Statistics

June 5, 2023

Contents

Lectures

[Lecture 1](#page-2-2) [Lecture 2](#page-5-0) [Lecture 3](#page-10-1) [Lecture 4](#page-14-0) [Lecture 5](#page-17-1) [Lecture 6](#page-21-0) [Lecture 7](#page-24-0) [Lecture 8](#page-29-0) [Lecture 9](#page-32-0) [Lecture 10](#page-36-0) [Lecture 11](#page-40-0) [Lecture 12](#page-43-0) [Lecture 13](#page-47-0) [Lecture 14](#page-51-1) [Lecture 15](#page-55-0)

[Lecture 16](#page-59-0)

Start of

[lecture 1](https://notes.ggim.me/Stats#lecturelink.1) 0 Introduction

Statistics: The science of making informed decisions. Can include:

- Design of experiments
- Graphical exploration of data
- Formal statistical inference \in Decision theory
- Communication of results.

Let X_1, X_2, \ldots, X_n be independent observations from some distribution $f_X(\bullet | \theta)$, with parameter θ . We wish to infer the value of θ from X_1, \ldots, X_n .

- Estimating θ
- Quantifying uncertainty in estimator
- Testing a hypothesis about θ .

0.1 Probability Review

Let Ω be the *sample space* of outcomes in an experiment. A "nice" or measurable subset of Ω is called an *event*, we denote the set of events F. A function $\mathbb{P} : \mathcal{F} \to [0,1]$ is called a probability measure if:

- $\mathbb{P}(\phi) = 0$
- $\bullet \ \mathbb{P}(\Omega) = 1$
- $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ if (A_i) are disjoint.

A random variable is a (measurable) function $X : \mathbb{R} \to \mathbb{R}$. For example: tossing a coin twice $\Omega = \{HH, HT, TH, TT\}$. X: number of heads.

$$
X(HH) = 2 \qquad X(TH) = X(HT) = 1 \qquad X(TT) = 0
$$

The distribution function of X is

$$
F_X(x) = \mathbb{P}(X \le x)
$$

A discrete random variable takes values in a countable $\mathcal{X} \in \mathbb{R}$, its probability mass function or pmf is $p_X(x) = \mathbb{P}(X = x)$. We say X has continuous distribution if it has a probability density function or pdf satisfying

$$
\mathbb{P}(X \in A) = \int_A f_X(x) \mathrm{d}x
$$

for any "nice" set A.

The expectation of X is

$$
\mathbb{E}X = \begin{cases} \sum_{x \in \mathcal{X}} x p_X(x) & \text{if } X \text{ is discrete} \\ \int x f_X(x) dx & \text{if } X \text{ is continuous} \end{cases}
$$

If $q : \mathbb{R} \to \mathbb{R}$,

$$
\mathbb{E}g(x) = \int g(x) f_X(x) \mathrm{d}x
$$

The variance of X is

$$
\text{Var}(X) = \mathbb{E}((X - \mathbb{E}X)^2)
$$

We say that X_1, X_2, \ldots, X_n are independent if for all x_1, \ldots, x_n

$$
\mathbb{P}(X_1 \le x_2, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdots \mathbb{P}(X_n \le x_n)
$$

If the variables have pdf's, then

$$
f_X(x) = \prod_{i=1}^n f_{X_i}(x_i)
$$

$$
(x = (x_1, ..., x_n), X = (X_1, ..., X_n)).
$$

Linear transformations

If $a_1, \ldots, a_n \in \mathbb{R}$ $\mathbb{E}(a_1X_1+\cdots+a_nX_n)=a_1\mathbb{E}X_1+\cdots+a_n\mathbb{E}X_n$ $Var(a_1X_1 + \cdots + a_nX_n) = \sum$ i,j $a_i a_J \text{Cov}(X_i, X_j)$ $(\text{Cov}(X_i, X_i) = \mathbb{E}((X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j)))$. If $X = (X_1, \ldots, X_n)^\top$ $\mathbb{E} X = (\mathbb{E} X_1, \ldots, \mathbb{E} X_n)^\top$ $\mathbb{E}(a^{\top}X) = a^{\top}\mathbb{E}X$ $Var(a^{\top} X) = a^{\top}$ $Var(X)$ $({\rm Var}(X))_{ij} = {\rm Cov}(X_i,X_j)$ a

Moment generating functions

$$
M_X(t) = \mathbb{E}(e^{tX})
$$

This may only exist for t in some neighbourhood of 0.

- $\mathbb{E}(X^n) = \frac{d^n}{dt^n} M_X(0)$
- $M_X = M_Y \implies F_X = F_Y$
- Makes it easy to find the distribution function of sums of IID variables.

Example. Let X_1, \ldots, X_n be IID Poisson (μ)

$$
M_{X_1}(t) = \mathbb{E}e^{tX_1}
$$

\n
$$
= \sum_{x=0}^{\infty} e^{tx} \cdot \frac{e^{-\mu}\mu^x}{x!}
$$

\n
$$
= e^{-\mu} \sum_{x=0}^{\infty} \frac{(e^t\mu)^x}{x!}
$$

\n
$$
= e^{-\mu}e^{\mu \exp t}
$$

\n
$$
= e^{-\mu(1-e^t)}
$$

\n
$$
S_n = X_1 + \dots + X_n.
$$

\n
$$
M_{S_n}(t) = \mathbb{E}e^{t(X_1 + \dots + X_n)}
$$

\n
$$
= \prod_{x=0}^n \mathbb{E}e^{tX_i}
$$
 (inde)

(independent)

Observe this is Poisson(μ n) mgf. So $S_n \sim \text{Poisson}(\mu n)$.

 $= e^{-\mu(1-e^t)n}$

 $i=1$

Limit Theorems

Weak law of large numbers (WLLN). X_1, \ldots, X_n are IID with $\mathbb{E}X_1 = \mu$.

$$
\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i
$$

is the "sample mean". For all $\varepsilon > 0$,

$$
\mathbb{P}(\underbrace{\overline{X}_n - \mu \mid \geq \varepsilon}_{\text{event that depends only on } X_1, \dots, X_n}) \to 0 \quad \text{as } n \to \infty
$$

Strong law of large numbers (SLLN)

$$
\mathbb{P}(\overline{X}_n \overset{n \to \infty}{\longrightarrow} \mu) = 1
$$

(This event depends on whole sequence $X_1, X_2, \ldots, X_n \to \mu \iff \forall \varepsilon > 0 \exists N \forall n >$ $N|X_n - \mu| < \varepsilon.$

Central Limit Theorem

$$
Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \text{ where } \sigma^2 = \text{Var}(X_i). \text{ Then } Z_n \text{ is approximately } N(0, 1) \text{ as } n \to \infty.
$$

$$
\mathbb{P}(Z_n \le z) \to \Phi(z) \quad \text{as } n \to \infty \quad \forall z \in \mathbb{R}
$$

where Φ is the distribution function of a $N(0, 1)$ variable.

Conditioning

Let X and Y be discrete random variables. Their joint pmf is

$$
p_{X,Y}(x,y) = \mathbb{P}(X=x, Y=y)
$$

The marginal pmf

$$
p_X(x) = \mathbb{P}(X = x) = \sum_{y \in Y} p_{X,Y}(x, y)
$$

Conditional pmf of X given $Y = y$ is

$$
p_{X|Y}(x \mid y) = \mathbb{P}(X = x \mid Y = y)
$$

$$
= \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}
$$

$$
= \frac{p_{X,Y}(x,y)}{p_Y(y)}
$$

(defined = 0 if $p_Y(y) = 0$). If X, Y are continuous, the joint pdf $f_{X,y}$ has

$$
\mathbb{P}(X \le x', Y \le y') = \int_{-\infty}^{x'} \int_{-\infty}^{y'} f_{X,Y}(x, y) \mathrm{d}y \mathrm{d}x
$$

The marginal pdf of Y is

$$
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \mathrm{d}x
$$

The conditional pdf of X given Y is

$$
f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)}
$$

Conditional expectation:

$$
\mathbb{E}(X \mid Y) = \begin{cases} \sum_{x} x p_{X|Y}(x \mid y) \\ \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) dx \end{cases}
$$

(this is treated as a random variable, which is a function of Y).

Tourer property:

$$
\mathbb{E}(\mathbb{E}(X \mid Y)) = \mathbb{E}X
$$

Conditional variance formula:

$$
Var(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2
$$

= $\mathbb{E}(\mathbb{E}(X^2 | Y)) - (\mathbb{E}(\mathbb{E}(X | Y)))^2$
= $\mathbb{E}(\mathbb{E}(X^2 | Y) - [\mathbb{E}(X | Y)]^2) + \mathbb{E}[\mathbb{E}(X | Y)^2] - \mathbb{E}[(X | Y)]$
= $\mathbb{E}Var(X | Y) + Var(\mathbb{E}(X | Y))$

Start of [lecture 2](https://notes.ggim.me/Stats#lecturelink.2)

Change of Variables (in 2D)

Let $(x, y) \mapsto (u, v)$ is a differentiable bijection. Then

$$
f_{U,V}(u, v) = f_{X,Y}(x(u, v), y(u, v)) \cdot |\det J|
$$

$$
J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}
$$

Important Distributions

 $X \sim \text{Negbin}(k, p)$: In successive IID Ber(p) trials X is the time at which k-th success occurs.

 $X \sim \text{Poisson}(\lambda)$ is the limit of a $\text{Bin}(n, \lambda/n)$ as $n \to \infty$.

If $X_i \sim \Gamma(\alpha_i, \lambda)$ for $i = 1, \ldots, n$ with X_1, \ldots, X_n independent. What is the distribution of $S_n = X_1 + \cdots + X_n$?

$$
M_{S_n}(t) = \prod_{i=1}^n M_{X_i}(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha_1 + \dots + \alpha_n}
$$

This is the MGF of a $\Gamma(\sum \alpha_i, \lambda)$. Hence $S_n \sim \Gamma(\sum \alpha_i, \lambda)$. Also, if $X \sim \Gamma(a, \lambda)$, then for any $b \in (c, \infty)$, $bX \sim \Gamma(\alpha, \lambda/b)$.

Special cases

 $\Gamma(1,\lambda) = \text{Exp}(\lambda)$, $\Gamma(k/2, 1/2) = \chi_k^2$ "Chi-squared with k degrees of freedom." Sum of k independent squared $N(0, 1)$ random variables.

0.2 Estimation

Suppose we observe data X_1, X_2, \ldots, X_n which are IID from some PDF (pmf) $f_X(x | \theta)$, with θ unknown.

Definition (Estimator). An *estimator* is a statistic or a function of the data $T(X)$ = $\hat{\theta}$, which we use to approximate the true parameter θ . The distribution of $T(X)$ is called the sampling distrbution.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} N(\mu, 1)$.

$$
\hat{\mu} = T(X) = \frac{1}{h} \sum_{i=1}^{n} X_i
$$

The sampling distribution of $\hat{\mu}$ is N $(\mu, \frac{1}{n})$.

Definition. The bias of $\hat{\theta} = T(X)$ is

 $\text{bias}(\hat{\theta}) = \mathbb{E}_{\theta}(\hat{\theta}) - \theta$

Note. In general, the bias is a function of θ , even if notation bias($\hat{\theta}$) does not make it explicit.

Definition. We say that $\hat{\theta}$ is unbiased if bias($\hat{\theta}$) = 0 for all $\theta \in \Theta$.

Example (Continuing from previous). $\hat{\mu} = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} X_i$ is unbiased because $\mathbb{E}_{\mu}(\hat{\mu}) =$ μ for all $\mu \in \mathbb{R}$.

Definition. The mean squared error (mse) of $\hat{\theta}$ is

$$
mse(\hat{\theta}) = \mathbb{E}_{\theta}((\hat{\theta} - \theta)^2)
$$

Note. Like the bias, mse($\hat{\theta}$) is a function of θ !

Bias-variance decomposition

$$
\begin{aligned} \text{mse}(\hat{\theta}) &= \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^2] \\ &= \mathbb{E}_{\theta}[(\hat{\theta} - \mathbb{E}_{\theta}\hat{\theta} + \mathbb{E}_{\theta}\hat{\theta} - \theta)^2] \\ &= \text{Var}_{\theta}(\hat{\theta}) + \text{bias}^2(\hat{\theta}) + [\mathbb{E}_{\theta}(\hat{\theta} - \mathbb{E}_{\theta}\hat{\theta})](\mathbb{E}_{\theta}\hat{\theta} - \theta) \end{aligned}
$$

The two terms on the RHS are \geq 0.

There is a trade off between bias and variance.

Example. $X \sim Bin(n, \theta)$. Suppose *n* known, we wish to estimate θ . Standard estimator $T_u = \frac{X}{n}$ $\frac{X}{n}$, then $\mathbb{E}_{\theta} T_u = \frac{\mathbb{E}_{\theta} X}{n} = \theta$ (holds for all θ). Hence T_u is unbiased.

$$
\text{mse}(T_u) = \text{Var}_{\theta}(T_u)
$$

$$
= \frac{\text{Var}_{\theta} X}{h^2}
$$

$$
= \frac{n\theta(1-\theta)}{h^2}
$$

$$
= \frac{\theta(1-\theta)}{h}
$$

Consider a second estimator

$$
T_B = \frac{X+1}{n+2} = \omega \frac{X}{n} + (1 - \omega) \frac{1}{2}
$$

with $\omega = \frac{n}{n+2}$. If $X = 8$, $n = 10$ (8 successes in 10 trials), then $T_u = 0.8$, $T_B = \frac{9}{12} =$ 0.75.

bias
$$
(T_B)
$$
 = $\mathbb{E}_{\theta} T_B - \theta$
= $\mathbb{E}\left(\frac{X+1}{n+2}\right) - \theta$
= $\frac{n}{n+2}\theta + \frac{1}{n+2}$

 θ

This is $\neq 0$ for all but one value of θ . Hence T_b is biased.

$$
\text{Var}_{\theta}(T_B) = \frac{1}{(n+2)^2} n\theta(1-\theta) = \frac{\omega^2 \theta(1-\theta)}{n}
$$

$$
\text{mse}(T_B) = \text{Var}_{\theta}(T_B) + \text{bias}^2(T_B)
$$

$$
= \omega^2 \frac{\theta(1-\theta)}{n} + (1-\omega)^2 \left(\frac{1}{2} - \theta\right)^2
$$

Message: Our prior judgements about θ affect our choice of estimator (for example in this previous example, if we knew the X_i represent coin flips, then we expect θ to be near $\frac{1}{2}$, so we should use mse (T_B)).

Unbiasedness is not necessarily desirable. Consider this pathological example:

Example. Suppose $X \sim \text{Poisson}(\lambda)$. We wish to estimate $\theta = \mathbb{P}(X = 0)^2 = e^{-2\lambda}$. For an estimator $T(X)$ to be unbiased we must have for all λ

$$
\mathbb{E}_{\lambda}[\hat{\theta}] = \sum_{x=0}^{\infty} T(X) \frac{e^{-\lambda} \lambda^x}{x!} = e^{-2\lambda} = \theta
$$

$$
\iff \sum_{x=0}^{\infty} T(x) \frac{\lambda^x}{x!} = e^{-\lambda} = \sum_{x=0}^{\infty} (-1)^x \frac{\lambda^x}{x!}
$$

for this to hold $\forall \lambda \geq 0$, we need

$$
T(x) = (-1)^x
$$

This estimator makes no sense!

Start of

[lecture 3](https://notes.ggim.me/Stats#lecturelink.3) 0.3 Sufficiency

 X_1, \ldots, X_n are IID random variables from a distribution with pdf (or pmf) $f_X(\bullet | \theta)$. Let $X = (X_1, ..., X_n)$.

Question: Is there a statistic $T(X)$ which contains all information in X needed to estimate θ ?

Definition (Sufficiency). A statistic T is sufficient for θ if the conditional distribution of X given $T(X)$ does not depend on θ .

Remark. θ and $T(X)$ could be vector-valued.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(\theta)$ for $\theta \in [0, 1]$.

$$
f_X(\bullet \mid \theta) = \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1 - x_i}
$$

$$
= \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}
$$

Note. This only depends on X through $T(X) = \sum_{i=1}^{n} X_i$.

For x with $\sum x_i = t$,

$$
f_{X|T=t}(x | T(x) = t) = \frac{\mathbb{P}_{\theta}(X = x, T(X) = t)}{\mathbb{P}_{\theta}(T(X) = t)}
$$

$$
= \frac{\mathbb{P}_{\theta}(X = x)}{\mathbb{P}_{\theta}(T(X) = t)}
$$

$$
= \frac{\theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}}{\binom{n}{t} \theta^t (1 - \theta)^{n - t}}
$$

$$
= \binom{n}{t}^{-2}
$$

As this doesn't depend on θ , $T(X)$ is sufficient for θ .

Theorem (Factorisation criterion). T is sufficient for θ if and only if

 $f_X(x | \theta) = g(T(x), \theta) \cdot h(x)$

for suitable functions g, h .

Proof. (Discrete case)

Suppose $f_X(x | \theta) = g(T(X), \theta)h(X)$. If $T(x) = t$, then

$$
f_{X|T=t}(x \mid T=t) = \frac{\partial \mathbb{P}_{\theta}(X=x, \underline{T}(X) \equiv t)}{\partial \mathbb{P}_{\theta}(T(X) = t)}
$$

$$
= \frac{g(T(X), \theta)h(X)}{\sum_{x': T(x') = t} g(T(x;), \theta)h(x')}
$$

$$
= \frac{g(t, \theta)}{g(t, \theta)} \frac{h(x)}{\sum_{x': T(x') = t} h(x')}
$$

As this doesn't depend on θ , $T(X)$ is sufficient.

Conversely, suppose $T(X)$ is sufficient, then

$$
\mathbb{P}_{\theta}(X = \tau) = \mathbb{P}_{\theta}(X = x, T(X) = t)
$$

$$
= \underbrace{\mathbb{P}_{\theta}(T(X) = t)}_{g(t, \theta)} \cdot \underbrace{\mathbb{P}_{\theta}(X = x \mid T(X) = t)}_{h(x)}
$$

Then by sufficiency of T, $h(x)$ doesn't depend on θ (so it is a function of x). Thus the pmf of X, $f_X(\bullet | \theta)$ factorises as in the statement of the theorem. \Box

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(\theta)$. $f_X(x \mid \theta) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$

Take $g(t, \theta) = \theta^t (1 - \theta)^{n-t}$, $h(x) = 1$. This immediately implies $T(X) = \sum x_i$ is sufficient.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Unif}([0, \theta]), \theta > 0.$ Then

$$
f_X(x | \theta) = \prod_{i=1}^n \frac{1}{\theta} \mathbb{1}_{x_i \in [0,\theta]}
$$

$$
= \underbrace{\frac{1}{\theta^n} \mathbb{1}_{\{\max_i x_i \le \theta\}} \underbrace{\mathbb{1}_{\{\min_i x_i \ge 0\}}}_{T(x),\theta)}
$$

 $T(x) = \max_i x_i$. Then by factorisation lemma, $T(x) = \max_i x_i$ is sufficient for θ .

Minimal Sufficiency

Sufficient stats are not unique. Indeed any 1-to-1 function of a sufficient statistic is also sufficient. Also $T(X) = X$ is always sufficient by not very useful.

Definition. A sufficient statistic T is minimal sufficient if it is a function of any other sufficient statistic. That is, if T' is also sufficient, then

$$
T'(x) = T'(y) \implies T(x) = T(y)
$$

for all $x, y \in \mathcal{X}^n$.

Remark. Any two minimal sufficient statistics, T, T' are "in bijection with each other":

$$
T(x) = T(y) \iff T'(x) = T'(y)
$$

Useful condition to check minimal sufficiency.

Theorem (Minimal Sufficiency Theorem). Suppose that $T(X)$ is a statistic such that $f_X(x | \theta)/f_X(y | \theta)$ is constant as a function of θ if and only if $T(x) = T(y)$. Then T is minimal sufficient.

Let $x \stackrel{1}{\sim} y$ if $\frac{f_X(x|\theta)}{f_X(y|\theta)}$ is constant in θ . It's easy to check that $\frac{1}{\sim}$ is an equivalence relation. Similarly, for a given statistic T, $x \stackrel{2}{\sim} y$ if $T(x) = T(y)$ defines another equivalence relation. The condition of theorem says \sim and \sim are the same.

Note. We can always construct a statistic T which is constant on the equivalence classes of \sim , which by the theorem is minimal sufficient.

Proof. For any value t of T, let z_t be a representative from the equivalence class

$$
\{x \mid T(x) = t\}
$$

Then

$$
f_X(x \mid \theta) = \underbrace{f_X(z_{T(x)} \mid \theta)}_{g(T(x), \theta)} \underbrace{\frac{f_X(x \mid \theta)}{f_X(z_{T(x)} \mid \theta)}}_{h(x)}
$$

Where $h(x)$ does not depend on θ by the hypothesis, as $x \stackrel{1}{\sim} z_{T(x)}$. By factorisation criterion, T is sufficient.

To prove that T is minimal, take any other sufficient statistic S . Want to prove that if $S(x) = S(y)$ then $T(x) = T(y)$. By factorisation criterion, there are functions g_S, h_S such that

$$
f_X(x | \theta) = g_S(S(x), \theta) h_S(x)
$$

Suppose $S(x) = S(y)$. Then

$$
\frac{f_X(x \mid \theta)}{f_X(y \mid \theta)} = \frac{g_S(S(x), \theta)h_S(x)}{g_S(S(y), \theta)h_S(y)}
$$

which doesn't depend on θ . Hence $x \stackrel{1}{\sim} y$. By hypothesis, $x \stackrel{2}{\sim}$, hence $T(x) = T(y)$. \Box

Remark. Sometimes the range of X depends on θ (for example $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim}$ Unif($[0, \theta]$). In this case we can interpret

$$
\int \frac{f_X(x|\theta)}{f_X(y|\theta)}
$$
 is constant in θ

to mean that $f_X(x | \theta) = c(x, y) f_X(y | \theta)$ for some function c which does not depend on θ.

Start of

[lecture 4](https://notes.ggim.me/Stats#lecturelink.4) Example. Suppose that $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu, \sigma^2)$, with parameters (μ, σ^2) unknown.

$$
\frac{f_X(x \mid \theta)}{f_X(y \mid \theta)} = \frac{(2\pi\sigma^2)^{-\pi/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\}}{(2\pi\sigma^2)^{-\pi/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right\}}
$$
\n
$$
= \exp\left\{-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2\right) \frac{\mu}{\sigma^2} \left(\sum_{i=1}^n x_i - \sum_{i=1}^n y_i\right)\right\}
$$

If $\sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i^2$ and $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$, this ratio does not depend on (μ, σ^2) . The converse is also true: if the ratio does not depend on (μ, σ^2) then we must have $\sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i^2$ and $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$. By the theorem, $T(X) = (\sum_{i=1}^n \overline{X_i^2}, \sum_{i=1}^n X_i)$ is minimal sufficient.

Recall that bijections of T are also minimal sufficient. A more common way of expressing a minimal sufficient statistic in this model is

$$
S(X) = (\overline{X}, S_{XX})
$$

$$
\overline{X} = \frac{1}{n} \sum_{i} X_i \qquad S_X X = \sum_{i} (X_i - \overline{X})^2
$$

In this example, (μ, σ^2) and $T(X)$ are both 2-dimensional. In general, the parameter and sufficient statistic can have different dimensions.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu, \mu^2), \mu \geq 0$. Here, the minimal sufficient statistic is $S(X) = (\overline{X}, S_{XX}).$

Rao-Blackwell Theorem

Note. So far we've written \mathbb{E}_{θ} , \mathbb{P}_{θ} to denote expectations and probabilities in the model where $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} f_X(\bullet | \theta)$. From now on, I'll drop the subscript θ .

Theorem (Rao-Blackwell). Let T be a sufficient statistic for θ . Let $\tilde{\theta}$ be some estimator for θ , with $\mathbb{E}(\tilde{\theta}^2) < \infty$, for all θ . Define a new estimator $\hat{\theta} = \mathbb{E}_{\theta}(\tilde{\theta} | T(X)).$ Then, for all θ ,

$$
\mathbb{E}[(\hat{\theta} - \theta)^2] \le \mathbb{E}[(\tilde{\theta} - \theta)^2]
$$

 $(\text{mse}(\hat{\theta}) \leq \text{mse}(\tilde{\theta})$). The inequality is strict unless $\tilde{\theta}$ is a function of $T(X)$.

Remark. $\hat{\theta}$ is a valid estimator, i.e. it does not depend on θ , only depends on X, because T is sufficient.

$$
\hat{\theta}(T(X)) = \int \underbrace{\tilde{\theta}(X)}_{\text{estimator, so does not depend on }\theta \text{ does not depend on }\theta, \text{ because } T \text{ is sufficient}} dx
$$

Moral. We can improve the mse of any estimator $\tilde{\theta}$ by taking a conditional expectation given $T(X)$.

Proof. By the tower property:

$$
\mathbb{E}\hat{\theta} = \mathbb{E}[\mathbb{E}[\tilde{\theta} \mid T] = \mathbb{E}\tilde{\theta}
$$

So bias($\hat{\theta}$) = bias($\hat{\theta}$) for all θ . By the conditional variance formula,

$$
Var(\tilde{\theta}) = \mathbb{E}(Var(\tilde{\theta} | T)) + Var(\mathbb{E}(\tilde{\theta} | T))
$$

$$
= \mathbb{E}[\underbrace{Var(\tilde{\theta} | T)}_{\geq 0 \text{ with } \mathbb{P} = 1}] + Var(\hat{\theta})
$$

$$
\implies Var(\tilde{\theta}) \geq Var(\hat{\theta})
$$

for all θ . Therefore $\text{mse}(\tilde{\theta}) \geq \text{mse}(\hat{\theta})$.

Note: $\text{Var}(\tilde{\theta} | T) > 0$ with some positive probability unless $\tilde{\theta}$ is a function of $T(X)$. So $\text{mse}(\tilde{\theta}) > \text{mse}(\hat{\theta})$ unless $\tilde{\theta}$ is a function of $T(X)$. \Box **Example.** Say $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Poisson}(\lambda)$. We wish to estimate $\theta = \mathbb{P}(X_1 = 0) =$ $e^{-\lambda}$.

$$
f_X(x \mid \lambda) + \frac{e^{-n\lambda}\lambda^{\sum x_i}}{\prod_i x_i!}
$$

$$
\implies f_X(x \mid \theta) = \frac{\theta^n(-\log \theta)^{\sum x_i}}{\prod_i x_i!}
$$

Letting $h(x) = \frac{1}{\prod x}$ $\frac{1}{x_i!}$, $g(T(X), \theta) = \theta^n(-\log \theta)^{T(X)}$, then by factorisation criterion, $T(X) = \sum X_i$ is a sufficient statistic. Let $\tilde{\theta} = \mathbb{1}_{\{X_1 = 0\}}$ (unbiased: only uses one observation X_1).

$$
\hat{\theta} = \mathbb{E}[\tilde{\theta} | T = t]
$$
\n
$$
= \mathbb{P}\left(X_1 = 0 | \sum_{i=1}^n X_i = t\right)
$$
\n
$$
= \frac{\mathbb{P}\left(X_1 = 0, \sum_{i=2}^n X_i = t\right)}{\mathbb{P}\left(\sum_{i=1}^n X_i = t\right)}
$$
\n
$$
= \frac{\mathbb{P}(X_1 = 0)\mathbb{P}\left(\sum_{i=2}^n X_i = t\right)}{\mathbb{P}\left(\sum_{i=1}^n X_i = t\right)}
$$
\n
$$
= \cdots
$$
\n
$$
= \left(\frac{n-1}{n}\right)^t
$$

So $\hat{e} = \left(1 - \frac{1}{n}\right)$ $\frac{1}{n}$) $\sum x_i$ is an estimator which by the Rao-Blackwell theorem has

 $\text{mse}(\hat{\theta}) < \text{mse}(\tilde{\theta})$

Sanity check: What happens as $n \to \infty$?

$$
\hat{\theta} = \left(1 - \frac{1}{n}\right)^{n\overline{x}} \stackrel{n \to \infty}{\longrightarrow} e^{-\overline{x}}
$$

and by the Strong Law of Large Numbers, $\overline{X} \to \mathbb{E}X_1 = \lambda$ so $\theta^n \approx e^{-\lambda} = \theta$ as h grows large.

Example. Let $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Unif}([0, \theta]), \theta \text{ unknown.} \quad \theta \geq 0.$ Recall $T(X) =$ max_i \overline{X}_i is sufficient for θ . Let $\tilde{\theta} = 2\overline{X}_1$, which is unbiased. Then

$$
\hat{\theta} = \mathbb{E}[\tilde{\theta} \mid T = t]
$$

\n
$$
= 2\mathbb{E}[X_1 \mid \max_i X_i = t]
$$

\n
$$
= 2\mathbb{E}[X_1 \mid \max_i X_i = t, \max_i X_i = X_1] \mathbb{P}[\max_i X_i = X_1 \mid \max_i X_i = t]
$$

\n
$$
+ \mathbb{E}[X_1 \mid \max_i X_i = t, \max_i X_i \neq X_1] \mathbb{P}[\max_i X_i \neq X_1 \max_i X_i = t]
$$

\n
$$
= \frac{2t}{n} + \frac{2(n-1)}{n} \mathbb{E}[X_1 \mid X_1 \leq t, \max_i X_i = t]
$$

\n
$$
= \frac{2t}{n} + \frac{2(n-1)}{n} \frac{t}{2}
$$

\nSo $\hat{\theta} = \frac{n+1}{n} \max_i X_i$ is a valid estimator with

 $\text{mse}(\hat{\theta}) < \text{mse}(\tilde{\theta})$

Start of

[lecture 5](https://notes.ggim.me/Stats#lecturelink.5) 0.4 Maximum likelihood Estimation

Let $X = (X_1, \ldots, X_n)$ have f=joint pdf (or pmf) $f_X(x | \theta)$.

Definition (Likelihood function). The likelihood function is

 $L : \theta \mapsto f_X(X \mid \theta)$

The maximum likelihood estimator (mle) is any value of θ maximising $L(\theta)$.

If X_1, \ldots, X_n are IID each with pdf (or pmf) $f_X(\bullet | \theta)$, then

$$
L(\theta) = \prod_{i=1}^{n} f_X(x_i \mid \theta)
$$

We'll denote the logarithm

$$
l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f_X(x_i \mid \theta)
$$

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(\theta)$.

$$
l(\theta) = \left(\sum X_i\right) \log \theta + \left(n - \sum X_i\right) \log(1 - \theta)
$$

$$
\frac{\partial l}{\partial \theta} = \frac{\sum X_i}{\theta} - \frac{n - \sum X_i}{1 - \theta}
$$

This is equal to 0 if and only if $\theta = \frac{1}{n}$ $\frac{1}{n}\sum X_i = \overline{X}$. Hence \overline{X} is the mle for θ . This is unbiased as $\mathbb{E}\overline{X} = \theta$.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu, \sigma^2)$

$$
l(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2
$$

This is maximised when $\frac{\partial l}{\partial \mu} = \frac{\partial l}{\partial \sigma^2} = 0$

$$
\frac{\partial l}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)
$$

equal to 0 when $\mu = \overline{X}$ ($\forall \sigma^2$)

$$
\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (X_i - \mu)^2
$$

This is equal to 0 when $\sigma^2 = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n}$ $\frac{1}{n}S_{XX}$. Hence $(\hat{\mu}, \hat{\sigma}^2)$ = $(X, S_X X/n)$ are the mle in this model.

Note that $\overline{\mu} = \overline{X}$ is unbiased. Is $\hat{\sigma}^2$ biased? We could compute $\mathbb{E} \hat{\sigma}^2$ directly. Later in the course, we'll show that

$$
\frac{S_{XX}}{\sigma^2} = \frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2
$$

$$
\mathbb{E}\hat{\sigma}^2 = \mathbb{E}(\chi_{n-1}^2)\frac{\sigma^2}{n} = \frac{n-1}{n}\sigma^2 \neq \sigma^2
$$

So $\hat{\sigma}^2$ is biased, but asymptotically unbiased:

$$
bias(\hat{\sigma}^2) \stackrel{n \to \infty}{\longrightarrow} 0 \qquad \forall \sigma^2
$$

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Unif}[0, \theta]$

We an see from the plot that $\hat{\theta} = \max_i X_i$ is the mle for θ . Last time we started from unbiased estimator $\tilde{\theta} = 2X_1$ and using the R-B theorem we found an estimator

$$
\hat{\theta} = \frac{n+1}{n} \max_i X_i
$$

This is also unbiased. So in this model the mle is biased as

$$
\mathbb{E}\hat{\theta}_{mle} = \mathbb{E}\left[\frac{n+1}{n}\hat{\theta}\right] = \frac{n}{n+1}\theta
$$

but it is asymptotically unbiased.

Properties of the mle

(1) If T is a sufficient statistic then the mle is a function of $T(X)$. By the factorisation criterion:

$$
L(\theta) = g(T(x), \theta)h(x)
$$

If $T(x) = T(y)$ the likelihood function with data x or y is the same up to a multiplicative constant. Hence, the mle in each case is the same.

- (2) If $\phi = h(\theta)$ where h is a bijection, then the mle of ϕ is $\hat{\phi} = h(\hat{\theta})$ where $\hat{\theta}$ is the mle of θ.
- (3) Asymptotic normality: $\sqrt{n}(\hat{\theta} \theta)$ is approximately normal with mean 0 when *n* is large. Under some regularity conditions, for a "nice set" A,

$$
\mathbb{P}(\sqrt{n}(\hat{\theta}-\theta) \in A) \stackrel{n \to \infty}{\longrightarrow} \mathbb{P}(z \in A)
$$

where $z \sim N(0, \Sigma)$. This holds for all "regular" values of θ .

Here Σ is some function of l, and there is a theorem (Cramer-Rao) which says this is the smallest variable attainable.

(4) Sometimes if the mle is not available analytically, we can find it numerically.

Confidence Intervals

Example. Vaccine has 76% efficacy in a 3-month period, with a 95% confidence interval (59%, 86%)

Definition (Confidence Interval). A $(100 \cdot \gamma)$ %-confidence interval for a parameter θ is a random interval $(A(X), B(X))$ such that

$$
\mathbb{P}(A(X) \le \theta \le B(X)) = \gamma
$$

for all values of θ . (A and B are random, and θ is fixed).

Correct or frequentist interpretation:

There exists some fixed true parameter θ . We repeat the experiment many times. On average, $100 \cdot \gamma\%$ of the time the interval $(A(X), B(X))$ contains θ .

Misleading interpretation:

"Having observed $X = x$, there is a probability γ that θ is in $(A(x), B(x))$."

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\theta, 1)$. Find a 95% confidence interval for θ . We know that

$$
\overline{X} = \frac{1}{n} \sum X_i \sim \mathcal{N}\left(\theta, \frac{1}{n}\right)
$$

$$
\implies z := \sqrt{n}(\overline{X} - \theta) \sim \mathcal{N}(0, 1)
$$

 z has this distribution for all θ .

Let z_1, z_2 be any two numbers such that $\Phi(z_2) - \Phi(z_1) = 0.95$.

Then

$$
\mathbb{P}(z_1 \le \sqrt{n}(\overline{X} - \theta) \le z_2) = 0.95
$$

Rearrange:

$$
\mathbb{P}\left(\overline{X} - \frac{z_2}{\sqrt{n}} \le \theta \le \overline{X} \frac{z_1}{\sqrt{n}}\right) = 0.95
$$

Then $\left(\overline{X} - \frac{z_2}{\sqrt{n}}, \overline{X} + \frac{z_2}{\sqrt{n}}\right)$) is a 95% confidence interval. How to choose z_1, z_2 ? Usually we minimise the width of interval. In this case this is achieved by

$$
z_1 = \Phi^{-1}(0.025), \qquad z_2 = \Phi^{-1}(0.975)
$$

Start of

[lecture 6](https://notes.ggim.me/Stats#lecturelink.6) Recipe for Confidence Interval

(1) Find some quantity $R(X, \theta)$ such that the \mathbb{P}_{θ} -distribution of $R(X, \theta)$ does not depend on θ . This is called a *pivot*. For example

$$
z = \sqrt{n}(\overline{X} - \mu) \sim \mathcal{N}(0, 1) \qquad \forall \mu
$$

(2) Write down a probability statement about the pivot of the form

$$
\mathbb{P}(c_1 \leq R(X, \theta) \leq c_2) = \gamma
$$

by using the quantities c_1, c_2 of the distribution of $R(X, \theta)$ [typically a N(0, 1) or χ^2 distribution).

(3) Rearrange the inequalities to leave θ in the middle.

Proposition. If T is a monotone increasing function $T : \mathbb{R} \to \mathbb{R}$, and $(A(x), B(X))$ is a 100γ% confidence interval for θ , then $(T(A(X)), T(B(X)))$ is a confidence interval for $T(\theta)$.

Remark. When θ is a vector, we talk about confidence sets.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(0, \sigma^2)$. Find a 95% confidence interval for σ^2 . (1) Note that $\frac{X_i}{\sigma} \sim N(0, 1)$ \Rightarrow $\sum_{n=1}^{n}$ $i=1$ X_i^2 $rac{\Lambda_i}{\sigma^2} \sim \chi_n^2$ Hence $R(X, \sigma^2) = \sum_i$ $\frac{X_i^2}{\sigma^2}$ is a pivot. (2) Let $C_1 = F_{\sqrt{2}}^{-1}$ $\chi_n^{n-1}(0.025), c_2 = F_{\chi_n^2}^{-1}$ $\chi_n^{\scriptscriptstyle{-1}}(0.975)$. Then P $\sqrt{ }$ $c_1 \leq \frac{1}{2}$ $\frac{1}{\sigma^2}\sum$ i $X_i^2 \leq c_2$ \setminus $= 0.95$ (3) Rearranging: $\left(\sum X_i^2\right)$ $= 0.95$

$$
\mathbb{P}\left(\frac{\sum X_i^2}{c_2} \le \sigma^2 \le \frac{\sum X_i^2}{c_1}\right) =
$$

Hence $\left[\frac{\sum X_i^2}{c_2}, \frac{\sum X_i^2}{c_1}\right]$ is a 95% confidence interval for σ^2 .

Hence, using the proposition above, $\left[\sqrt{\frac{\sum X_i^2}{c_2}}, \sqrt{\frac{X_i^2}{c_1}}\right]$ is a 95\% confidence interval for σ .

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(p), n$ is large. Find an approximate 95% confidence interval for p.

(1) The mle for p is $\hat{p} = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} X_i$. By the Central limit theorem when n is large, \hat{p} is approximately N $\left(p, \frac{p(1-p)}{p}\right)$ $\frac{(-p)}{n}$. Therefore $\sqrt{n} \frac{(\hat{p}-p)}{\sqrt{n(1-\hat{p})}}$ $\frac{p-p}{p(1-p)}$ is approximately N(0, 1).

$$
(2) z = \Phi^{-1}(0.975)
$$

$$
\mathbb{P}\left(-z \le \frac{\sqrt{n}(\hat{p} - p)}{\sqrt{p(1 - p)}} \le z\right) \approx 0.95
$$

(3) Rearranging this is tricky. Argue that as $n \to \infty$, $\hat{p}(1-\hat{p}) \to p(1-p)$. So replace denominator:

$$
\mathbb{P}\left(-z \le \frac{\sqrt{n}(\hat{p} - p)}{\sqrt{\hat{p}(1 - \hat{p})}} \le z\right) \approx 0.95
$$

Now it's easier to rearrange:

$$
\mathbb{P}\left(\hat{p} - z\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \le p \le \hat{p} + z\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right) \approx 0.95
$$

So $\int \hat{p} \pm z$ √ $\frac{\hat{p}(1-\hat{p}j)}{\sqrt{n}}$ is an approximate 95% confidence interval for p .

Note.
$$
\bullet
$$
 $z \approx 1.95$
\n $\bullet \sqrt{\hat{p}(1-\hat{p})} \le \frac{1}{2}$ for all $\hat{p} \in (0,1)$
\nSo a "conservative" confidence interval is $\left[\hat{p} \pm 1.96 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{n}}\right]$.

0.5 Interpreting Confidence intervals

Suppose $X_1, X_2 \stackrel{\text{IID}}{\sim} \text{Unif } [\theta - \frac{1}{2}]$ $\frac{1}{2}, \theta + \frac{1}{2}$ $\frac{1}{2}$. What is a sensible 50% confidence interval for θ? Consider

$$
\mathbb{P}(\theta \text{ is between } X_1, X_2) = \mathbb{P}(\min(X_1, X_2) \le \theta \le \max(X_1, X_2))
$$

= $\mathbb{P}(X_1 \le \theta \le X_2) + \mathbb{P}(X_2 \le \theta \le X_1)$
= $\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2}$
= $\frac{1}{2}$

Immediately conclude that $(\min(X_1, X_2), \max(X_1, X_2))$ is a 50% confidence interval for θ.

But we observe $X_1 = x_1, X_2 = x_2$ with $|x_1 - x_2| > \frac{1}{2}$ $\frac{1}{2}$. In this case we can be sure that θ is in $(\min(x_1, x_2), \max(x_1, x_2)$.

Frequentist interpretation of confidence interval is entirely correct! If we repeat the experiment many times $\theta \in (\min(X_1, X_2), \max(X_1, X_2))$ exactly 50% of the time. However, we cannot say that *given* a *specific* observation (x_1, x_2) we are "50% certain that $\theta \in \text{C.I.}.$

Bayesian Inference

So far, we have assume that there is some true parameter θ . That data X has pdf (or pmf) $f_X(\bullet | \theta)$.

Bayesian analysis is a different framework, where we treat θ as a random variable taking values in Θ.

We being by assigning to θ a prior distribution $\pi(\theta)$, which represents the investigator's opinions or information about θ before seeing any data. Conditional on θ , the data X has pdf (or pmf) $f_X(x | \theta)$. Havign observed a specific value of $X = x$, this information is combined with the prior to form the posterior distribution. $\pi(\theta \mid x)$ which is the conditional distribution of θ given $X = x$.

By Bayes rule:

$$
\pi(\theta \mid x) = \frac{\pi(\theta) \cdot f_X(x \mid \theta)}{f_X(x)}
$$

where $f_X(x)$ is the marginal probability of X and:

$$
f_X(x) = \begin{cases} \int_{\Theta} f_X(x \mid \theta) \pi(\theta) d\theta & \text{if } \theta \text{ is constant} \\ \sum_{\theta \in \Theta} f_X(x \mid \theta) \pi(\theta) & \text{if } \theta \text{ is discrete} \end{cases}
$$

Start of

[lecture 7](https://notes.ggim.me/Stats#lecturelink.7) **Bayesian Analysis**

Idea: treat θ as a random variable. Prior distribution: $\pi(\theta)$ (Info about θ before seeing data) Joint distribution of X, θ :

$$
f_X(x \mid \theta) \cdot \pi(\theta)
$$

Posterior distribution:

$$
\pi(\theta \mid x) = \frac{f_X(f \mid \theta)\pi(\theta)}{\int f_X(x \mid \theta)\pi(\theta)\text{d}\theta}
$$

$$
\propto f_X(x \mid \theta)\pi(\theta)
$$

(likelihood times prior).

Example (Prior choice clear). Patient gets a COVID test:

$$
\theta = \begin{cases} 0 & \text{patient does not have COVID} \\ 1 & \text{patient does have COVID} \end{cases}
$$

Data:

$$
X = \begin{cases} 0 & \text{negative test} \\ 1 & \text{positive test} \end{cases}
$$

We know: Sensitivity of test:

$$
f_X(X=1 \mid \theta=1)
$$

Specificity of test:

$$
f_X(X=0 \mid \theta=0)
$$

What prior? Suppose we don't know anything about patient but we know that a proportion p of people in the UK are infected today. Natural choice:

$$
\pi(\theta = 1) = p
$$

Chance of infection given true test?

$$
\pi(\theta = 1 | X = 1) = \frac{\pi(\theta = 1) f_X(X = 1 | \theta = 1)}{\pi(\theta = 0) f_X(X = 1 | \theta = 0) + \pi(\theta = 1) f_X(X = 1 | \theta = 1)}
$$

If $\pi(\theta = 0) \gg \pi(\theta = 1)$, this posterior can be small.

Example. $\theta \in [0, 1]$ mortality rate for new surgery at addenbrookes. In the first 10 operations, there were no deaths. Model: $X_i \sim \text{Ber}(\theta), X_i = 1$ if *i*-th operation is death, 0 otherwise.

$$
f_X(x \mid \theta) = \theta^{\sum X_i} (1 - \theta)^{10 - \sum X_i}
$$

Prior: We're told that the surgery is performed in other hospitals with a mortality rate ranging from 3% to 20%, with an average of 10%. We'll say that $\pi(\theta)$ is Beta (a, b) . We choose $a = 3$, $b = 27$, so that the mean of $\pi(\theta)$ is 0.1 and

$$
\pi(0.03 < \theta < 0.2) = 0.9
$$

Posterior:

$$
\pi(\theta \mid x) \propto \pi(\theta) \times f_X(x \mid \theta)
$$

$$
\propto \theta^{a-1} (1 - \theta)^{b-1} \theta^{\sum x_i} (1 - \theta)^{10 - \sum x_i}
$$

=
$$
\theta^{\sum x_i + a - 1} (1 - \theta)^{b+10 - \sum x_i - 1}
$$

(we ommitted the normalising constant of $Beta(a, b)$ because it does not depend on θ). We deduce this is a Beta ($\sum x_i + a$, 10 – $\sum x_i + b$) distribution. In our case

$$
\sum_{i=1}^{10} x_i = 0, \quad a = 0, \quad b = 27
$$

Note. Here prior and posterior are in the same family of distrbutions. This is known as conjugacy.

What to do with posterior? The information in $\pi(G | x)$ can be used to make decisions under uncertainty.

Formal Process

- (1) We must pick a decision $\delta \in D$.
- (2) The loss function $L(\theta, \delta)$ is the loss incurred when we make decision δ and true parameter has value θ . For example $\delta = \{0, 1\}$, $\delta = 1$ means we ask the patient to self isolate. Then, $L(\theta = 0, \delta = 1)$ is the loss incurred when we ask a non-infected patient to self-isolate.
- (3) We pick decision which minimises the posterior expected loss:

$$
\delta^* = \arg\min_{\delta \in D} \int_{\Theta} L(\theta, \delta) \pi(\theta \mid x) \mathrm{d}\theta
$$

(Von Neumann-Morgenstern theorem)

Point estimation:

The decision is a "best guess" for the true parameter, so $\delta \in \Theta$. The Bayes estimator $\hat{\theta}^{(b)}$ minimises

$$
h(\delta) = \int_{\Theta} L(\theta, \delta) \pi(\theta \mid x) \mathrm{d}\theta
$$

Example. Quadratic loss $L(\theta, \delta) = (\theta - \delta)^2$ $h(\delta) = \int (\theta - \delta)^2 \pi (\theta \mid x) d\theta$ $h'(\delta) = 0$ if $\int (\theta - \delta) \pi (\theta | x) d\theta = 0$ $\iff \int \theta \pi(\theta \mid x) d\theta = \delta \int \pi(\theta \mid x) d\theta$ $\frac{1}{2}$ Hence $\hat{\theta}^{(b)}$ equals the posterior mean of θ .

Example. Absolute error loss $L(\theta, \delta) = |\theta - \delta|$

$$
h(\delta) = \int |\theta - \delta|\pi(\theta | x) d\theta
$$

=
$$
\int_{-\infty}^{\delta} -(\theta - \delta)\pi(\theta | x) d\theta + \int_{\delta}^{\infty} (\theta - \delta)\pi(\theta | x) d\theta
$$

=
$$
-\int_{-\infty}^{\delta} \theta \pi(\theta | x) d\theta + \int_{\delta}^{\infty} \theta \pi(\theta | x) d\theta + \delta \int_{-\infty}^{\delta} \pi(\theta | x) d\theta - \delta \int_{\delta}^{\infty} \pi(\theta | x) d\theta
$$

Take derivative with respect to δ . By the FTC,

$$
h'(\delta) = \int_{-\infty}^{\delta} \pi(\theta \mid x) d\theta - \int_{\delta}^{\infty} \pi(\theta \mid x) d\theta
$$

So $h'(\delta) = 0$ if and only if

$$
\int_{-\infty}^{\delta} \pi(\theta \mid x) d\theta = \int_{\delta}^{\infty} \pi(\theta \mid x) d\theta
$$

So in this case

$$
\hat{\theta}^{(b)} = \text{median of the posterior}
$$

Credible Interval

A 100 γ % credible interval $(A(x), B(x))$ is one which satisfies

$$
\pi(A(x) \le \theta \le B(x) \mid x) = \gamma
$$

(A and B are fixed at the observed data x, but θ is random).

$$
\int_{A(x)}^{B(x)} \pi(\theta \mid x) \mathrm{d}\theta = \gamma
$$

In example sheet 2:

Note. We can interpret intervals conditionally ("given x, we are $100\gamma\%$ sure that $\theta \in [A(x), B(x)]$ ").

Note. If T is a sufficient statistic, $\pi(\theta | x)$ only depends on x through $T(x)$.

$$
\pi(\theta \mid x) \propto \pi(\theta) \times f_X(x \mid \theta)
$$

= $\pi(\theta)g(T(x), \theta)h(x)$
 $\propto \pi(\theta)g(T(x), \theta)$

Start of

[lecture 8](https://notes.ggim.me/Stats#lecturelink.8) Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu, 1)$. Prior: $\pi(\mu)$ is N $(0, \frac{1}{\tau^2})$ $rac{1}{\tau^2}$

$$
\pi(\mu \mid x) \propto f_X(x \mid \mu) \cdot \pi(\mu)
$$

$$
\propto \exp\left[-\frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2\right] \exp\left[-\frac{\mu^2 \tau^2}{2}\right]
$$

$$
\propto \exp\left[-\left(\frac{1}{2}\right)^{(n+\tau^2)} \left\{\mu - \frac{\sum x_i}{n+\tau^2}\right\}^2\right]
$$

we recognise this as a

$$
N\left(\frac{\sum x_i}{n+\tau^2}, \frac{1}{n+\tau^2}\right)
$$

distribution. The Bayes estimator $\hat{\mu}^{(b)} = \frac{\sum x_i}{n + \tau^2}$ $\frac{\sum x_i}{n+\tau^2}$ for both quadratic loss and absolute error loss $(\hat{\mu}^{\text{mle}} = \frac{\sum x_i}{n})$ $\frac{f^{x_i}}{n}$). A 95% credible interval is

$$
\left(\hat{\mu}^{(b)} - \frac{1.96}{\sqrt{n+\tau^2}}, \hat{\mu}^{(b)} + \frac{1.96}{\sqrt{n+\tau^2}}\right)
$$

This is close to a 95% confidence interval when $n \gg \tau^2$.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Poisson}(\lambda)$. Prior: $\pi(\lambda)$ is Exp(1), $\pi(\lambda) = e^{-\lambda}, \lambda > 0$.

$$
\pi(\lambda \mid x) \propto f_X(x \mid \lambda) \cdot \pi(\lambda)
$$

$$
\propto \frac{e^{-n\lambda} \lambda^{\sum x_i}}{\prod_i x_i!} e^{-\lambda} \qquad \qquad \lambda > 0
$$

$$
= e^{-(n+1)\lambda} \lambda^{\sum x_i} \qquad \qquad \lambda > 0
$$

THis is a $\Gamma(1+\sum x_i, n+1)$ distribution. The Bayes estimator under quadratic loss is the posterior mean

$$
\hat{\lambda}^{(b)} = \frac{\sum x_i + 1}{n+1} \xrightarrow{n \to \infty} \frac{\sum x_i}{n} = \hat{\lambda}^{\text{mle}}
$$

Under the absolute error loss the bayes estimator $\tilde{\lambda}^{(b)}$ has

$$
\int_0^{\tilde{\lambda}^{(b)}} \frac{(n+1)^{\sum x_i - 1}}{(\sum x_i)!} x^{\sum x_i} e^{-(n+1)\lambda} d\lambda = \frac{1}{2}
$$

Simple Hypothesis

A hypothesis is some assumption about the distribution of the data X . Scientific questions are phrased as a choice between a *null hypothesis* H_0 (base case, simple model, no effect) and an *alternative hypothesis* H_1 (complex model, interesting case, positive or negative effect).

Examples and non-examples of simple hypotheses (no explanation yet)

- (1) $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{Ber}(\theta), H_0: \theta = \frac{1}{2}$ $\frac{1}{2}$ (fair coin), H_1 : $\theta = \frac{3}{4}$ $\frac{3}{4}$. This is a valid pair.
- (2) As in the previous but H_0 : $\theta = \frac{1}{2}$ $\frac{1}{2}$ and H_1 : $\theta \neq \frac{1}{2}$ $\frac{1}{2}$. This is not a valid pair.
- (3) X_1, \ldots, X_n takes values in \mathbb{N}_0 . $H_0: X_i \stackrel{\text{IID}}{\sim} \text{Poisson}(\lambda)$ for some $\lambda > 0$, $H_2: X_i \stackrel{\text{IID}}{\sim} f_1$ for some other f_1 . This is not a valid pair.
- (4) X has pdf $f(\bullet | \theta)$, $\theta \in \Theta$. $H_0: \theta \in \Theta_0 \subset \Theta$, $H_1: \theta \notin \Theta_0$. This is simple if $\Theta_0 = {\theta_0}$.

A hypothesis is said to be *simple* if it fully specifies the distribution of X . Otherwise we say it is composite.

A test of H_0 is defined by a *critical region* $C \subseteq \mathcal{X}$. When $X \in C$ we "reject" H_0 and when $X \notin \mathbb{C}$ we say we "fail to reject" or "find no evidence against" H_0 .

Type I error: we reject H_0 when H_0 is true. Type II error: we fail to reject H_0 when H_0 is false. When H_0 and H_1 are simple, we define

$$
\alpha = \mathbb{P}_{H_0}(H_0 \text{ is rejected}) = \mathbb{P}_{H_0}(X \in C)
$$

"probability of type I error".

$$
\beta = \mathbb{P}_{H_2}(H_0 \text{ is not rejected}) = \mathbb{P}_{H_1}(X \not\in C)
$$

"probability of type II error".

The size of the test is α . The power of the test is $1 - \beta$. Tradeoff between minimising size and maximising power. Usually we fix an acceptable size (say $\alpha = 1\%$), then pick test of size α which maximises the power.

Neyman-Pearson Lemma

Let H_0, H_1 be simple. Let X have pdf f_i under H_i , $i = 0, 1$. The likelihood ratio statistic

$$
\Lambda_x(H_0, H_1) = \frac{f_1(X)}{f_0(X)}
$$

A likelihood ratio test (LRT) rejects H_0 when

$$
X \in C = \{x : \Lambda_x(H_0, H_1) > k\}
$$

for some threshold or "critical value" k .

Theorem (Neyman-Pearson Lemma). Suppose that f_0 , f_1 are non-zero on the same sets. Suppose there exists k such that the LRT with critical region

$$
C = \{x : \Lambda_x(H_0, H_1) > k\}
$$

has size exactly α . Then, this is the test with the smallest β (highest power) out of all tests of size $\leq \alpha$.

Remark. A LRT of size α need not exist (try to think of an example). Even then, there is a "randomised LRT" with size α .

Proof. Let \overline{C} be complement of C. The LRT has

$$
\alpha = \mathbb{P}_{H_0}(X \in C) = \int_C f_0(x) dx
$$

$$
\beta = \mathbb{P}_{H_1}(X \notin C) = \int_{\overline{C}} f_1(x) dx
$$

Let C^* be critical region of another test with size α^* , power $1 - \beta^*$, with $\alpha^* \leq \alpha$. Want to prove that $\beta \leq \beta^*$ or $\beta - \beta^* \leq 0$.

$$
\beta - \beta^* = \int_{\overline{C}} f_1(x) dx - \int_{\overline{C^*}} f_1(x) dx
$$

\n
$$
= \int_{\overline{C} \cap C^*} f_1(x) dx - \int_{\overline{C^*} \cap C} f_1(x) dx
$$

\n
$$
= \int_{\overline{C} \cap C^*} \frac{f_1(x)}{f_0(x)} f_0(x) dx - \int_{\overline{C^*} \cap C} \frac{f_1(x)}{f_0(x)} f_0(x) dx
$$

\n
$$
\leq R \text{ on } \overline{C}
$$

\n
$$
\leq k \left[\int_{C \cap C^*} f_0(x) dx - \int_{\overline{C^*} \cap C} f_0(x) dx \right]
$$

\n
$$
= k \left[\int_{C^*} f_0(x) dx - \int_C f_0(x) dx \right]
$$

\n
$$
= k(\alpha^* - \alpha)
$$

\n
$$
\leq 0
$$

 \Box

Start of

[lecture 9](https://notes.ggim.me/Stats#lecturelink.9) **Lemma.** If C is a LRT with size α , and C^{*} is another test of size $\leq \alpha$, then C is more powerful than C^* , i.e.

$$
\beta = \mathbb{P}_{H_1}(x \notin C) \le \mathbb{P}_{H_1}(x \notin C^*) = \beta^*
$$

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu, \sigma_0^2), \sigma_0^2$ is known. Want the best size α test for H_0 : $mu = \mu_0, H_1: \mu = \mu_1$ for some fixed $\mu_1 > \mu_0$

$$
\Lambda_x(H_0; H_1) = \frac{(2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma_0^2} \sum (x_i - \mu_1)^2\right)}{(2\pi\sigma_0^2)^{\frac{1}{2}} \exp\left(-\frac{1}{2\sigma_0^2} \sum (x_i - \mu_0)^2\right)}
$$

$$
= \exp\left(\frac{(\mu_1 - \mu_0)}{\sigma_0^2} n\overline{x} + \frac{n(\mu_0^2 - \mu_1^2)}{2\sigma_0^2}\right)
$$

 $\Lambda_x(H_0; H_1)$ is monotone increasing in $\bar{x} = \frac{1}{n}$ $\frac{1}{n}\sum x_i$. Hence, for any k, there is a c, such that $\Lambda_x(H_0; H_1) > k \iff \overline{x} > c$. Thus the LRT critical region is $\{x : \overline{x} > a\}$ for some constant c . By the same logic the LRT is of the form

$$
C = \{\sqrt{n}\frac{(\overline{x} - \mu_0)}{\sigma_0} < c'\}
$$

want to pick c' such that

$$
\mathbb{P}_{H_0}\left(\sqrt{n}\frac{(\overline{x} - \mu_0)}{\sigma_0} > c'\right) = \alpha
$$

But $\sqrt{n} \frac{(\overline{x} - \mu_0)}{\sigma_0}$ $\frac{-\mu_0}{\sigma_0} \sim N(0, 1)$ (this is a pivot). So if we take $c' = \Phi^{-1}(1-\alpha) \cdot z_\alpha$. Finally the LRT has critical region

$$
\left\{x:\frac{\sqrt{n}(\overline{x}-\mu_0)}{\sigma_0}>z_\alpha\right\}
$$

By N-D lemma, this is the most powerful test of size α . This is called a "z-test" because we use a z statistic $z = \sqrt{n} \left(\frac{\overline{x} - \mu_0}{\sigma_0} \right)$ σ_0) to define the critical region.

P-value

For any test with critical region of the form $\{x : T(x) > k\}$ for some statistic T, a p-value or observed significance level is

$$
p = \mathbb{P}_{H_0}(T(X) > T(X^*))
$$

where x^* is the observed date. In example we just saw, let $\mu_0 = 5$, $\mu_1 = 6$, $\sigma_0 = 1$, $\alpha = 0.05$, observe

$$
x^* = (5.1, 5.5, 4.9, 5.3)
$$

 $\overline{x^*} = 5.2, z^* = 0.4.$ $z_\alpha = \Phi^{-1}(1 - \alpha) = 1.645$

Here, we fail to reject H_0 : $\mu_0 = 5$, $p = 0.35$.

Proposition. Under H_0 , p has a Unif(0, 1) distribution. p is a function of x^* ; null distribution assumes $x^* \sim \mathbb{P}_{H_0}$.

Proof.

$$
\mathbb{P}_{H_0}(p < u) = \mathbb{P}_{H_0}(1 - F(T) < u)
$$

where F is the cdf of T .

$$
= \mathbb{P}_{H_0}(F(T) > 1 - u))
$$

= $\mathbb{P}_{H_0}(T > F^{-1}(1 - u))$
= $1 - F(F^{-1}(1 - u))$
= u

for all $u \in [0,1]$. Thus $p \sim \text{Unif}(0,1)$.

Composite Hypotheses

 $X \sim f_X(\bullet | \theta), \theta \in \Theta$. $H_0: \theta \in \Theta_0 \subset \Theta, H_1: \theta \in \Theta_1 \subset \Theta$. Type I, II error probabilities depend on the value of θ within Θ_0 or Θ_1 respectively. Let C be some critical region.

 \Box

Definition (Power Function and UMP test). The *power function* of the test C is

$$
W(\theta) = \mathbb{P}_{\theta}(\underbrace{x \in C}_{H_0 \text{ rejected}})
$$

The size of c is the worst case Type I error probability:

$$
\alpha = \sup_{\theta \in \Theta} W(\theta)
$$

We say that C is uniformly most powerful (UMP) of size α for H_0 against H_1 if:

- (1) $\sup_{\theta \in \Theta_0} W(\theta) = \alpha$
- (2) For any other test C^* of size $\leq \alpha$, with power function W^* , we have $W(\theta) \geq$ $W^*(\theta)$ for all $\theta \in \Theta_1$.

Note. UMP test need not exist. But, in some simple cases, the LRT is UMP.

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu, \sigma_0^2)$: σ_0^2 known. We wish to test $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$ for some fixed μ_0 . We just studied the simple hypothesis:

$$
H'_0: \mu = \mu_0, \qquad H'_1: \mu = \mu_1 \qquad (\mu_1 > \mu_0)
$$

LRT was:

$$
C = \left\{ x : z = \frac{\sqrt{n}(\overline{x} - \mu_0)}{\sigma_0} > z_\alpha \right\}
$$

Claim: the same test C is UMP for H_0 against H_1 . The power function for C is

$$
W(\mu) = \mathbb{P}_{\mu}(X \in C) = \mathbb{P}_{\mu}\left(\frac{\sqrt{n}(\overline{x} - \mu_0)}{\sigma_0} > z_{\alpha}\right)
$$

$$
= \mathbb{P}_{\mu}\left(\frac{\sqrt{n}(\overline{x} - \mu)}{\sigma_0} > z_{\alpha} + \frac{\sqrt{n}(\overline{x} - \mu)}{\sigma_0}\right)
$$

$$
= 1 - \Phi\left(z_{\alpha} + \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0}\right)
$$

This is monotone increasing in $\mu \in (-\infty, \infty)$

The test has size α as $\sup_{\mu \in \Theta_0} W(\mu) = \alpha$. It remains to show that if C^* is another test of size $\leq \alpha$ with power function W^* then $W(\mu_1) \geq W^*(\mu_1)$ for all $\mu_1 > \mu_0$. Main observation: critical region only depends on μ_0 . And C is the LRT for the simple hypothesis H'_0 : $\mu = \mu_0$, H'_1 : $\mu = \mu_1$. Any test C^* of H_0 vs H_1 of size $\leq \alpha$ also has size $\leq \alpha$ for H'_0 vs H'_1 .

$$
W^*(\mu_0) \le \sup_{\mu \in \Theta_0} W^*(\mu) \le \alpha
$$

Hence by N-D lemma, we know $W(\mu_1) \geq W(\mu_2)$. As we can apply this argument for any $\mu_1 > \mu_0$, we have

$$
W^*(\mu_1) \le W(\mu_1) \qquad \forall \mu_1 > \mu_0
$$

Start of [lecture 10](https://notes.ggim.me/Stats#lecturelink.10)

Generalised Likelihood Ratio Tests

 $X \sim f_X(\bullet | \theta)$, $H_0: \theta \in \Theta_0$, $H_1: \theta \in \Theta_1$. The generalised likelihood ratio statistic:

$$
\Lambda_x(H_0; H_1) = \frac{\sup_{\theta \in \Theta_1} f_X(x \mid \theta)}{\sup_{\theta \in \Theta_0} f_X(x \mid \theta)}
$$

Large values of Λ_x indicate larger departure from H_0 .

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu, \sigma_0^2), \ \sigma_0$ is known. Wish to test $H_0: \ \mu = \mu_0, H_1:$ $\mu \neq \mu_0$ for fixed μ_0 . Here $\Theta_0 = {\mu_0}, \Theta_1 = \mathbb{R} \setminus {\mu_0}$. The GLR is

$$
\Lambda_x(H_0; H_1) = \frac{(2\pi\sigma_0^2)^{-\pi/2} \exp\left(-\frac{1}{2\sigma_0^2} \sum_i (x_i - \overline{x})^2\right)}{(2\pi\sigma_0^2)^{\pi/2} \exp\left(-\frac{1}{2\sigma_0^2} \sum_i (x_i - \mu_0)^2\right)}
$$

Taking $2 \cdot \log \theta \Lambda_x$ (monotone increasing transformation)

$$
2\log\Lambda x = \frac{n}{\sigma_0^2}(\overline{x} - \mu_0)^2
$$

The GLR test rejects H_0 when Λ_x is large (or when $2 \log \Lambda_x$ is large), i.e. when

$$
\left|\sqrt{n}\frac{(\overline{x} - \mu_0)}{\sigma_0}\right|
$$

is large. (Under H_0 , the expression in the modulus has a $N(0, 1)$ distribution). For a test of size α , reject when

This is called a 2-sided test.

Note. $2 \log \Lambda_x = n \frac{(\overline{x} - \mu_0)}{\sigma^2}$ $\frac{-\mu_0}{\sigma_0^2} \sim \chi_1^2$ under H_0 . We can also define the critical region of the GLR test as

$$
\left\{ x : n \frac{(\overline{x} - \mu_0)}{\sigma_0^2} > \chi_1^2(\alpha) \right\}
$$

In general, we can approximate the distribution of $2 \log \Lambda_x$ with a χ^2 distribution when n is large(!)

Wilks' Theorem

Suppose θ is k-dimensional $\theta = (\theta_1, \ldots, \theta_k)$. The dimension of a hypothesis $H_0: \theta \in \Theta_0$ is the number of "free parameters" in Θ_0 .

- (1) $\Theta_0 = \{ \theta \in \mathbb{R}^k : \theta_1 = \theta_2 = \cdots = \theta_p = 0 \}$ for some $p < k$. Here $\dim(\theta_0) = k p$.
- (2) Let $A \in \mathbb{R}^{p \times k}$, $b \in \mathbb{R}^p$, $p < k_{\mathcal{L}}$

$$
\Theta_0 = \{ \theta \in \mathbb{R}^k : A\theta = b \}
$$

 $\dim(\Theta_0) = k - p$ if rows of A are linearly independent $(\Theta_0$ is a hyperplane).

(3) $\Theta_0 = \{\theta \in \mathbb{R}^k : \theta_0 = f_i(\phi), \phi \in \mathbb{R}^p\}, p < l$. Here ϕ are the free parameters; f_i need not be linear. Under regularity conditions $\dim(\theta_0) = p$.

Theorem (Wilk's Theorem). Suppose $\Theta_0 \subset \Theta_1$ ("nested hypotheses")

$$
\dim(\Theta_1) - \dim(\Theta_0) = p
$$

If X_1, \ldots, X_n are iid from $f_X(\bullet \mid \theta_0)$, then as $n \to \infty$, the limiting distribution of $2\log\Lambda_x$ under H_0 is χ_p^2 . That is, for any $\theta \in \Theta_0$, any $l > 0$,

$$
\mathbb{P}_{\theta}(z\log\Lambda_x\leq l)\stackrel{n\to\infty}{\longrightarrow}\mathbb{P}(Z\leq l)
$$

where $Z \sim \chi_p^2$.

How to use this? If we reject H_0 when $2 \log \Lambda_x \geq \chi^2_p(\alpha)$ then when n is large, the size of the test is $\approx \alpha$. (!!!)

Example. In the two-sided normal mean test

$$
\Theta_0 = {\mu_0}, \qquad \Theta_1 = \mathbb{R} \setminus {\mu_0}
$$

we found $2\log \Lambda_x \sim \chi_1^2$. If we take $\Theta_1 = \mathbb{R}$, the GLR statistic doesn't change, so $2\log\Lambda_x \sim \chi_1^2$.

$$
\dim(\theta_1) - \dim(\Theta_0) = 1 - 0 = 1
$$

The prediction of Wilk's theorem is exact.

Proof. Wait for Part II Principles of Statistics :(

 \Box

Tests of goodness of fit

 X_1, \ldots, X_n are iid samples from a distribution on $\{1, 2, \ldots, k\}$. Let $p_i = \mathbb{P}(X_1 = i)$, let N_i be the number of observations equal to *i*. So,

$$
\sum_{i=1}^{k} p_i = 1, \qquad \sum_{i=1}^{k} N_i = n
$$

Goodness of fit test: $H_0: p = \tilde{p}$ for some fixed distribution \tilde{p} on $\{1, \ldots, k\}$. $H_1: p$ is any distribution with $\sum_{i=1}^{k} p_i = 1, p_i \ge 0$.

Example. Mendel crossed $n = 556$ smooth yellow peas with wrinkled green peas. Each member of the progeny can have any combination of the 2 features: SY , SG , WY , WG. Let (p_1, p_2, p_3, p_4) be the probabilities of each type, and (N_1, \ldots, N_4) are the number of progeny of each type, $\sum N_i = n = 556$.

Mendel's hypothesis:

$$
H_0: p = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right) := \tilde{p}
$$

Is there any evidence in N_1, \ldots, N_4 to reject H_0 ? The model can be written $(N_1, \ldots, N_k) \sim \text{Multinomial}(n; p_1, \ldots, p_k)$. Likelihood: $L(p) \propto p_1^{N_1} \cdots p_k^{N_k}$

$$
\implies l(p) = \text{const} + \sum_{i} N_i \log p_i
$$

We can test H_0 against H_1 using a GLR test:

$$
2\log\Lambda_x = 2\left(\sup_{p\in\Theta_1} l(p) - \sup_{p\in\Theta_0} l(p)\right)
$$

Since $\Theta_0 = {\tilde{p}}$, sup_{p∈ Θ_0} $l(p) = l(\tilde{p})$. In the alternative p must satisfy $\sum p_i = 1$.

$$
\sup_{p \in \Theta_1} l(p) = \sup_{p:\sum p_i = 1} \sum_i N_i \log p_i
$$

Use Lagrangian $\mathcal{L}(p,\lambda) = \sum_i N_i \log p_i - \lambda (\sum_i p_i - 1)$. We find that $\hat{p}_i = \frac{N_i}{n}$ (the observed propoertion of samples of type i).

$$
2\log \Lambda = 2(l(\hat{p}) - l(\tilde{p}))
$$

$$
= 2\sum_{i} N_i \log \left(\frac{N_i}{n \cdot \tilde{p}_i}\right)
$$

Wilk's theorem tells us that $2 \log \Lambda_x$ is approximately χ_p^2 with

$$
p = \dim(\Theta_1) - \dim(\Theta_0) = (k - 1) - 0 = k - 1
$$

So we can reject the H_0 with size $\approx \alpha$ when

$$
2\log\Lambda_x > \chi^2_{k-1}(\alpha)
$$

Start of

[lecture 11](https://notes.ggim.me/Stats#lecturelink.11) Tests of Goodness of fit and Independence

It's common to write

$$
2\log \Lambda = 2\sum_{i} o_i \log \left(\frac{o_i}{e_i}\right)
$$

where $o_i = N_i$ "observed number of type i" and $e_i = n \cdot \tilde{p}_i$ "expected number of type i under null".

Pearson's statistic: Let $\delta_i = o_i - e_i$. Then

$$
2 \log \Lambda = 2 \sum_{i} (e_i + \delta_i) \log \left(1 + \frac{\delta_i}{e_i} \right)
$$

$$
= \frac{\delta_i}{e_i} - \frac{\delta_i^2}{2e_i^2} + O\left(\frac{\delta_i^3}{e_i^3}\right)
$$

$$
\approx 2 \sum_{i} \left(\underbrace{\delta_i}{\sum_{i} \delta_i} - \sum_{i} (\delta_i - e_i) = n - n = 0} + \frac{\delta_i^2}{e_i} - \frac{\delta_i^2}{2e_i} \right)
$$

$$
= \sum_{i} \frac{\delta_i^2}{e_i}
$$

$$
= \sum_{i} \frac{(\delta_i - e_i)^2}{e_i}
$$

This is called Preason's statistic. This is also referred to a χ^2_{k-1} distribution when n is large.

Example. Mendel's data:

$$
(n_1, n_2, n_3, n_4) = (315, 108, 102, 31)
$$

 $2\log\Lambda \approx 0.618$, $\sum_i \frac{(o_i - e_i)^2}{e_i}$ $\frac{(-e_i)^2}{e_i} \approx 0.604$. We refer each statistic to a $\chi^2_{k-1} = \chi^2_3$ distribution.

$$
\chi_3^2(0.05) = 7.815
$$

We don't reject H_0 at size 5%. The p-value is $\mathbb{P}(\chi^2_3 > 0.6) \approx 0.96$. The data fir the null model almost too well.

Goodness of fit test for composite null

H₀: $p_i = p_i(\theta)$ for some parameter θ . H₁: p can be any distribution on $\{1, \ldots, k\}$.

Example. Individuals can have 3 genotypes. H_0 : $p_1 = \theta^2$, $p_2 = 2\theta(1 - \theta)$, $p_3 =$ $(1 - \theta)^2$, for some $\theta \in [0, 1]$.

$$
2 \log \Lambda = 2 \left(\sup_{p:\sum p_i=1} l(p) - \sup_{\theta} l(p(\theta)) \right)
$$

$$
= 2(l(\hat{p}) - l(p(\hat{\theta}))
$$

where \hat{p} is the mle in the alternative H_1 ; $\hat{\theta}$ is the mle in null H_0 . Last time we found $\hat{p}_i = \frac{\tilde{N_i}}{n}$. $\hat{\theta}$ would need to be computed for the null model in question.

$$
2 \log \Lambda = 2 \sum_{i} N_{i} \log \left(\frac{N_{i}}{np_{i}(\hat{\theta})} \right)
$$

$$
= 2 \sum_{i} o_{i} \log \left(\frac{o_{i}}{e_{i}} \right)
$$

 $o_i = N_i$ "observed number of type i", $e_i = n \cdot p_i(\hat{\theta})$ "expected number of type i under H_0 ". We can define a Pearson statistic $\sum_i \frac{(o_i - e_i)^2}{e_i}$ $\frac{-e_i}{e_i}$ using the same argument as before.

Each statistic can be referred to a χ_d^2 when n is large by Wilke's theorem.

$$
d = \dim(\Theta_1) - \dim(\Theta_0)
$$

= $(k - 1) - \dim(\Theta_0)$

Example. $l(\theta) = \sum_i N_i \log p_i(\theta) = 2N_1 \log \theta + N_2 \log(2\theta(1-\theta)) + 2N_3 \log(1-\theta)$. Maximising over $\theta \in [0, 1]$ gives $\hat{\theta} = \frac{2N_1 + N_2}{2n}$ (exercise). In this model $2 \log \Lambda$ and $\sum_i \frac{(o_i-e_i)^2}{e_i}$ $\frac{(-e_i)^2}{e_i}$ have a χ_d^2 distribution with $d = (k-1) - \dim(\Theta_0) = (k-1) - 1 = k-2 = 0$ $3 - 2 = 1.$

Testing independence in contingency tables

 $(X_1, Y_1), \ldots, (X_n, Y_n)$ are iid with X_i taking values in $\{1, \ldots, r\}$, Y_i taking values in $\{1, \ldots, c\}$. The entries in a contingency table are

$$
N_{ij} = #\{l : 1 \le l \le n, (X_l, Y_l) = (i, j)\}
$$

(# samples of type (i, j))

Example. COVID-19 deaths. X_i : age of *i*-th death. Y_i : week on which it fell. Question: are deaths decreasing faster for older age grou that had been vaccinated?

Probability Model

We'll assume *n* is fixed. A sample (X_l, Y_l) has probability p_{ij} of falling in (i, j) entry of table.

$$
(N_{11},\ldots,N_{1c},N_{21},\ldots,N_{2c},\ldots,N_{rc}) \sim \text{Multinomial}(n; p_{11},\ldots,p_{1c},\ldots,p_{rc})
$$

Remark. Fixing *n* may not be natural; we'll consider other models later.

Null hypothesis

Week of death is independent of age. X_i independent of Y_i for each sample. Let

$$
p_{i+} = \sum_{j=1}^{n} p_{ij} \qquad p_{+j} = \sum_{i=1}^{r} p_{ij}
$$

 $H_0: p_{ij} = p_{i+1}p_{+j}.$ ($\mathbb{P}(X_l = i, Y_l = j) = \mathbb{P}(X_l = i)\mathbb{P}(Y_l = j)).$ $H_1: (p_{ij})$ is unconstrained except for $p_{ij} \geq 0$, $\sum_{i,j} p_{ij} = 1$. The generalised LRT:

$$
2\log\Lambda = 2\sum_{i,j} o_{ij} \log\left(\frac{o_{ij}}{e_{ij}}\right)
$$

 $o_{ij} = N_{ij}, e_{ij} = n\hat{p}_{ij}$, where \hat{p} is the mle under independence model H_0 . Using Lagrange multipliers we can find

$$
\hat{p}_{ij} = \hat{p}_{i+}\hat{p}_{+j}
$$

where

$$
\hat{p}_{i+} = \frac{N_{i+}}{n} \qquad \hat{p}_{+j} = \frac{N_{+j}}{n}
$$
\n
$$
N_{i+} = \sum_{j} N_{ij} \qquad \qquad N_{+j} = \sum_{i} N_{ij}
$$
\n
$$
\implies 2 \log \Lambda = 2 \sum_{i=1}^{r} \sum_{j=1}^{c} N_{ij} \log \left(\frac{N_{ij}}{n \cdot \hat{p}_{i+} \hat{p}_{+j}} \right) \approx \sum_{i,j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}
$$

Wilke's: The asymptotic distribution of these statistics is χ_d^2 with

$$
d = \dim(\Theta_1) - \dim(\Theta_0)
$$

= $(rc - 1) - [(r - 1) + (c - 1)]$
 $(r - 1)(c - 1)$

 $((r-1)$ and $(c-1) \rightarrow$ degrees of freedom in $(p_{1+},...,p_{r+})$ and $(p_{+1},...,p_{+c})$

Start of [lecture 12](https://notes.ggim.me/Stats#lecturelink.12)

Testing independence in contingency tables

 N_{ij} : number of samples of type (i, j) .

 $(N_{ij}) \sim \text{Multinomial}(n,(p_{ij}))$

 $H_0: p_{ij} = p_{i+} \times p_{+j}$ H_1 : (p_{ij}) unconstrained. Found $2 \log \Lambda$, which has asymptotic $\chi^2_{(r-1)(c-1)}$ distribution.

Example (COVID-19 deaths). Problems with χ^2 independence test:

(1) χ^2 approximation can be bad when we have large tables. Rule of thumb: Need $N_{ij} \geq 5$ for all i, j .

Solution (non-examinable): exact testing. Idea: under H_0 , the margins of N $(N_{i+}), (N_{+j})$ are sufficient statistics for p. therefore 2 tables N, \tilde{N} with the same margins are equally likely under H_0 . An exact test contrasts the test statistic observed $2 \log \Lambda(N)$ with the distribution of this statistic for the set of tables with the same margins as N. This gives a test of exact size α .

- (2) $2 \log \Lambda$ can detect deviations from H_0 in any direction. \implies Low power, especially when r, c is large. This is why H_0 is not rejected in a test of size 1% in COVID-19 example. Solutions:
	- (1) Define a parametric alternative H_1 with fewer degrees of freedom.
	- (2) Lump categories in the table.

Tests of Homogeneity

Instead of assuming $\sum_{i,j} N_{ij}$ fixed, we assume row totals are fixed.

Example. 150 patients, split into groups of 50 for placebo, half-dose, full-dose. We record whether each patient improved, showed no difference or got worse.

Now row totals are fixed. Null of homogeneity: probability of each outcome is the same in each treatment group.

Model:

$$
(N_i1,\ldots,N_{ic})\sim \text{Multinomial}(n_{i+},p_{i1},\ldots,p_{ic})
$$

independent for $i = 1, ..., r$. Paramters satisfy $\sum_j p_{ij} = 1$ for all i. $H_0: p_{1j} = p_{2j} =$ $\cdots p_{rj}$ for all $j = 1, \ldots, c$. $H_1: (p_{i1}, \ldots, p_{ic})$ is a probability vector for all i.

$$
L(p) = \prod_{i=1}^{r} \frac{n_{i+}!}{N_{i1}! \cdots N_{ic}!} p_{i1}^{N_{i1}} \cdots p_{ic}^{N_{ic}}
$$

$$
l(p) = \text{const} + \sum_{i,j} N_{ij} \log p_{ij}
$$

To find $2 \log \Lambda$ we need to maximise $l(p)$ over H_0 , H_1 . H_1 : use Lagrange multipliers with constraints $\sum_j p_{ij} = 1$ for all i. Then the mle is

$$
\hat{p}_{ij} = \frac{N_{ij}}{n_{i+}}
$$

 H_0 : let $p_j = p_{1j} = \cdots = p_{+j}$.

$$
l(p) = \text{const} + \sum_{j=1}^{c} N_{+j} \log p_j
$$

hence the mle is $\hat{p}_j = \frac{N+j}{n+1}$ $\frac{n+j}{n_{++}}, n_{++} = \sum_i n_{i+}.$ Thus

$$
2\log\Lambda = 2\sum_{i,j} N_{ij} \log\left(\frac{N_{ij}}{n_{i+}N_{+j}/n_{++}}\right)
$$

This is exactly the same statistic as $2 \log \Lambda$ for the independence test. Let $o_{ij} = N_{ij}$, $e_{ij} = n_{i+1} \hat{p}_j = n_{i+\frac{N+j}{n_{i+1}}}$ $\overline{n_{++}}$

$$
\implies 2\log \Lambda = 2\sum_{i,j} o_{ij} \log \left(\frac{o_{ij}}{e_{ij}}\right)
$$

$$
\approx \sum_{i,j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}
$$

This is also the same as Pearson's statistic for independence test.

Wilk's implies $2 \log \Lambda$ is approximately χ_d^2 ,

$$
d = \dim(\Theta_1) - \dim(\Theta_0)
$$

= $(c - 1)r - (c - 1)$
= $(c - 1)(r - 1)$

Asymptotic distribution of $2 \log \Lambda$ is also the same as in the independence test.

Testing independence or homogeneity with size α always has the same conclusion.

Relationship between tests and confidence sets

Define the acceptance ragion A of a test to be the complement of the critical region. Let $X \sim f_X(\bullet \mid \theta)$ for some $\theta \in \Theta$.

Theorem. (1) Suppose that for each $\theta_0 \in \Theta$ there is a test of H_0 : $\theta = \theta_0$ of size α with acceptance region $A(\theta_0)$. Then, the set

$$
I(X) = \{ \theta : X \in A(\theta) \}
$$

is a $100(1 - \alpha)\%$ confidence set.

(2) Suppose $I(X)$ is a 100(1 – α)% confidence set for θ . Then

$$
A(\theta_0) = \{x : \theta_0 \in I(X)\}
$$

is the acceptance region of a size α test for H_0 : $\theta = \theta_0$.

Proof. In each part:

$$
\theta_0 \in I(X) \iff X \in A(\theta_0)
$$

For part (1) , we calculate:

$$
\mathbb{P}_{\theta_0}(I(X) \ni \theta_0) = \mathbb{P}_{\theta_0}(x \in A(\theta_0))
$$

= 1 - $\mathbb{P}_{\theta_0}(x \in C(\theta_0))$
= 1 - \alpha

as desired. For part (2):

$$
\mathbb{P}_{\theta_0}(X \in C(\theta_0)) = \mathbb{P}_{\theta_0}(X \notin A(\theta_0))
$$

= $\mathbb{P}_{\theta_0}(I(X) \neq \theta_0)$
= $1 - \mathbb{P}_{\theta_0}(I(x) \ni \theta_0)$
= $1 - (1 - \alpha)$
= α

as desired.

 \Box

Example. $X_1, \ldots, X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu, \sigma_0^2), \sigma^2$ known.

$$
I(X) = \left(\overline{X} \pm \frac{z_{\alpha/2}\sigma_0}{\sqrt{n}}\right)
$$

confidence interval. Test: H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$. Critical region:

$$
\left\{x : \left|\sqrt{n}\frac{(X-\overline{X})}{\sigma_0}\right| > z_{\alpha/2}\right\}
$$

Start of

[lecture 13](https://notes.ggim.me/Stats#lecturelink.13) Multivariate Normal Theory

Recall: if X is a random vector, then

$$
\mathbb{E}[AX + b] = A\mathbb{E}X + b
$$

$$
Var(AX + b) = A Var(X)A^{\top}
$$

Definition. We say X has a multivariate normal distribution if for any $t \in \mathbb{R}^n$, $t^{\top} X$ is normal.

Proposition. If X is MVN then $AX + b$ is MVN.

Proof. Say $AX + b$ is in \mathbb{R}^m . Take $t \in \mathbb{R}^m$.

$$
t^{\top}(X+b) = (A^{\top}t)^{\top}X + t^{\top}b
$$

Since X is MVN, $A^{\top}t$ ^TX is a normal distribution, and since $t^{\top}b$ is a constant, this means that $t^{\top}(AX + b)$ is normal. \Box

Proposition. A MVN distribution is fully specified by its mean and variance.

Proof. Take X_1 , X_2 both MVN with mean μ and variance Σ . We'll show that their mgf's are equal, hence X_1 and X_2 have the same distribution.

$$
\mathbb{E}e^{1 \cdot t^\top X_1} = M_t \tau_{X_1}(1)
$$

\n
$$
= \exp\left(1 \cdot \mathbb{E}(t^\top X_1) + \frac{1}{2} \text{Var}(t^\top X_1) \cdot 1^2\right)
$$

\n
$$
= \exp\left(t^\top \mu + \frac{1}{2}t^\top \Sigma t\right)
$$

This just depends on μ , Σ , so it is the same for X_1, X_2 .

 \Box

Orthogonal projections

Definition. (1) We say $P \in \mathbb{R}^{n \times n}$ is an *orthogonal projection* if it is:

- Idempotent: $PP = P$.
- Symmetric: $P^{\top} = P$.
- (2) Or equivalently, $P \in \mathbb{R}^{n \times n}$ is an *orthogonal projection* if for any $v \in col(P)$, $Pv = v$, and for any $w \in \text{col}(P)^{\perp}$, $Pw = 0$.

Proposition. (1) and (2) are equivalent.

(Pr) $\phi \to (2)$ Take $v \in col(P)$, so $v = Pa$ for some $a \in \mathbb{R}^n$. Then

$$
Pv = PPa = Pa = v
$$

Take $w \in \text{col}(P)^{\perp}$. Then $P^{\top}w = 0$. Hence

$$
Pw = P^{\top}w = 0
$$

 $(2) \implies (1)$ We can write any $a \in \mathbb{R}^n$ uniquely as $a = v + w$, $w \in col(P)^{\perp}$, $v \in col(P)$. Then

$$
P^2 a = PP(v + w) = Pv = P(v + w) = Pa
$$

As a was arbitrary, $P = P^2$. For symmetry, take $u_1, u_2 \in \mathbb{R}^n$. Then

$$
\underbrace{(Pu_1)}_{\in \operatorname{col}(P)}\underbrace{((I-P)u_2)}_{\in \operatorname{col}(P)^\perp}=0
$$

 $\Rightarrow u_1^\top (P^\top - P^\top P) u_2 = 0.$ Since this holds for all $u_1, u_2 \in \mathbb{R}^n$, $P^\top = P^\top P$. But $P^{\top}P$ is symmetric, hence P^{\top} is symmetric, hence P symmetric. \Box

Corollary. If P is orthogonal projection, then $I - P$ is as well.

Proof.

$$
(I - P)^{\top} = I - P^{\top} = I - P
$$

and

$$
(I - P)(I - P) = I - 2P + PP = I - P \qquad \qquad \Box
$$

Proposition. If $P \in \mathbb{R}^{n \times n}$ is an orthogonal projection then

 $P = U U^{\top}$

where the columns of U form an orthogonal basis for col(P). (if $k = \text{rank}(P)$, then $U \in \mathbb{R}^{n \times k}$).

Proof. UU^{\top} is cleraly symmetric and also idempotent

$$
U\underbrace{U^\top U}_{I_k}U^\top=UU^\top
$$

So UU^{\top} is an orthogonal projection. To show it is equal to P, note $col(P) = col(UU^{\top})$ by construction. \Box

Corollary.

$$
k = \text{rank}(P) = \text{Tr}(\underbrace{U^{\top}U}_{I_k}) = \text{Tr}(UU^{\top}) = \text{Tr}(P)
$$

Theorem. If X is MVN, $X \sim N(0, \sigma^2 I)$ and P is an orthogonal projection, then (1) $PX \sim N(9, \sigma^2 P)$, $(I - P)X \sim N(0, \sigma^2(I - P))$, PX , $(I - P)X$ independent. (2) $\frac{\|PX\|^2}{\sigma^2} \sim \chi^2_{\text{rank}(P)}$

Proof. The vector

$$
\begin{pmatrix} P \\ I-P \end{pmatrix} X
$$

is MVN, because it is a linear function of X . The distribution is specified by the mean and variance:

$$
\mathbb{E}\left[\begin{matrix}PX\\(I-P)X\end{matrix}\right]\left(\begin{matrix}P\\I-P\end{matrix}\right)\mathbb{E}X=0
$$

and:

$$
\operatorname{Var}\left(\begin{pmatrix} PX \\ (I-P)X \end{pmatrix}\right) = \begin{pmatrix} P \\ I-P \end{pmatrix} \operatorname{Var}(X) \begin{pmatrix} P \\ I-P \end{pmatrix}^{\top}
$$

$$
= \begin{pmatrix} P \\ I-P \end{pmatrix} \sigma^2 I \begin{pmatrix} P \\ I-P \end{pmatrix}^{\top}
$$

$$
= \sigma^2 \begin{bmatrix} P \\ (I-P)P \end{bmatrix} \begin{bmatrix} P \\ I-P \end{bmatrix}
$$

Let $Z \sim N(0, \sigma^2 P)$, $Z' \sim N(0, \sigma^2 (I - P))$, Z, Z' independent. Then

$$
\begin{pmatrix} Z \\ Z' \end{pmatrix} \sim N \left(0, \sigma^2 \begin{bmatrix} P & 0 \\ 0 & I - P \end{bmatrix} \right)
$$

So

$$
\binom{PX}{(I-P)X} \stackrel{d}{=} \binom{Z}{Z'}
$$

hence PX , $(I - P)X$ independent. This proves (1).

For (2):

$$
\frac{\|PX\|^2}{\sigma^2} = \frac{(PX)^{\top}PX}{\sigma^2} = \frac{X^{\top}(UU^{\top})^{\top}UU^{\top}X}{\sigma^2} = \frac{X^{\top}UU^{\top}X}{\sigma^2}
$$

Cols of U form orthogonal basis for $col(P)$

$$
\implies \frac{\|PX\|^2}{\sigma^2} = \frac{\|U^\top X\|^2}{\sigma^2} = \sum_{i=1}^{\text{rank}(P)} \frac{(U^\top X)_i^2}{\sigma^2}
$$

But $U^{\top} X \sim \text{N}(0, \sigma^2 I)$

$$
Var(U^{\top} X) = U^{\top} Var(X)U = \sigma^2 U^{\top} U = \sigma^2 I
$$

Therefore $(U^{\top}X)_i$, $i = 1, ..., \text{rank}(P)$ are IID $N(0, \sigma^2)$

$$
\implies \frac{(U^{\top}X)_i}{\sigma} \stackrel{\text{IID}}{\sim} \text{N}(0,1)
$$

Hence $\frac{||PX||^2}{\sigma^2}$ is the sum of rank(P) squared independent N(0, 1) variables, i.e. $\chi^2_{\text{rank}(P)}$.

Application

 $X_1,\ldots,X_n \stackrel{\text{IID}}{\sim} \text{N}(\mu,\sigma^2)$. Both μ,σ^2 unknown. Recall that the mle for μ is $\overline{X}=\frac{1}{n}$ $\frac{1}{n} \sum X_i$. The mle for σ^2 is $\hat{\sigma}^2 = \frac{S_{XX}}{n}$, where $S_{XX} = \sum_i (X_i - \overline{X})^2$.

Theorem. (i) $\overline{X} \sim N(\mu, \sigma^2/n)$ (ii) $\frac{S_{XX}}{\sigma^2} \sim \chi^2_{n-1}$

(iii) \overline{X} , S_{XX} independent.

Proof. Let $\mathbf{1} = (1, \ldots, 1)^\top \in \mathbb{R}^n$. Let $P = \frac{1}{n}$ $\frac{1}{n}$ **11**^{\top} be an orthogonal projection onto span(1). Easy to check that $P = P^T = P^2$. We can write

$$
X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} = \mu \mathbf{1} + \varepsilon
$$

where $\varepsilon \sim N(0, \sigma^2 I)$. Note:

• \overline{X} is a function of PX

$$
PX = \mu \mathbf{1} + P\varepsilon
$$

because $\overline{X} = (PX)_1$. In particular, \overline{X} is function of P_{ϵ} .

 \overline{a}

$$
S_{XX} = \sum_{i} (X_i - \overline{X})^2
$$

$$
= ||X - \mathbf{1}\overline{X}||^2
$$

$$
= ||(I - P)X||^2
$$

$$
= ||(I - P)\varepsilon||^2
$$

so S_{XX} is a function of $(I - P)\varepsilon$. By previous theorem, $P_{\varepsilon} \perp (I - P)\varepsilon$. Hence $\overline{X} \perp\!\!\!\perp S_{XX}$. Part (i) we've shown before. Also,

$$
\frac{S_{XX}}{\sigma^2} = \frac{\|(I - P)\varepsilon\|^2}{\sigma^2} \sim \chi^2_{\frac{\text{Tr}}{(I - P)}} \quad \Box
$$

Start of

[lecture 14](https://notes.ggim.me/Stats#lecturelink.14) 0.6 The linear Model

Data are pairs $(x_1, Y_1), \ldots, (x_n, Y_n)$. $Y_i \in \mathbb{R}$: "responses", random. $x_i \in \mathbb{R}^p$: "predictors", fixed.

Example. Y_i : number of insurance claims for client *i.* x_i : (age, number of claims in 2-21, years with driver's license, . . .).

In a linear model, we assume

$$
Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i
$$

- \bullet α is an intercept.
- β_1, \ldots, β_p are coefficients.
- \bullet $\varepsilon_1, \ldots, \varepsilon_n$ are random noise variables.

Remark. We normally remove intercept by including a dummy predictor which is equal to 1 for all *i*, i.e. $x_{i1} = 1$ for all $i = 1, ..., n$.

Remark. We can also model non-linear relationships between Y_i and x_i using a linear model, for example by using $x_i = (age, age^2, log(age)).$

Remark. β_i is the effect on Y_i of increasing x_{ij} by a unit, whilst keeping all other predictors constant. Estimates of β should not be interpreted causally, unless we have a randomised experiment.

Matrix formulation:

$$
Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \qquad X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}
$$

$$
\beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} \qquad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}
$$

$$
Y = X\beta + \varepsilon
$$

Moment assumptions on ε :

- (1) $\mathbb{E}\varepsilon = 0 \implies \mathbb{E}Y = X\beta.$
- (2) $\text{Var } \varepsilon = \sigma^2 I \implies \text{Var}(\varepsilon_i) = \sigma^2$ for all i "homoscedasticity". $\text{Cov}(\varepsilon_i, \varepsilon_j) = 0$ for all $i \neq j$.

We'll assume throughout that $x \in \mathbb{R}^{k \times p}$ has full rank. In particular, $p \leq n$ (more samples than predictors).

Least squares estimator

 $\hat{\beta}$ minimises the residual sum of squares

$$
S(\beta) = ||Y - X\beta||^2
$$

=
$$
\sum_{i=1}^n (Y_i - x_i^\top \beta)^2
$$

This is a quadratic (positive definite) polynomial in β so $\hat{\beta}$ satisfies

$$
\nabla S(\beta)|_{\beta=\hat{\beta}}=0
$$

$$
\implies \frac{\partial S(\beta)}{\partial \beta_k}\bigg|_{\beta=\hat{\beta}} = -2\sum_{i=1}^n x_{ik} \left(Y_i - \sum_{j=1}^p x_{ij} \hat{\beta}_j\right) = 0
$$

for each $k = 1, \ldots, p$. Equivalent matrix form:

$$
X^{\top} X \hat{\beta} = X^{\top} Y
$$

As X has rank p, the matrix $X^{\top} X \in \mathbb{R}^{p \times p}$ is invertible, hence

$$
\hat{\beta} = (X^{\top} X)^{-1} X^{\top} Y
$$

(linear in $Y!$). Check:

$$
\mathbb{E}\hat{\beta} = \mathbb{E}[(X^{\top}X)^{-1}X^{\top}Y] \n= (X^{\top}X)^{-1}X^{\top}\mathbb{E}Y \n= (X^{\top}X)^{-1}X^{\top}X\beta \n= \beta
$$

Hence $\hat{\beta}$ is unbiased. We can also calculate:

$$
\begin{aligned} \text{Var}(\hat{\beta}) &= \text{Var}((X^\top X)^{-1} X^\top Y) \\ &= (X^\top X)^{-1} X^\top \text{Var}(Y) X (X^\top X)^{-1} \\ &= (X^\top X)^{-1} X^\top \sigma^2 I X (X^\top X)^{-1} \\ &= \sigma^2 (X^\top X)^{-1} \end{aligned}
$$

Theorem (Gauss-Markov). Let $\beta^* = CY$ be any linear estimator of β which is unbiased. Then for any $t \in \mathbb{R}^p$,

$$
\text{Var}(t^\top \hat{\beta}) \le \text{Var}(t^\top \beta^*)
$$

We say $\hat{\beta}$ is "Best Linear Unbiased Estimator" (BLUE).

Remark. Think of $t \in \mathbb{R}^p$ as the value of the predictors for a new sample. Then $t^{\top}\hat{\beta}, t^{\top}\beta^*$ are estimators of the mean response. These are both unbiased, so the mse is the variance of $t^{\top}\hat{\beta}, t^{\top}\beta^*$. Theorem says variance is "best" using the least squares estimator.

Proof.

$$
\text{Var}(t^\top \beta^*) - \text{Var}(t^\top \hat{\beta}) = t^\top (\text{Var}\,\beta^* - \text{Var}\,\hat{\beta})t \ge 0
$$

This holds for all $t \in \mathbb{R}^p$ if and only if the matrix $\text{Var } \beta^* - \text{Var } \hat{\beta}$ is positive semi-definite. Recall $\beta^* = CY$, $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$. Let $A = C - (X^{\top}X)^{-1}X^{\top}$. Note:

$$
\mathbb{E} AY=\mathbb{E}\beta^*-\mathbb{E}\hat{\beta}=\beta-\beta=0
$$

(since β^* and $\hat{\beta}$ are unbiased). But also note

$$
\mathbb{E}AY = A\mathbb{E}Y = AX\beta = 0
$$

for all $\beta \in \mathbb{R}^p$, so we must have $AX = 0$. Then

$$
\operatorname{Var} \beta^* = \operatorname{Var}((A + (X^\top X)^{-1} X^\top) Y)
$$

\n
$$
= (A + (X^\top X)^{-1} X^\top) \operatorname{Var} Y (A + (X^\top X)^{-1} X^\top)^\top
$$

\n
$$
= \sigma^2 (A A^\top + (X^\top X)^{-1} + A X (X^\top X)^{-1} + (X^\top X)^{-1} X^\top A^\top)
$$

\n
$$
= \sigma^2 A A^\top + \operatorname{Var}(\hat{\beta})
$$

\n
$$
\Rightarrow \operatorname{Var} \beta^* - \operatorname{Var} \hat{\beta} = \sigma^2 A A^\top
$$

and this is positive definite, as desired.

 \Box

Fitted values and residuals: fitted values

$$
\hat{Y} = X\hat{B} = \underbrace{X(X^{\top}X)^{-1}X^{\top}}_{P \text{ "hat matrix"}} Y
$$

Residuals: $Y - \hat{Y} = (I - P)Y$.

 $=$

Proposition. P is the orthogonal projection onto $col(X)$.

Proof. P is clearly symmetric. Also,

$$
P^2 = X(X^\top X)^{-1} X^\top X (X^\top X)^{-1} X^\top = P
$$

Therefore P is an orthogonal projection onto $col(P)$. We need to show $col(P) = col(X)$. For any $a, Pa = X[(X^{\top}X)^{-1}X^{\top}a] \in col(X)$. Also, if $b = Xc$ is a vector in $col(X)$, then

$$
b = Xc = X(XT X)^{-1} XT Xc = Pb \in col(P)
$$

Corollary. Fitted values are projections of Y onto $col(X)$. Residuals are projections of Y onto $\text{col}(X)^{\perp}$.

Normal assumptions

We assume in addition to $\mathbb{E}\varepsilon = 0$, $\text{Var}\,\varepsilon = \sigma^2 I$, that ε is MVN, i.e.

$$
\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)
$$

 σ^2 is usually unknown, so the parameters in the model are (β, σ^2) . We'll see that mle of β is the least squares estimator $\hat{\beta}$.

[lecture 15](https://notes.ggim.me/Stats#lecturelink.15) Normal linear model

Start of

Take $Y = XB + \varepsilon, \varepsilon \sim N(0, \sigma^2 I)$. MLE: 2 parameters: $\beta \in \mathbb{R}^p, \sigma^2 \in \mathbb{R}_+$. Log-likelihood:

$$
l(\beta,\sigma^2)=\text{const}+\frac{n}{2}\log\sigma^2-\frac{1}{2\sigma^2}\|Y-X\beta\|^2
$$

For any $\sigma^2 > 0$, we can see that $l(\beta, \sigma^2)$ is maximised as a function of β at the minimiser of $||Y - XB||^2$, i.e. the least squares estimator $\hat{\beta}$. Now find:

$$
\arg\max_{\sigma^2\geq 0} l(\hat{\beta}, \sigma^2)
$$

$$
l(\hat{\beta}, \sigma^2) = \text{const} - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} ||Y - X\hat{\beta}||^2
$$

As $\sigma^2 \mapsto l(\hat{\beta}, \sigma^2)$ is concave, there is unique maximiser where $\frac{\partial l(\hat{\beta}, \sigma^2)}{\partial \sigma^2} = 0$

$$
\implies \hat{\sigma}^2 = \frac{\|Y - X\beta\|^2}{n} = \frac{\|(I - P)Y\|^2}{n}
$$

Theorem. (1) $\hat{\beta} \sim N(\beta, \sigma^2(X^{\top}X)^{-1})$ (2) $\frac{\hat{\sigma}^2}{\sigma^2} n \sim \chi^2_{n-p}$ (3) $\hat{\beta}$, $\hat{\sigma}^2$ are independent(!)

Proof. $\hat{\beta}$ is linear in Y, hence MVN. We already know $\mathbb{E}\hat{\beta} = \beta$, $\text{Var}\,\hat{\beta} = \sigma^2(X^\top X)^{-1}$. This proves (1). For (2) note

$$
\frac{n\hat{\sigma}^2}{\sigma} = \frac{\|(I - P)Y\|^2}{\sigma^2}
$$

=
$$
\frac{\|(I - P)(X\beta + \varepsilon)\|^2}{\sigma^2}
$$

=
$$
\frac{\|(I - P)\varepsilon\|^2}{\sigma^2}
$$

$$
\sim \chi^2_{\text{rank}(I - P)}
$$
 (I - P)X = 0

rank $(I - P) = \text{Tr}(I - P) = n - p$. $(X \in \mathbb{R}^{n-p}$ has full rank).

For (3), note $\hat{\sigma}^2$ is a function of $(I - P)\varepsilon$. We'll show that $\hat{\beta}$ is a function of $P\varepsilon$, which implies $\hat{\sigma}^2 \perp \hat{\beta}$ since $P \in \perp \!\!\! \perp (I - P) \varepsilon$.

$$
\hat{\beta} = (X^{\top} X)^{-1} X^{\top} Y \n= (X^{\top} X)^{-1} X^{\top} (X\beta + \varepsilon) \n= \beta + (X^{\top} X)^{-1} X^{\top} \varepsilon \n= \beta + (X^{\top} X)^{-1} X^{\top} P \varepsilon
$$

since $X^{\top}P = X^{\top}$.

Corollary. $\hat{\sigma}^2$ is biased

$$
\mathbb{E}\frac{\hat{\sigma}^2 n}{\sigma^2} = n - p \implies \mathbb{E}\hat{\sigma}^2 = \left(\frac{n-p}{n}\right)\sigma^2
$$

Student's t -distribution

If $U \sim N(0, 1)$, $V \sim \chi_n^2$, $U \perp V$ then we say $T = \frac{U}{\sqrt{N}}$ $\frac{U}{V/n}$ has a t_n distribution.

The F distribution

If $V \sim \chi_n^2$, $W \sim \chi_n^2$, $V \perp \!\!\! \perp W$ then we say

$$
F=\frac{V/n}{W/m}
$$

 \Box

has an $F_{n,m}$ distribution.

Confidence sets for $β$

Suppose we want a $100(1 - \alpha)$ % confidence interval for one of the coefficients (WLOG) take β_1). Note:

$$
\frac{\beta_1 - \hat{\beta}_1}{\sqrt{\sigma^2 (X^\top X)^{-1}_{11}}} \sim \mathcal{N}(0, 1)
$$

because $\hat{\beta}_1 \sim \text{N}(\beta_1, \sigma^2(\mathbf{X}^\top \mathbf{X})_{11}^{-1})$. Also,

$$
\frac{\hat{\sigma}^2}{\sigma^2} n \sim \chi^2_{n-p}
$$

and these two statistics are independent.

$$
\implies \frac{\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\mathscr{A}^2(X^\top X)_{11}^{-1}}}}{\sqrt{\frac{\hat{\sigma}^2}{\mathscr{A}^2 n - p}}} \sim \frac{N(0, 1)}{\sqrt{\chi^2_{n-p}/(n-p)}} \sim t_{n-p}
$$

Now this only depends on β_1 and not on σ^2 , so we can use this as a pivot.

$$
\mathbb{P}_{\beta,\sigma^2}\left(-t_{n-p}\left(\frac{\alpha}{2}\right) \le \frac{\hat{\beta}_1 - \beta_1}{\sqrt{(X^\top X)_{11}^{-1}}}\sqrt{\frac{n-p}{n\hat{\sigma}^2}} \le t_{n-p}\left(\frac{\alpha}{2}\right)\right) = 1 - \alpha
$$

We use that t_n distribution is symmetric around 0.

Rearranging the inequalities, we get

$$
\mathbb{P}_{\beta,\sigma^2}\left(\hat{\beta}_1 - t_{n-p}\left(\frac{\alpha}{2}\right)\sqrt{\frac{(X^\top X)^{-1}_{11}\hat{\sigma}^2}{(n-p)/n}} \leq \beta_1 \leq \hat{\beta}_1 + M\right) = 1 - \alpha
$$

We conclude that

$$
\left[\hat{\beta}_1 \pm t_{n-p} \left(\frac{\alpha}{2}\right) \sqrt{\frac{(X^\top X)^{-1}_{11} \hat{\sigma}^2}{(n-p)/n}}\right]
$$

is a $(1 - \alpha) \cdot 100\%$ confidence interval for β_1 .

Remark. This is not asymptotic.

By the duality between tests of significance and confidence intervals, we can find a size α test for H_0 : $\beta_1 = \beta^*$ vs H_1 : $\beta_1 \neq \beta^*$. Simply reject H_0 if β^* is not contained in the $100 \cdot (1 - \alpha)\%$ confidence interval for β_1 .

Confidence ellipsoids for β

Note $\hat{\beta} - \beta \sim N(0, \sigma^2 (X^{\top} X)^{-1})$. As X has full rank, $X^{\top} X$ is positive definite. So it has eigendecomposition

$$
(X^{\top}X) = UDU^{\top}
$$

where $D_{ii} > 0$ for $i = 1, \ldots, p$. Define

$$
(X^{\top}X)^{\alpha} = UD^{\alpha}U^{\top}
$$

$$
D^{\alpha} = \begin{pmatrix} D_{11}^{\alpha} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & D_{pp}^{\alpha} \end{pmatrix}
$$

$$
(X^{\top}X)^{1/2}(\hat{\beta} - \beta) \sim N(0, \sigma^2 I)
$$

Hence

$$
\frac{\| (X^{\top} X)^{1/2} (\hat{\beta} - \beta) \|^2}{\sigma^2} \sim \chi_p^2
$$

$$
= \frac{\| X(\hat{\beta} - \beta) \|^2}{\sigma^2}
$$

This is a function of $\hat{\beta}$, so it's independent of

$$
\frac{\hat{\sigma}^2 n}{\sigma^2} \sim \chi^2_{n-p}
$$
\n
$$
\implies \frac{\|X(\hat{\beta} - \beta)\|^2 / \sigma^2 p}{\hat{\sigma}^2 n / \sigma^2 (n-p)} \sim F_{p,n-p}
$$

This only depends on β , not on σ^2 , so it can be used as a pivot. For all β , σ^2 :

$$
\mathbb{P}_{\sigma^2,\beta}\left(\frac{\|X(\hat{\beta}-\beta\|^2/p}{\hat{\sigma}^2 n/(n-p)} \leq F_{p,n-p}(\alpha)\right) = 1 - \alpha
$$

So, we can say that the set

$$
\left\{\beta \in \mathbb{R}^p : \frac{\| (X(\hat{\beta} - \beta) \|^2 / p}{\hat{\sigma}^2 n / (n - p)} \le F_{p,n-p}(\alpha) \right\}
$$

is a $100(1 - \alpha)\%$ confidence set for β .

Principal axes are given by eigenvectors of (X^TX) .

In the next section we'll talk about hypothesis tests for H_0 : $\beta_1 = \cdots = \beta_p = 0$, H_1 : $\beta \in \mathbb{R}^p$.

Start of

lecture 16 The F-test

 $Y = X\beta + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p_0} = 0$. $H_1: \beta \in \mathbb{R}^p$. Let $X = (x_0, x_1)$ (X_0 is $n \times p_0$ and X_1 is $n \times (p - p_0)$)

$$
\beta = {\beta \choose \beta} \qquad \beta^0 = {\beta_0 \choose \vdots} \qquad \beta^1 = {\beta_{p_0+1} \choose \vdots} \qquad \beta^1 = {\beta_{p_0+1} \choose \beta_p}
$$

Null: $\beta^0 = 0$. This is a normal linear model:

$$
Y = X_1 \beta^1 + \varepsilon
$$

Write $P = X(X^{\top}X)^{-1}X^{\top}$, $P_1 = X_1(X_1^{\top}X_1)^{-1}X_1^{\top}$. As X, P have full rank, so do X_1 , P_1 . Recall that the maximum log-likelihood in a linear model is

$$
\max_{\substack{\beta \in \mathbb{R}^p \\ \sigma^2 > 0}} l(\beta, \sigma^2) = l(\hat{\beta}, \hat{\sigma}^2)
$$

$$
= -\frac{n}{2} \log \left(\frac{\| (I - p)Y \|^2}{n} \right) + \text{const}
$$

The generalised log likelihood ratio statistic is

$$
2 \log \Lambda = 2 \left(\max_{\substack{\beta \in \mathbb{R}^p \\ \sigma^2 > 0}} l(\beta, \sigma^2) - \max_{\substack{\beta^0 = 0 \\ \sigma^2 > 0}} l(\beta, \sigma^2) \right)
$$

$$
= \frac{2n}{2} \left(-\log \left(\frac{\|(I - P)Y\|^2}{n} \right) + \log \left(\frac{\|(I - P_1)Y\|^2}{n} \right) \right)
$$

This is a monotone increasing function in

$$
\frac{\|(I - P_1)Y\|^2}{\|(I - P)Y\|^2} = \frac{\|(I - P + P - P_1)Y\|^2}{\|(I - P)Y\|^2}
$$

$$
= \frac{\|(I - P)Y\|^2 + \|(P - P_1)Y\|^2 + 2Y^\top (I - P)P^\top Y}{\|(I - P)Y\|^2}
$$

(The cancel takes place because the columns of $P-P_1$ are in col(X)). This is monotone increasing in

$$
\frac{\|(P - P_1)Y\|^2/p_0}{\|(I - P)Y\|^2/(n - p)} := F
$$

" F statistic".

Lemma. $P - P_1$ is an orthogonal projection with rank p_0 .

Proof. $P - P_1$ is symmetric as both P and P_1 are

$$
(P - P_1)(P - P_1) = P + P_1 - 2\underbrace{PP_1}_{=P_2} = P - P_1
$$

\n
$$
rank(P - P_1) = Tr(P - P_1)
$$

\n
$$
= Tr(P) - Tr(P_1)
$$

\n
$$
= p - (p - p_0)
$$

\n
$$
= p_0
$$

 $\hfill \square$

To recap the generalised LRT rejects H_0 when F is large. What is the null distribution of F ? Under H_0 :

$$
(P - P_1)Y = (P - P_1)(X\beta + \varepsilon)
$$

=
$$
(P - P_1)(X_1\beta^1 + \varepsilon)
$$

=
$$
(P - P_1)\varepsilon
$$

Therefore, under H_0 :

$$
F = \frac{\frac{1}{\sigma^2} ||(P - P_1)\varepsilon||^2 / p_0}{\frac{1}{\sigma^2} ||(I - P)\varepsilon||^2 / (n - p)}
$$

with numerator $\sim \left(\frac{\chi_{p_0}^2}{p_0}\right)$ and denominator $\sim \left(\frac{\chi_{n-p}^2}{n - p}\right)$. Furthermore,

$$
\left(\frac{(P - P_1)\varepsilon}{(I - P)\varepsilon}\right)
$$

is MVN with $Cov((P - P_1)\varepsilon, (I - P)\varepsilon) = \sigma^2(P - P - 1)(I - P) = 0$. Hence $(P - P_1)\varepsilon \perp$ $\perp (I - P)\varepsilon$. Hence numerator $\perp \perp$ denominator in F. We conclude that

$$
F \sim F_{p_0, n-p},
$$

so the test rejects H_0 with size α if

$$
F \geq F_{p_0, n-p}(\alpha)
$$

Last time we derived a size α test for H_0 : $\beta_1 = 0$ using the 100 · $(1 - \alpha)$ % confidence interval for β_1 . That test rejects H_0 when

$$
|\beta_1| > t_{n-p} \left(\frac{\alpha}{2}\right) \sqrt{\frac{\hat{\sigma}^2 n (X^\top X)_{11}^{-1}}{n-p}}
$$

Lemma. This test is equivalent to the F-test with $p_0 = 1$.

Proof. Exercise.

Categorical predictors

Example. $Y_i \in \mathbb{R}$: clinical response, $z_i \in \{\text{control}, \text{treatment 1}, \text{treatment 2}\}.$

Let

$$
x_{i,j} = \mathbb{1}_{\{z_i = j\}} = \mathbb{1}_{\{\text{subject } i \text{ was in group } j\}}
$$

 $x_i \in \mathbb{R}^3$ this is numerical.

 $Y_i = \alpha + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3}$

Problem:

 \Box

$$
X = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix}
$$

This has rank 3 < 4. Corner point constraint: call one of the groups the "baseline" and remove it from the linear model. Interpretation of β_j depends on baseline. β_j is effect of being in group j relative to baseline. β_j is effect of being in group j relative to baseline. However, $col(X)$ and matrix P are insensitive of choice of baseline, and therefore so are the fitted values

$$
\hat{Y} = PY.
$$

This can be extended to a model with more than 1 categorical predictor, for example group and gender.

ANOVA: Analysis of Variance. The F-test for

• $H_0: \beta_j = 0$ for a categorical predictor $\alpha \neq 0$.

•
$$
H_1
$$
: $\begin{pmatrix} \alpha_1 \\ \beta \end{pmatrix} \in \mathbb{R}^3$.

In this case, we can write the F statistic in a simpler way.

$$
X_{1} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \qquad X_{0} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \text{where}
$$

= $\frac{1}{3}$ or p?

 P_1 projection onto constant vectors.

$$
P_1 = \frac{1}{n} \mathbf{1} \mathbf{1}^\top
$$

 $\mathcal{P} =$ projection onto vectors which are constant for each group

$$
F = \frac{\|(P - P_1)Y\|^2/p_0}{\|(I - p)Y\|^2/(n - p)}
$$

$$
P_1Y = \begin{pmatrix} \overline{Y} \\ \overline{Y} \\ \vdots \\ \overline{Y} \end{pmatrix} \qquad \overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i
$$

$$
Py = \begin{pmatrix} \overline{Y}_1 \\ \overline{Y}_1 \\ \vdots \\ \overline{Y}_2 \\ \vdots \\ \overline{Y}_3 \end{pmatrix} \qquad \overline{Y}_j = \frac{\sum_{i=1}^n Y_i \mathbb{1}_{\{z_i = j\}}}{\sum_{i=1}^n \mathbb{1}_{\{z_i = j\}}} = \text{average response for group } j
$$

$$
F = \frac{\sum_{i=1}^3 N(\overline{Y}_j - \overline{Y})^2 / 2}{\sum_{i=1}^N \sum_{j=1}^3 (Y_{ij} - \overline{Y}_j)^2 / (3N - 3)}
$$

Assume all groups of size $N(n = 3N)$. Numerator is variance between groups, denominator is variance within groups.