$, then as $n \to \infty$, the limiting distribution of $2 \log \Lambda_x$ under H_0 is χ_p^2 . That is, for any $\theta \in \Theta_0$, any l > 0,

$$\mathbb{P}_{\theta}(z \log \Lambda_x \le l) \xrightarrow{n \to \infty} \mathbb{P}(Z \le l)$$

where $Z \sim \chi_p^2$.

How to use this? If we reject H_0 when $2 \log \Lambda_x \ge \chi_p^2(\alpha)$ then when n is large, the size of the test is $\approx \alpha$. (!!!)

Example. In the two-sided normal mean test

$$\Theta_0 = \{\mu_0\}, \qquad \Theta_1 = \mathbb{R} \setminus \{\mu_0\}$$

we found $2\log \Lambda_x \sim \chi_1^2$. If we take $\Theta_1 = \mathbb{R}$, the GLR statistic doesn't change, so $2\log \Lambda_x \sim \chi_1^2$.

$$\dim(\theta_1) - \dim(\Theta_0) = 1 - 0 = 1$$

The prediction of Wilk's theorem is exact.

Proof. Wait for Part II Principles of Statistics :(

Tests of goodness of fit

 X_1, \ldots, X_n are iid samples from a distribution on $\{1, 2, \ldots, k\}$. Let $p_i = \mathbb{P}(X_1 = i)$, let N_i be the number of observations equal to i. So,

$$\sum_{i=1}^{k} p_i = 1, \qquad \sum_{i=1}^{k} N_i = n$$

Goodness of fit test: H_0 : $p = \tilde{p}$ for some fixed distribution \tilde{p} on $\{1, \ldots, k\}$. H_1 : p is any distribution with $\sum_{i=1}^k p_i = 1, p_i \ge 0$.

Example. Mendel crossed n = 556 smooth yellow peas with wrinkled green peas. Each member of the progeny can have any combination of the 2 features: SY, SG, WY, WG. Let (p_1, p_2, p_3, p_4) be the probabilities of each type, and (N_1, \ldots, N_4) are the number of progeny of each type, $\sum N_i = n = 556$.

Mendel's hypothesis:

$$H_0: p = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right) := \tilde{p}$$

Is there any evidence in N_1, \ldots, N_4 to reject H_0 ? The model can be written $(N_1, \ldots, N_k) \sim \text{Multinomial}(n; p_1, \ldots, p_k)$. Likelihood: $L(p) \propto p_1^{N_1} \cdots p_k^{N_k}$

$$\implies l(p) = \text{const} + \sum_{i} N_i \log p_i$$

We can test H_0 against H_1 using a GLR test:

$$2\log \Lambda_x = 2\left(\sup_{p\in\Theta_1} l(p) - \sup_{p\in\Theta_0} l(p)\right)$$

Since $\Theta_0 = {\tilde{p}}$, $\sup_{p \in \Theta_0} l(p) = l(\tilde{p})$. In the alternative p must satisfy $\sum p_i = 1$.

$$\sup_{p \in \Theta_1} l(p) = \sup_{p:\sum p_i = 1} \sum_i N_i \log p_i$$

Use Lagrangian $\mathcal{L}(p,\lambda) = \sum_{i} N_i \log p_i - \lambda (\sum_{i} p_i - 1)$. We find that $\hat{p}_i = \frac{N_i}{n}$ (the observed proposition of samples of type *i*).

$$2\log \Lambda = 2(l(\hat{p}) - l(\tilde{p}))$$
$$= 2\sum_{i} N_{i} \log \left(\frac{N_{i}}{n \cdot \tilde{p}_{i}}\right)$$

Wilk's theorem tells us that $2 \log \Lambda_x$ is approximately χ_p^2 with

 $p = \dim(\Theta_1) - \dim(\Theta_0) = (k-1) - 0 = k - 1$

So we can reject the H_0 with size $\approx \alpha$ when

$$2\log\Lambda_x > \chi^2_{k-1}(\alpha)$$

Start of lecture 11

Tests of Goodness of fit and Independence

It's common to write

$$2\log\Lambda = 2\sum_{i} o_i \log\left(\frac{o_i}{e_i}\right)$$

where $o_i = N_i$ "observed number of type i" and $e_i = n \cdot \tilde{p}_i$ "expected number of type i under null".

Pearson's statistic: Let $\delta_i = o_i - e_i$. Then

$$2\log \Lambda = 2\sum_{i} (e_i + \delta_i) \underbrace{\log\left(1 + \frac{\delta_i}{e_i}\right)}_{=\frac{\delta_i}{e_i} - \frac{\delta_i^2}{2e_i^2} + O\left(\frac{\delta_i^3}{e_i^3}\right)}$$
$$\approx 2\sum_{i} \left(\underbrace{\delta_i}_{\sum_i \delta_i = \sum_i (o_i - e_i) = n - n = 0}_{\sum_i \delta_i^2} + \frac{\delta_i^2}{e_i} - \frac{\delta_i^2}{2e_i}\right)$$
$$= \sum_{i} \frac{\delta_i^2}{e_i}$$
$$= \sum_{i} \frac{(o_i - e_i)^2}{e_i}$$

This is called Preason's statistic. This is also referred to a χ^2_{k-1} distribution when n is large.

Example. Mendel's data:

$$(n_1, n_2, n_3, n_4) = (315, 108, 102, 31)$$

 $2 \log \Lambda \approx 0.618$, $\sum_{i} \frac{(o_i - e_i)^2}{e_i} \approx 0.604$. We refer each statistic to a $\chi^2_{k-1} = \chi^2_3$ distribution.

$$\chi_3^2(0.05) = 7.815$$

We don't reject H_0 at size 5%. The *p*-value is $\mathbb{P}(\chi_3^2 > 0.6) \approx 0.96$. The data fir the null model almost too well.

Goodness of fit test for composite null

 $H_0: p_i = p_i(\theta)$ for some parameter θ . $H_1: p$ can be any distribution on $\{1, \ldots, k\}$.

Example. Individuals can have 3 genotypes. H_0 : $p_1 = \theta^2$, $p_2 = 2\theta(1 - \theta)$, $p_3 = (1 - \theta)^2$, for some $\theta \in [0, 1]$.

$$2\log \Lambda = 2 \left(\sup_{p:\sum p_i=1} l(p) - \sup_{\theta} l(p(\theta)) \right)$$
$$= 2(l(\hat{p}) - l(p(\hat{\theta}))$$

where \hat{p} is the mle in the alternative H_1 ; $\hat{\theta}$ is the mle in null H_0 . Last time we found $\hat{p}_i = \frac{N_i}{n}$. $\hat{\theta}$ would need to be computed for the null model in question.

$$2\log \Lambda = 2\sum_{i} N_i \log \left(\frac{N_i}{np_i(\hat{\theta})}\right)$$
$$= 2\sum_{i} o_i \log \left(\frac{o_i}{e_i}\right)$$

 $o_i = N_i$ "observed number of type i", $e_i = n \cdot p_i(\hat{\theta})$ "expected number of type i under H_0 ". We can define a Pearson statistic $\sum_i \frac{(o_i - e_i)^2}{e_i}$ using the same argument as before.

Each statistic can be referred to a χ_d^2 when n is large by Wilke's theorem.

$$d = \dim(\Theta_1) - \dim(\Theta_0)$$
$$= (k - 1) - \dim(\Theta_0)$$

Example. $l(\theta) = \sum_{i} N_i \log p_i(\theta) = 2N_1 \log \theta + N_2 \log(2\theta(1-\theta)) + 2N_3 \log(1-\theta).$ Maximising over $\theta \in [0, 1]$ gives $\hat{\theta} = \frac{2N_1+N_2}{2n}$ (exercise). In this model $2 \log \Lambda$ and $\sum_i \frac{(o_i - e_i)^2}{e_i}$ have a χ_d^2 distribution with $d = (k-1) - \dim(\Theta_0) = (k-1) - 1 = k - 2 = 3 - 2 = 1.$

Testing independence in contingency tables

 $(X_1, Y_1), \ldots, (X_n, Y_n)$ are iid with X_i taking values in $\{1, \ldots, r\}$, Y_i taking values in $\{1, \ldots, c\}$. The entries in a contingency table are

$$N_{ij} = \#\{l : 1 \le l \le n, (X_l, Y_l) = (i, j)\}$$

(# samples of type (i, j))

Example. COVID-19 deaths. X_i : age of *i*-th death. Y_i : week on which it fell. Question: are deaths decreasing faster for older age grou that had been vaccinated?

Probability Model

We'll assume n is fixed. A sample (X_l, Y_l) has probability p_{ij} of falling in (i, j) entry of table.

$$(N_{11}, \ldots, N_{1c}, N_{21}, \ldots, N_{2c}, \ldots, N_{rc}) \sim$$
Multinomial $(n; p_{11}, \ldots, p_{1c}, \ldots, p_{rc})$

Remark. Fixing n may not be natural; we'll consider other models later.

Null hypothesis

Week of death is independent of age. X_i independent of Y_i for each sample. Let

$$p_{i+} = \sum_{j=1}^{n} p_{ij}$$
 $p_{+j} = \sum_{i=1}^{r} p_{ij}$

 $H_0: p_{ij} = p_{i+}p_{+j}. \ (\mathbb{P}(X_l = i, Y_l = j) = \mathbb{P}(X_l = i)\mathbb{P}(Y_l = j)). \ H_1: \ (p_{ij}) \text{ is unconstrained}$ except for $p_{ij} \ge 0, \ \sum_{i,j} p_{ij} = 1$. The generalised LRT:

$$2\log\Lambda = 2\sum_{i,j} o_{ij}\log\left(\frac{o_{ij}}{e_{ij}}\right)$$

 $o_{ij} = N_{ij}, e_{ij} = n\hat{p}_{ij}$, where \hat{p} is the mle under independence model H_0 . Using Lagrange multipliers we can find

$$\hat{p}_{ij} = \hat{p}_{i+}\hat{p}_{+j}$$

where

$$\hat{p}_{i+} = \frac{N_{i+}}{n} \qquad \qquad \hat{p}_{+j} = \frac{N_{+j}}{n}$$

$$N_{i+} = \sum_{j} N_{ij} \qquad \qquad \qquad N_{+j} = \sum_{i} N_{ij}$$

$$\implies 2\log\Lambda = 2\sum_{i=1}^{r} \sum_{j=1}^{c} N_{ij} \log\left(\frac{N_{ij}}{n \cdot \hat{p}_{i+}\hat{p}_{+j}}\right) \approx \sum_{i,j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

Wilke's: The asymptotic distribution of these statistics is χ^2_d with

$$d = \dim(\Theta_1) - \dim(\Theta_0)$$

= $(rc - 1) - [(r - 1) + (c - 1)]$
 $(r - 1)(c - 1)$

 $((r-1) \text{ and } (c-1) \rightarrow \text{degrees of freedom in } (p_{1+}, \dots, p_{r+}) \text{ and } (p_{+1}, \dots, p_{+c}))$

Start of lecture 12

Testing independence in contingency tables

 N_{ij} : number of samples of type (i, j).

 $(N_{ij}) \sim \text{Multinomial}(n, (p_{ij}))$

 $H_0: p_{ij} = p_{i+} \times p_{+j}$ $H_1: (p_{ij})$ unconstrained. Found $2 \log \Lambda$, which has asymptotic $\chi^2_{(r-1)(c-1)}$ distribution.

Example (COVID-19 deaths). Problems with χ^2 independence test:

(1) χ^2 approximation can be bad when we have large tables. Rule of thumb: Need $N_{ij} \geq 5$ for all i, j.

Solution (non-examinable): exact testing. Idea: under H_0 , the margins of N (N_{i+}) , (N_{+j}) are sufficient statistics for p. therefore 2 tables N, \tilde{N} with the same margins are equally likely under H_0 . An exact test contrasts the test statistic observed $2 \log \Lambda(N)$ with the distribution of this statistic for the set of tables with the same margins as N. This gives a test of *exact* size α .

- (2) $2 \log \Lambda$ can detect deviations from H_0 in any direction. \implies Low power, especially when r, c is large. This is why H_0 is not rejected in a test of size 1% in COVID-19 example. Solutions:
 - (1) Define a parametric alternative H_1 with fewer degrees of freedom.
 - (2) Lump categories in the table.

Tests of Homogeneity

Instead of assuming $\sum_{i,j} N_{ij}$ fixed, we assume row totals are fixed.

Example. 150 patients, split into groups of 50 for placebo, half-dose, full-dose. We record whether each patient improved, showed no difference or got worse.

	Ι	N.D.	W
Placebo			
Half			
Full			

Now row totals are fixed. Null of homogeneity: probability of each outcome is the same in each treatment group.

Model:

$$(N_i 1, \ldots, N_{ic}) \sim$$
Multinomial $(n_{i+}, p_{i1}, \ldots, p_{ic})$

independent for i = 1, ..., r. Paramters satisfy $\sum_j p_{ij} = 1$ for all i. $H_0: p_{1j} = p_{2j} = \cdots p_{rj}$ for all j = 1, ..., c. $H_1: (p_{i1}, ..., p_{ic})$ is a probability vector for all i.

$$L(p) = \prod_{i=1}^{r} \frac{n_{i+}!}{N_{i1}! \cdots N_{ic}!} p_{i1}^{N_{i1}} \cdots p_{ic}^{N_{ic}}$$
$$l(p) = \text{const} + \sum_{i,j} N_{ij} \log p_{ij}$$

To find $2 \log \Lambda$ we need to maximise l(p) over H_0 , H_1 . H_1 : use Lagrange multipliers with constraints $\sum_j p_{ij} = 1$ for all *i*. Then the mle is

$$\hat{p}_{ij} = \frac{N_{ij}}{n_{i+}}$$

 $H_0: \text{ let } p_j = p_{1j} = \dots = p_{+j}.$

$$l(p) = \text{const} + \sum_{j=1}^{c} N_{+j} \log p_j$$

hence the mle is $\hat{p}_j = \frac{N_{+j}}{n_{++}}, n_{++} = \sum_i n_{i+}$. Thus

$$2\log\Lambda = 2\sum_{i,j} N_{ij}\log\left(\frac{N_{ij}}{n_{i+}N_{+j}/n_{++}}\right)$$

This is exactly the same statistic as $2 \log \Lambda$ for the independence test. Let $o_{ij} = N_{ij}$, $e_{ij} = n_{i+} \hat{p}_j = n_{i+} \frac{N_{+j}}{n_{++}}$

$$\implies 2 \log \Lambda = 2 \sum_{i,j} o_{ij} \log \left(\frac{o_{ij}}{e_{ij}}\right)$$
$$\approx \sum_{i,j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

This is also the same as Pearson's statistic for independence test. 46

Wilk's implies $2 \log \Lambda$ is approximately χ_d^2 ,

$$d = \dim(\Theta_1) - \dim(\Theta_0)$$
$$= (c-1)r - (c-1)$$
$$= (c-1)(r-1)$$

Asymptotic distribution of $2 \log \Lambda$ is also the same as in the independence test.

Testing independence or homogeneity with size α always has the same conclusion.

Relationship between tests and confidence sets

Define the acceptance ragion A of a test to be the complement of the critical region. Let $X \sim f_X(\bullet \mid \theta)$ for some $\theta \in \Theta$.

Theorem. (1) Suppose that for each $\theta_0 \in \Theta$ there is a test of H_0 : $\theta = \theta_0$ of size α with acceptance region $A(\theta_0)$. Then, the set

$$I(X) = \{\theta : X \in A(\theta)\}$$

is a $100(1-\alpha)\%$ confidence set.

(2) Suppose I(X) is a $100(1-\alpha)\%$ confidence set for θ . Then

$$A(\theta_0) = \{x : \theta_0 \in I(X)\}$$

is the acceptance region of a size α test for H_0 : $\theta = \theta_0$.

Proof. In each part:

$$\theta_0 \in I(X) \iff X \in A(\theta_0)$$

For part (1), we calculate:

$$\mathbb{P}_{\theta_0}(I(X) \ni \theta_0) = \mathbb{P}_{\theta_0}(x \in A(\theta_0))$$
$$= 1 - \mathbb{P}_{\theta_0}(x \in C(\theta_0))$$
$$= 1 - \alpha$$

as desired. For part (2):

$$\mathbb{P}_{\theta_0}(X \in C(\theta_0)) = \mathbb{P}_{\theta_0}(X \notin A(\theta_0))$$
$$= \mathbb{P}_{\theta_0}(I(X) \not\ni \theta_0)$$
$$= 1 - \mathbb{P}_{\theta_0}(I(x) \ni \theta_0)$$
$$= 1 - (1 - \alpha)$$
$$= \alpha$$

as desired.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu, \sigma_0^2), \sigma^2$ known.

$$I(X) = \left(\overline{X} \pm \frac{z_{\alpha/2}\sigma_0}{\sqrt{n}}\right)$$

confidence interval. Test: H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$. Critical region:

$$\left\{x: \left|\sqrt{n}\frac{(X-\overline{X})}{\sigma_0}\right| > z_{\alpha/2}\right\}$$

Start of lecture 13

Multivariate Normal Theory

Recall: if X is a random vector, then

$$\mathbb{E}[AX+b] = A\mathbb{E}X+b$$
$$\operatorname{Var}(AX+b) = A\operatorname{Var}(X)A^{\top}$$

Definition. We say X has a multivariate normal distribution if for any $t \in \mathbb{R}^n$, $t^{\top}X$ is normal.

Proposition. If X is MVN then AX + b is MVN.

Proof. Say AX + b is in \mathbb{R}^m . Take $t \in \mathbb{R}^m$.

$$t^{\top}(X+b) = (A^{\top}t)^{\top}X + t^{\top}b$$

Since X is MVN, $A^{\top}t)^{\top}X$ is a normal distribution, and since $t^{\top}b$ is a constant, this means that $t^{\top}(AX + b)$ is normal.

Proposition. A MVN distribution is fully specified by its mean and variance.

Proof. Take X_1 , X_2 both MVN with mean μ and variance Σ . We'll show that their mgf's are equal, hence X_1 and X_2 have the same distribution.

$$\begin{split} \mathbb{E}e^{1\cdot t^{\top}X_{1}} &= M_{t^{\top}X_{1}}(1) & t^{\top}X_{1} \text{ is Normal} \\ &= \exp\left(1\cdot \mathbb{E}(t^{\top}X_{1}) + \frac{1}{2}\operatorname{Var}(t^{\top}X_{1}) \cdot 1^{2}\right) \\ &= \exp\left(t^{\top}\mu + \frac{1}{2}t^{\top}\Sigma t\right) \end{split}$$

This just depends on μ , Σ , so it is the same for X_1, X_2 .

Orthogonal projections

Definition. (1) We say $P \in \mathbb{R}^{n \times n}$ is an orthogonal projection if it is:

- Idempotent: PP = P.
- Symmetric: $P^{\top} = P$.
- (2) Or equivalently, $P \in \mathbb{R}^{n \times n}$ is an orthogonal projection if for any $v \in \operatorname{col}(P)$, Pv = v, and for any $w \in \operatorname{col}(P)^{\perp}$, Pw = 0.

Proposition. (1) and (2) are equivalent.

(P)) of A (2) Take $v \in col(P)$, so v = Pa for some $a \in \mathbb{R}^n$. Then

$$Pv = PPa = Pa = v$$

Take $w \in \operatorname{col}(P)^{\perp}$. Then $P^{\top}w = 0$. Hence

$$Pw = P^{\top}w = 0$$

(2) \implies (1) We can write any $a \in \mathbb{R}^n$ uniquely as $a = v + w, w \in \operatorname{col}(P)^{\perp}, v \in \operatorname{col}(P)$. Then

$$P^{2}a = PP(v+w) = Pv = P(v+w) = Pa$$

As a was arbitrary, $P = P^2$. For symmetry, take $u_1, u_2 \in \mathbb{R}^n$. Then

$$\underbrace{(\overset{}{P} \overset{}{u_1})}_{\in \operatorname{col}(P)} \underbrace{((I-P)u_2)}_{\in \operatorname{col}(P)^{\perp}} = 0$$

 $\implies u_1^{\top}(P^{\top} - P^{\top}P)u_2 = 0. \text{ Since this holds for all } u_1, u_2 \in \mathbb{R}^n, P^{\top} = P^{\top}P. \text{ But } P^{\top}P \text{ is symmetric, hence } P^{\top} \text{ is symmetric, hence } P \text{ symmetric.} \qquad \Box$

Corollary. If P is orthogonal projection, then I - P is as well.

Proof.

$$(I - P)^{\top} = I - P^{\top} = I - P$$

 $(I - P)(I - P) = I - 2P + PP = I - P$

and

Proposition. If $P \in \mathbb{R}^{n \times n}$ is an orthogonal projection then

 $P = UU^{\top}$

where the columns of U form an orthogonal basis for col(P). (if k = rank(P), then $U \in \mathbb{R}^{n \times k}$).

Proof. UU^{\top} is clerally symmetric and also idempotent

$$U\underbrace{U^{\top}U}_{I_k}U^{\top} = UU^{\top}$$

So UU^{\top} is an orthogonal projection. To show it is equal to P, note $\operatorname{col}(P) = \operatorname{col}(UU^{\top})$ by construction.

Corollary. $k = \operatorname{rank}(P) = \operatorname{Tr}(\underbrace{U^{\top}U}_{I_k}) = \operatorname{Tr}(UU^{\top}) = \operatorname{Tr}(P)$

Theorem. If X is MVN, $X \sim N(0, \sigma^2 I)$ and P is an orthogonal projection, then (1) $PX \sim N(9, \sigma^2 P)$, $(I - P)X \sim N(0, \sigma^2 (I - P))$, PX, (I - P)X independent. (2) $\frac{\|PX\|^2}{\sigma^2} \sim \chi^2_{\text{rank}(P)}$

Proof. The vector

$$\begin{pmatrix} P\\ I-P \end{pmatrix} X$$

is MVN, because it is a linear function of X. The distribution is specified by the mean and variance:

$$\mathbb{E}\begin{bmatrix}PX\\(I-P)X\end{bmatrix}\begin{pmatrix}P\\I-P\end{pmatrix}\mathbb{E}X=0$$

and:

$$\operatorname{Var}\begin{pmatrix} PX\\(I-P)X \end{pmatrix} = \begin{pmatrix} P\\I-P \end{pmatrix} \operatorname{Var}(X) \begin{pmatrix} P\\I-P \end{pmatrix}^{\top}$$
$$= \begin{pmatrix} P\\I-P \end{pmatrix} \sigma^{2} I \begin{pmatrix} P\\I-P \end{pmatrix}^{\top}$$
$$= \sigma^{2} \begin{bmatrix} P\\(I-P)P & I-P \end{bmatrix}$$

Let $Z \sim \mathcal{N}(0, \sigma^2 P), Z' \sim \mathcal{N}(0, \sigma^2 (I - P)), Z, Z'$ independent. Then

$$\begin{pmatrix} Z \\ Z' \end{pmatrix} \sim \mathcal{N} \left(0, \sigma^2 \begin{bmatrix} P & 0 \\ 0 & I - P \end{bmatrix} \right)$$

 So

$$\begin{pmatrix} PX\\ (I-P)X \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} Z\\ Z' \end{pmatrix}$$

hence PX, (I - P)X independent. This proves (1).

For (2):

$$\frac{\|PX\|^2}{\sigma^2} = \frac{(PX)^\top PX}{\sigma^2} = \frac{X^\top (UU^\top)^\top UU^\top X}{\sigma^2} = \frac{X^\top UU^\top X}{\sigma^2}$$

Cols of U form orthogonal basis for col(P)

$$\implies \frac{\|PX\|^2}{\sigma^2} = \frac{\|U^\top X\|^2}{\sigma^2} = \sum_{i=1}^{\operatorname{rank}(P)} \frac{(U^\top X)_i^2}{\sigma^2}$$

But $U^{\top}X \sim \mathcal{N}(0, \sigma^2 I)$

$$\operatorname{Var}(U^{\top}X) = U^{\top}\operatorname{Var}(X)U = \sigma^{2}U^{\top}U = \sigma^{2}I$$

Therefore $(U^{\top}X)_i$, $i = 1, \dots, \operatorname{rank}(P)$ are IID $N(0, \sigma^2)$

$$\implies \frac{(U^{\top}X)_i}{\sigma} \stackrel{\text{IID}}{\sim} \mathcal{N}(0,1)$$

Hence $\frac{\|PX\|^2}{\sigma^2}$ is the sum of rank(P) squared independent N(0,1) variables, i.e. $\chi^2_{\text{rank}(P)}$.

Application

 $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Both μ, σ^2 unknown. Recall that the mle for μ is $\overline{X} = \frac{1}{n} \sum X_i$. The mle for σ^2 is $\hat{\sigma}^2 = \frac{S_{XX}}{n}$, where $S_{XX} = \sum_i (X_i - \overline{X})^2$.

Theorem. (i) $\overline{X} \sim N(\mu, \sigma^2/n)$ (ii) $\frac{S_{XX}}{\sigma^2} \sim \chi^2_{n-1}$

(iii) \overline{X} , S_{XX} independent.

Proof. Let $\mathbf{1} = (1, \ldots, 1)^{\top} \in \mathbb{R}^n$. Let $P = \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$ be an orthogonal projection onto span(1). Easy to check that $P = P^{\top} = P^2$. We can write

$$X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} = \mu \mathbf{1} + \varepsilon$$

where $\varepsilon \sim N(0, \sigma^2 I)$. Note:

• \overline{X} is a function of PX

$$PX = \mu \mathbf{1} + P\varepsilon$$

because $\overline{X} = (PX)_1$. In particular, \overline{X} is function of $P\varepsilon$.

٠

$$S_{XX} = \sum_{i} (X_i - \overline{X})^2$$
$$= \|X - \mathbf{1}\overline{X}\|^2$$
$$= \|(I - P)X\|^2$$
$$= \|(I - P)\varepsilon\|^2$$

so S_{XX} is a function of $(I - P)\varepsilon$. By previous theorem, $P_{\varepsilon} \perp (I - P)\varepsilon$. Hence $\overline{X} \perp S_{XX}$. Part (i) we've shown before. Also,

$$\frac{S_{XX}}{\sigma^2} = \frac{\|(I-P)\varepsilon\|^2}{\sigma^2} \sim \chi \underbrace{\operatorname{Tr}(I-P)}_{n-1} \square$$

Start of lecture 14

0.6 The linear Model

Data are pairs $(x_1, Y_1), \ldots, (x_n, Y_n)$. $Y_i \in \mathbb{R}$: "responses", random. $x_i \in \mathbb{R}^p$: "predictors", fixed.

Example. Y_i : number of insurance claims for client *i*. x_i : (age, number of claims in 2-21, years with driver's license, ...).

In a linear model, we assume

$$Y_i = \mathscr{A} + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i$$

- α is an intercept.
- β_1, \ldots, β_p are coefficients.
- $\varepsilon_1, \ldots, \varepsilon_n$ are random noise variables.

Remark. We normally remove intercept by including a dummy predictor which is equal to 1 for all i, i.e. $x_{i1} = 1$ for all i = 1, ..., n.

Remark. We can also model non-linear relationships between Y_i and x_i using a linear model, for example by using $x_i = (\text{age}, \text{age}^2, \log(\text{age}))$.

Remark. β_j is the effect on Y_i of increasing x_{ij} by a unit, whilst keeping all other predictors constant. Estimates of β should not be interpreted causally, unless we have a randomised experiment.

Matrix formulation:

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \qquad X = \underbrace{\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}}_{\text{"design matrix"}}$$
$$\beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} \qquad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$
$$Y = X\beta + \varepsilon$$

Moment assumptions on ε :

- (1) $\mathbb{E}\varepsilon = 0 \implies \mathbb{E}Y = X\beta.$
- (2) $\operatorname{Var} \varepsilon = \sigma^2 I \implies \operatorname{Var}(\varepsilon_i) = \sigma^2$ for all *i* "homoscedasticity". $\operatorname{Cov}(\varepsilon_i, \varepsilon_j) = 0$ for all $i \neq j$.

We'll assume throughout that $x \in \mathbb{R}^{k \times p}$ has full rank. In particular, $p \leq n$ (more samples than predictors).

Least squares estimator

 $\hat{\beta}$ minimises the residual sum of squares

$$S(\beta) = \|Y - X\beta\|^2$$
$$= \sum_{i=1}^n (Y_i - x_i^\top \beta)^2$$

This is a quadratic (positive definite) polynomial in β so $\hat{\beta}$ satisfies

$$\left.\nabla S(\beta)\right|_{\beta=\hat{\beta}} = 0$$

$$\implies \left. \frac{\partial S(\beta)}{\partial \beta_k} \right|_{\beta=\hat{\beta}} = -2\sum_{i=1}^n x_{ik} \left(Y_i - \sum_{j=1}^p x_{ij} \hat{\beta}_j \right) = 0$$

for each $k = 1, \ldots, p$. Equivalent matrix form:

$$X^{\top} X \hat{\beta} = X^{\top} Y$$

As X has rank p, the matrix $X^{\top}X \in \mathbb{R}^{p \times p}$ is invertible, hence

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$$

(linear in Y!). Check:

$$\mathbb{E}\hat{\beta} = \mathbb{E}[(X^{\top}X)^{-1}X^{\top}Y]$$
$$= (X^{\top}X)^{-1}X^{\top}\mathbb{E}Y$$
$$= (X^{\top}X)^{-1}X^{\top}X^{\beta}$$
$$= \beta$$

Hence $\hat{\beta}$ is unbiased. We can also calculate:

$$\operatorname{Var}(\hat{\beta}) = \operatorname{Var}((X^{\top}X)^{-1}X^{\top}Y)$$
$$= (X^{\top}X)^{-1}X^{\top}\operatorname{Var}(Y)X(X^{\top}X)^{-1}$$
$$= (X^{\top}X)^{-1}X^{\top}\sigma^{2}IX(X^{\top}X)^{-1}$$
$$= \sigma^{2}(X^{\top}X)^{-1}$$

Theorem (Gauss-Markov). Let $\beta^* = CY$ be any linear estimator of β which is unbiased. Then for any $t \in \mathbb{R}^p$,

$$\operatorname{Var}(t^{\top}\hat{\beta}) \leq \operatorname{Var}(t^{\top}\beta^*)$$

We say $\hat{\beta}$ is "Best Linear Unbiased Estimator" (BLUE).

Remark. Think of $t \in \mathbb{R}^p$ as the value of the predictors for a new sample. Then $t^{\top}\hat{\beta}, t^{\top}\beta^*$ are estimators of the mean response. These are both unbiased, so the mse is the variance of $t^{\top}\hat{\beta}, t^{\top}\beta^*$. Theorem says variance is "best" using the least squares estimator.

Proof.

$$\operatorname{Var}(t^{\top}\beta^{*}) - \operatorname{Var}(t^{\top}\hat{\beta}) = t^{\top}(\operatorname{Var}\beta^{*} - \operatorname{Var}\hat{\beta})t \ge 0$$

This holds for all $t \in \mathbb{R}^p$ if and only if the matrix $\operatorname{Var} \beta^* - \operatorname{Var} \hat{\beta}$ is positive semi-definite. Recall $\beta^* = CY$, $\hat{\beta} = (X^\top X)^{-1} X^\top Y$. Let $A = C - (X^\top X)^{-1} X^\top$. Note:

$$\mathbb{E}AY = \mathbb{E}\beta^* - \mathbb{E}\hat{\beta} = \beta - \beta = 0$$

(since β^* and $\hat{\beta}$ are unbiased). But also note

$$\mathbb{E}AY = A\mathbb{E}Y = AX\beta = 0$$

for all $\beta \in \mathbb{R}^p$, so we must have AX = 0. Then

$$\begin{aligned} \operatorname{Var} \beta^* &= \operatorname{Var}((A + (X^\top X)^{-1} X^\top) Y) \\ &= (A + (X^\top X)^{-1} X^\top) \operatorname{Var} Y(A + (X^\top X)^{-1} X^\top)^\top \\ &= \sigma^2 (A A^\top + (X^\top X)^{-1} + \underline{AX} (X^\top X)^{-1} + \underline{(X^\top X)^{-1}} X^\top A^\top) \\ &= \sigma^2 A A^\top + \operatorname{Var}(\hat{\beta}) \end{aligned}$$

$$\Rightarrow \operatorname{Var} \beta^* - \operatorname{Var} \hat{\beta} &= \sigma^2 A A^\top \end{aligned}$$

and this is positive definite, as desired.

Fitted values and residuals: fitted values

$$\hat{Y} = X\hat{B} = \underbrace{X(X^{\top}X)^{-1}X^{\top}}_{P \text{ "hat matrix"}}Y$$

Residuals: $Y - \hat{Y} = (I - P)Y$.

_

Proposition. P is the orthogonal projection onto col(X).

Proof. P is clearly symmetric. Also,

$$P^{2} = X(X^{\top}X)^{-1}X^{\top}X(X^{\top}X)^{\top}X^{\top} = P$$

Therefore P is an orthogonal projection onto $\operatorname{col}(P)$. We need to show $\operatorname{col}(P) = \operatorname{col}(X)$. For any $a, Pa = X[(X^{\top}X)^{-1}X^{\top}a] \in \operatorname{col}(X)$. Also, if b = Xc is a vector in $\operatorname{col}(X)$, then

$$b = Xc = X(X^{\top}X)^{-1}X^{\top}Xc = Pb \in \operatorname{col}(P)$$

Corollary. Fitted values are projections of Y onto col(X). Residuals are projections of Y onto $col(X)^{\perp}$.

Normal assumptions

We assume in addition to $\mathbb{E}\varepsilon = 0$, $\operatorname{Var} \varepsilon = \sigma^2 I$, that ε is MVN, i.e.

$$\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$$

 σ^2 is usually unknown, so the parameters in the model are (β, σ^2) . We'll see that mle of β is the least squares estimator $\hat{\beta}$.

lecture 15 Normal linear model

Start of

Take $Y = XB + \varepsilon$, $\varepsilon \sim N(0, \sigma^2 I)$. MLE: 2 parameters: $\beta \in \mathbb{R}^p$, $\sigma^2 \in \mathbb{R}_+$. Log-likelihood:

$$l(\beta, \sigma^2) = \operatorname{const} + \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \|Y - X\beta\|^2$$

For any $\sigma^2 > 0$, we can see that $l(\beta, \sigma^2)$ is maximised as a function of β at the minimiser of $||Y - XB||^2$, i.e. the least squares estimator $\hat{\beta}$. Now find:

$$\begin{split} \arg\max_{\sigma^2 \ge 0} l(\hat{\beta}, \sigma^2) \\ l(\hat{\beta}, \sigma^2) &= \mathrm{const} - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \|Y - X\hat{\beta}\|^2 \end{split}$$

As $\sigma^2 \mapsto l(\hat{\beta}, \sigma^2)$ is concave, there is unique maximiser where $\frac{\partial l(\hat{\beta}, \sigma^2)}{\partial \sigma^2} = 0$

$$\implies \hat{\sigma}^2 = \frac{\|Y - X\beta\|^2}{n} = \frac{\|(I - P)Y\|^2}{n}$$

Theorem. (1) $\hat{\beta} \sim N(\beta, \sigma^2 (X^\top X)^{-1})$ (2) $\frac{\hat{\sigma}^2}{\sigma^2} n \sim \chi^2_{n-p}$ (3) $\hat{\beta}, \hat{\sigma}^2$ are independent(!)

Proof. $\hat{\beta}$ is linear in Y, hence MVN. We already know $\mathbb{E}\hat{\beta} = \beta$, $\operatorname{Var}\hat{\beta} = \sigma^2 (X^{\top}X)^{-1}$. This proves (1). For (2) note

$$\frac{n\hat{\sigma}^2}{\sigma} = \frac{\|(I-P)Y\|^2}{\sigma^2}$$
$$= \frac{\|(I-P)(X\beta + \varepsilon)\|^2}{\sigma^2} \qquad (I-P)X = 0$$
$$= \frac{\|(I-P)\varepsilon\|^2}{\sigma^2}$$
$$\sim \chi^2_{\operatorname{rank}(I-P)}$$

 $\operatorname{rank}(I-P) = \operatorname{Tr}(I-P) = n-p. \ (X \in \mathbb{R}^{n-p} \text{ has full rank}).$

For (3), note $\hat{\sigma}^2$ is a function of $(I - P)\varepsilon$. We'll show that $\hat{\beta}$ is a function of $P\varepsilon$, which implies $\hat{\sigma}^2 \perp \hat{\beta}$ since $P\varepsilon \perp (I - P)\varepsilon$.

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$$
$$= (X^{\top}X)^{-1}X^{\top}(X\beta + \varepsilon)$$
$$= \beta + (X^{\top}X)^{-1}X^{\top}\varepsilon$$
$$= \beta + (X^{\top}X)^{-1}X^{\top}P\varepsilon$$

since $X^{\top}P = X^{\top}$.

Corollary. $\hat{\sigma}^2$ is biased

$$\mathbb{E}\frac{\hat{\sigma}^2 n}{\sigma^2} = n - p \implies \mathbb{E}\hat{\sigma}^2 = \left(\frac{n-p}{n}\right)\sigma^2$$

Student's *t*-distribution

If $U \sim \mathcal{N}(0, 1), V \sim \chi_n^2, U \perp U$ then we say $T = \frac{U}{\sqrt{V/n}}$ has a t_n distribution.

The F distribution

If $V \sim \chi_n^2$, $W \sim \chi_n^2$, $V \perp \!\!\!\perp W$ then we say

$$F = \frac{V/n}{W/m}$$

has an $F_{n,m}$ distribution.

Confidence sets for β

Suppose we want a $100(1 - \alpha)\%$ confidence interval for one of the coefficients (WLOG take β_1). Note:

$$\frac{\beta_1 - \beta_1}{\sqrt{\sigma^2 (X^\top X)_{11}^{-1}}} \sim \mathcal{N}(0, 1)$$

because $\hat{\beta}_1 \sim \mathcal{N}(\beta_1, \sigma^2(X^\top X)_{11}^{-1})$. Also,

$$\frac{\hat{\sigma}^2}{\sigma^2}n \sim \chi^2_{n-p}$$

and these two statistics are independent.

$$\implies \frac{\frac{\beta_1 - \beta_1}{\sqrt{\mathscr{I}(X^\top X)_{11}^{-1}}}}{\sqrt{\frac{\hat{\sigma}^2}{\mathscr{I}^2} \frac{n}{n-p}}} \sim \frac{\mathcal{N}(0,1)}{\sqrt{\chi_{n-p}^2/(n-p)}} \sim t_{n-p}$$

Now this only depends on β_1 and *not* on σ^2 , so we can use this as a pivot.

$$\mathbb{P}_{\beta,\sigma^2}\left(-t_{n-p}\left(\frac{\alpha}{2}\right) \le \frac{\hat{\beta}_1 - \beta_1}{\sqrt{(X^\top X)_{11}^{-1}}} \sqrt{\frac{n-p}{n\hat{\sigma}^2}} \le t_{n-p}\left(\frac{\alpha}{2}\right)\right) = 1 - \alpha$$

We use that t_n distribution is symmetric around 0.

Rearranging the inequalities, we get

$$\mathbb{P}_{\beta,\sigma^2}\left(\hat{\beta}_1 - \underbrace{t_{n-p}\left(\frac{\alpha}{2}\right)\sqrt{\frac{(X^\top X)_{11}^{-1}\hat{\sigma}^2}{(n-p)/n}}}_{=M} \le \beta_1 \le \hat{\beta}_1 + M\right) = 1 - \alpha$$

We conclude that

$$\left[\hat{\beta}_1 \pm t_{n-p} \left(\frac{\alpha}{2}\right) \sqrt{\frac{(X^\top X)_{11}^{-1} \hat{\sigma}^2}{(n-p)/n}}\right]$$

is a $(1 - \alpha) \cdot 100\%$ confidence interval for β_1 .

Remark. This is *not* asymptotic.

By the duality between tests of significance and confidence intervals, we can find a size α test for H_0 : $\beta_1 = \beta^*$ vs H_1 : $\beta_1 \neq \beta^*$. Simply reject H_0 if β^* is not contained in the $100 \cdot (1 - \alpha)\%$ confidence interval for β_1 .

Confidence ellipsoids for β

Note $\hat{\beta} - \beta \sim N(0, \sigma^2 (X^\top X)^{-1})$. As X has full rank, $X^\top X$ is positive definite. So it has eigendecomposition

$$(X^{\top}X) = UDU^{\top}$$

where $D_{ii} > 0$ for $i = 1, \ldots, p$. Define

$$(X^{\top}X)^{\alpha} = UD^{\alpha}U^{\top}$$
$$D^{\alpha} = \begin{pmatrix} D_{11}^{\alpha} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & D_{pp}^{\alpha} \end{pmatrix}$$
$$(X^{\top}X)^{1/2}(\hat{\beta} - \beta) \sim \mathcal{N}(0, \sigma^{2}I)$$

Hence

$$\underbrace{\frac{\|(X^{\top}X)^{1/2}(\hat{\beta}-\beta)\|^2}{\sigma^2}}_{=\frac{\|X(\hat{\beta}-\beta)\|^2}{\sigma^2}} \sim \chi_p^2$$

This is a function of $\hat{\beta}$, so it's independent of

$$\frac{\hat{\sigma}^2 n}{\sigma^2} \sim \chi^2_{n-p}$$
$$\implies \frac{\|X(\hat{\beta} - \beta)\|^2 / \mathscr{P}}{\hat{\sigma}^2 n / \mathscr{P}(n-p)} \sim F_{p,n-p}$$

This only depends on β , not on σ^2 , so it can be used as a pivot. For all β, σ^2 :

$$\mathbb{P}_{\sigma^2,\beta}\left(\frac{\|X(\hat{\beta}-\beta)\|^2/p}{\hat{\sigma}^2 n/(n-p)} \le F_{p,n-p}(\alpha)\right) = 1 - \alpha$$

So, we can say that the set

$$\left\{\beta \in \mathbb{R}^p : \frac{\|(X(\hat{\beta} - \beta)\|^2/p}{\hat{\sigma}^2 n/(n-p)} \le F_{p,n-p}(\alpha)\right\}$$

is a $100(1-\alpha)\%$ confidence set for β .

Principal axes are given by eigenvectors of $(X^{\top}X)$.

In the next section we'll talk about hypothesis tests for H_0 : $\beta_1 = \cdots = \beta_p = 0, H_1$: $\beta \in \mathbb{R}^p$.

Start of lecture 16

The *F*-test

 $Y = X\beta + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2 I). \ H_0: \ \beta_1 = \beta_2 = \dots = \beta_{p_0} = 0. \ H_1: \ \beta \in \mathbb{R}^p. \ \text{Let} \ X = (x_0, x_1)$ $(X_0 \text{ is } n \times p_0 \text{ and } X_1 \text{ is } n \times (p - p_0))$

$$\beta = \begin{pmatrix} \beta^0 \\ \beta^1 \end{pmatrix} \qquad \beta^0 = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_{p_0} \end{pmatrix} \qquad \beta^1 = \begin{pmatrix} \beta_{p_0+1} \\ \vdots \\ \beta_p \end{pmatrix}$$

Null: $\beta^0 = 0$. This is a normal linear model:

$$Y = X_1 \beta^1 + \varepsilon$$

Write $P = X(X^{\top}X)^{-1}X^{\top}$, $P_1 = X_1(X_1^{\top}X_1)^{-1}X_1^{\top}$. As X, P have full rank, so do X_1 , P_1 . Recall that the maximum log-likelihood in a linear model is

$$\begin{aligned} \max_{\substack{\beta \in \mathbb{R}^p \\ \sigma^2 > 0}} l(\beta, \sigma^2) &= l(\hat{\beta}, \hat{\sigma}^2) \\ &= -\frac{n}{2} \log \left(\frac{\|(I-p)Y\|^2}{n} \right) + \text{const} \end{aligned}$$

The generalised log likelihood ratio statistic is

$$2\log \Lambda = 2 \left(\max_{\substack{\beta \in \mathbb{R}^p \\ \sigma^2 > 0}} l(\beta, \sigma^2) - \max_{\substack{\beta^0 = 0 \\ \sigma^2 > 0}} l(\beta, \sigma^2) \\ = \frac{2n}{2} \left(-\log \left(\frac{\|(I - P)Y\|^2}{n} \right) + \log \left(\frac{\|(I - P_1)Y\|^2}{n} \right) \right)$$

This is a monotone increasing function in

$$\frac{\|(I-P_1)Y\|^2}{\|(I-P)Y\|^2} = \frac{\|(I-P+P-P_1)Y\|^2}{\|(I-P)Y\|^2}$$
$$= \frac{\|(I-P)Y\|^2 + \|(P-P_1)Y\|^2 + 2Y^\top (I-P)(P-P_1)Y\|^2}{\|(I-P)Y\|^2}$$

(The cancel takes place because the columns of $P - P_1$ are in col(X)). This is monotone increasing in

$$\frac{\|(P-P_1)Y\|^2/p_0}{\|(I-P)Y\|^2/(n-p)} := F$$

"F statistic".

Lemma. $P - P_1$ is an orthogonal projection with rank p_0 .

Proof. $P - P_1$ is symmetric as both P and P_1 are

$$(P - P_1)(P - P_1) = P + P_1 - 2\underbrace{PP_1}_{=P_2} = P - P_1$$

 $\operatorname{rank}(P - P_1) = \operatorname{Tr}(P - P_1)$
 $= \operatorname{Tr}(P) - \operatorname{Tr}(P_1)$
 $= p - (p - p_0)$
 $= p_0$

To recap the generalised LRT rejects H_0 when F is large. What is the null distribution of F? Under H_0 :

$$(P - P_1)Y = (P - P_1)(X\beta + \varepsilon)$$
$$= (P - P_1)(X_1\beta^1 + \varepsilon)$$
$$= (P - P_1)\varepsilon$$

Therefore, under H_0 :

$$F = \frac{\frac{1}{\sigma^2} ||(P - P_1)\varepsilon||^2 / p_0}{\frac{1}{\sigma^2} ||(I - P)\varepsilon||^2 / (n - p)}$$

with numerator $\sim \left(\frac{\chi_{p_0}^2}{p_0}\right)$ and denominator $\sim \left(\frac{\chi_{n-p}^2}{n-p}\right)$. Furthermore,
 $\begin{pmatrix} (P - P_1)\varepsilon\\ (I - P)\varepsilon \end{pmatrix}$

is MVN with $\operatorname{Cov}((P-P_1)\varepsilon, (I-P)\varepsilon) = \sigma^2(P-P-1)(I-P) = 0$. Hence $(P-P_1)\varepsilon \perp \perp (I-P)\varepsilon$. Hence numerator $\perp \perp$ denominator in F. We conclude that

$$F \sim F_{p_0,n-p},$$

so the test rejects H_0 with size α if

$$F \ge F_{p_0,n-p}(\alpha)$$

Last time we derived a size α test for H_0 : $\beta_1 = 0$ using the $100 \cdot (1 - \alpha)\%$ confidence interval for β_1 . That test rejects H_0 when

$$|\beta_1| > t_{n-p} \left(\frac{\alpha}{2}\right) \sqrt{\frac{\hat{\sigma}^2 n (X^\top X)_{11}^{-1}}{n-p}}$$

Lemma. This test is equivalent to the *F*-test with $p_0 = 1$.

Proof. Exercise.

Categorical predictors

Example. $Y_i \in \mathbb{R}$: clinical response, $z_i \in \{\text{control}, \text{treatment } 1, \text{treatment } 2\}$.

Let

$$x_{i,j} = \mathbb{1}_{\{z_i=j\}} = \mathbb{1}_{\{\text{subject } i \text{ was in group } j\}}$$

 $x_i \in \mathbb{R}^3$ this is numerical.

 $Y_{i} = \alpha + \beta_{1}x_{i,1} + \beta_{2}x_{i,2} + \beta_{3}x_{i,3}$

Problem:

This has rank 3 < 4. Corner point constraint: call one of the groups the "baseline" and remove it from the linear model. Interpretation of β_j depends on baseline. β_j is effect of being in group *j* relative to baseline. β_j is effect of being in group *j* relative to baseline. However, $\operatorname{col}(X)$ and matrix *P* are insensitive of choice of baseline, and therefore so are the fitted values

$$\hat{Y} = PY.$$

This can be extended to a model with more than 1 categorical predictor, for example group and gender.

ANOVA: Analysis of Variance. The F-test for

• $H_0: \beta_j = 0$ for a categorical predictor $\alpha \neq 0$.

•
$$H_1$$
: $\begin{pmatrix} \alpha_1 \\ \beta \end{pmatrix} \in \mathbb{R}^3$.

In this case, we can write the F statistic in a simpler way.

 P_1 projection onto constant vectors.

$$P_1 = \frac{1}{n} \mathbf{1} \mathbf{1}^\top$$

 ${\cal P}=$ projection onto vectors which are constant for each group

$$F = \frac{\|(P - P_1)Y\|^2/p_0}{\|(I - p)Y\|^2/(n - p)}$$
$$P_1Y = \begin{pmatrix} \overline{Y} \\ \overline{Y} \\ \vdots \\ \overline{Y} \end{pmatrix} \qquad \overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$$

$$Py = \begin{pmatrix} \overline{Y}_1 \\ \overline{Y}_1 \\ \vdots \\ \overline{Y}_2 \\ \overline{Y}_2 \\ \vdots \\ \overline{Y}_3 \\ \overline{Y}_3 \end{pmatrix} \qquad \overline{Y}_j = \frac{\sum_{i=1}^n Y_i \mathbb{1}_{\{z_i=j\}}}{\sum_{i=1}^n \mathbb{1}_{\{z_i=j\}}} = \text{average response for group } j$$
$$F = \frac{\sum_{i=1}^n N(\overline{Y}_j - \overline{Y})^2/2}{\sum_{i=1}^N \sum_{j=1}^3 (Y_{ij} - \overline{Y}_j)^2/(3N - 3)}$$

Assume all groups of size N (n = 3N). Numerator is variance between groups, denominator is variance within groups.