% vim: tw=50 % 08/02/2023 11AM \noindent $\Sigma \subset \RR^3$, $\sigma : V \to U \subset \Sigma$ allowable. If $\gamma : (a, b) \to U$ is smooth, write \[ \boxed{\gamma(t) = \sigma(u(t), v(t))} \] with $(u, v) : (a, b) \to V$ smooth. Then \[ \gamma'(t) = \sigma_u u'(t) + \sigma_v v'(t) \] then \begin{align*} \|\gamma'(t)\|^2 &= E(u'(t))^2 + 2Fu'(t) v'(t) + G(v'(T))^2 \end{align*} where \begin{align*} E &= \langle \sigma_u, \sigma_u \rangle = \|\sigma_u\|^2 \\ F &= \langle \sigma_u, \sigma_v \rangle = \langle \sigma_v, \sigma_u \rangle \\ G &= \langle \sigma_v, \sigma_v \rangle = \|\sigma_v\|^2 \end{align*} (smooth functions on $V$). They depend only on $\sigma$ and \emph{not} $\gamma$. \begin{definition*} The \emph{first fundamental form} (FFF) in the parametrisation $\sigma$ is the expression \[ E \dd u^2 + 2F \dd u \dd v + G \dd v^2 \] The notation is designed to remind you that \[ L(\gamma) = \int_a^b \sqrt{Eu'^2 + 2F u'v' + G v'^2} \dd t ,\] where $\gamma(t) = \sigma(u(t), v(t))$. \end{definition*} \begin{remark*} The FFF is sometimes defined as the quadratic form in $T_p \Sigma$ given by the restriction of the standard inner product in $\RR^3$. \[ I_p(w) = |w|^2 = \langle w, w \rangle_{\RR^3}, w \in T_p\Sigma \] After picking $\sigma$, $\sigma(0) = p$ and after writing $w = D\sigma|_0 (u', v')$ we have \[ I_p(w) = Eu'^2 + 2F u'v' + Gv'^2 \] This is an example of a \emph{Riemannian metric}. \end{remark*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item The $xy$-plane $\RR^3$: \[ \sigma(u, v) = (u, v, 0) \] so \[ \sigma_u = (1, 0, 0), \qquad \sigma_v = (0, 1, 0)\] and FFF is $\dd u^2 + \dd v^2$, $E = G = 1$, $F = 0$. In polar coordinates \[ \sigma(r, \theta) = (r\cos\theta, r\sin\theta, 0) \] $r \in (0, \infty$, $(0, 2\pi)$, we have \[ \sigma_r = (\cos\theta, \sin\theta, 0) \] \[ \sigma_\theta = (-r\sin\theta, r\cos\theta, 0) \] and FFF is $\dd r^2 + r^2 \dd \theta^2$, $E = 1$, $F = 0$, $G = r^2$. \[ \begin{pmatrix} E & F \\ F & G \end{pmatrix} \] \end{enumerate} \begin{flashcard}[isometric-surfaces-in-R3] \begin{definition*} $\Sigma, \Sigma' \subset \RR^3$ smooth surfaces. We say that $\Sigma$ and $\Sigma'$ are \emph{isometric} if \cloze{there exists $f : \Sigma \to \Sigma'$ \fcemph{diffeomorphic} such that for every \fcemph{smooth} curve $\gamma : (a, b) \to \Sigma$, \[ L_\Sigma(\gamma) = L_{\Sigma'}(f \circ \gamma) \]} \end{definition*} \end{flashcard} \begin{example*} If $\Sigma' = f(\Sigma)$ where $f : \RR^3 \to \RR^3$ is a ``rigid motion'' i.e. $f(x) = Ax + b$, $A \in O(3)$, $b \in \RR^3$ (so $f$ preserves $\langle \bullet, \bullet \rangle_{\RR^3}$). $f : \Sigma \to \Sigma'$ \emph{isometry} because \begin{align*} |(f \circ \gamma)'(t)| &= |A\gamma'(t)| \\ &= |\gamma'(t)| \end{align*} hence lengths of curves are preserved. Often we're interested in local statements. \end{example*} \begin{flashcard}[locally-isometric-surfaces-in-R3] \begin{definition*} $\Sigma, \Sigma'$ are \emph{locally isometric} (near points $p \in \Sigma$ and $p' \in \Sigma'$) \cloze{if there exists open neighbourhoods $p \in U \subset \Sigma$ and $p' \in U' \subset \Sigma'$ which are isometric.} \end{definition*} \end{flashcard} \begin{lemma} $\Sigma, \Sigma' \subset \RR^3$ are locally isometric near $p \in \Sigma$ and $p' \in \Sigma'$ if and only if there exists allowable parametrisation \begin{align*} \sigma &: V \to U \subset \Sigma \\ \sigma' &: V \to U' \subset \Sigma' \end{align*} for which the FFFs are equal in $V$ ($E = E'$, $F = F'$, $G = G'$). \begin{center} \includegraphics[width=0.6\linewidth] {images/13b4f54ca7a511ed.png} \end{center} \end{lemma} \begin{hiddenflashcard}[locally-isometric-surfaces-in-R3-iff] $\Sigma$ and $\Sigma'$ are locally isometric near $p \in \Sigma$ and $p' \in \Sigma'$ if and only if \cloze{there exists allowable parametrisations $\sigma : V \to U \subset \Sigma$ and $\sigma' : V \to U' \subset \Sigma'$ for which the FFFs are equal in $V$ ($E = E'$, $F = F'$, $G = G'$).} \end{hiddenflashcard} \begin{hiddenflashcard}[locally-isometric-surfaces-in-R3-iff-proof] \begin{lemma*} $\Sigma, \Sigma' \subset \RR^3$ are locally isometric near $p \in \Sigma$ and $p' \in \Sigma'$ if and only if there exists allowable parametrisation \begin{align*} \sigma &: V \to U \subset \Sigma \\ \sigma' &: V \to U' \subset \Sigma' \end{align*} for which the FFFs are equal in $V$ ($E = E'$, $F = F'$, $G = G'$). \end{lemma*} \begin{proof} \begin{enumerate} \item[$(\Rightarrow)$] \cloze{Show that \[ \left| \dfrac{}{t} \ub{\sigma' \circ \sigma^{-1}}_{f} \circ \gamma \right|^2 = \left| \dfrac{}{t} \gamma(t) \right|^2 \] hence $f$ is an isometry, so they're locally isometric. } \item[$(\Leftarrow)$] \cloze{Determine $E$ by considering $\dfrac{}{\eps}L(\gamma_\eps)$ where $\gamma_\eps : [0, \eps] \to \Sigma$, $t \mapsto \sigma(t, 0)$. Similarly, use $\chi_\eps, \lambda_\eps: [0, \eps]$ with $\chi_\eps(t) = \sigma(0, t)$ and $\lambda_\eps(t) = \sigma(t, t)$.} \end{enumerate} \end{proof} \end{hiddenflashcard} \begin{proof} We know (by definition) that the FFF of $\sigma$ determines the lengths of all curves on $\sigma(V) = U$. If we have $\sigma$ and $\sigma'$ as in the lemma, then \[ \sigma' \circ \sigma^{-1} : U \to U' \] is an isometry since \[ \sigma^{-1}(\gamma(t)) = (u(t), v(t)) \] \begin{align*} \left| \dfrac{}{t} \ub{\sigma' \circ \sigma^{-1}}_{f} \circ \gamma \right|^2 &= \left| \dfrac{}{t} \sigma'(u(t), v(t)) \right|^2 \\ &= E' \dot{u}^2 + 2F' \dot{u} \dot{v} + G' \dot{v}^2 \\ &= E \dot{u}^2 + 2F \dot{u} \dot{v} + G \dot{v}^2 \\ &= \left| \dfrac{}{t} \gamma(t) \right|^2 \implies l(\sigma' \circ \sigma^{-1} \circ \gamma) &= L(\gamma) \end{align*} For the converse, we'll show first that the lengths of the curves in $U$ determine the FFF of $\sigma$. \[ \sigma : (0, f) \to U \subset \Sigma, \sigma(0) = p \] $\gamma_\eps : [0, \eps] \to U$, $t \mapsto \sigma(t, 0)$. Then \begin{align*} \dfrac{}{\eps} L(\gamma_\eps) &= \dfrac{}{\eps} \int_0^\eps \sqrt{E(t, 0)} \dd t \\ &= \sqrt{E(\eps, 0)} \end{align*} So length of curve determine $E(0, 0)$. Similarly, $\chi_\eps : [0, \eps] \to U$, $t \mapsto \sigma(0, t)$ determine $G(0, 0)$. Finally considering $\lambda_\eps : [0, \eps] \to U$, $t \mapsto \sigma(t, t)$ we get $\sqrt{(E + 2F + G)(0, 0)}$, so knowing $E$ and $G$ we get $F$. So if $f : U \to U'$ is a local isometry take any allowable parametrization $\sigma' : V \to U'$, then $\sigma = f^{-1} \circ \sigma'$ is such that the FFFs of $\sigma$ and $\sigma'$ agree. \end{proof} \begin{example*}[Cone] $u > 0$, $v \in (0, 2\pi)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/240c0488a7a711ed.png} \end{center} \[ \sigma(u, v) = (au \cos v, au \sin v, u) \] parametrizes the complement of the line of the cone. FFF: \[ (1 + a^2) \dd u^2 + a^2 u^2 \dd v^2 \] If we cut open the cone and unfold it we get a plane such that \begin{center} \includegraphics[width=0.6\linewidth] {images/3d457754a7a711ed.png} \end{center} $\theta_0 = \frac{2\pi a}{\sqrt{1 + a^2}}$. Parametrize the plane sector by \[ \sigma(r, \theta) = \left(\sqrt{1 + a^2} r\cos \left( \frac{a\theta}{\sqrt{1 + a^2}}\right), \sqrt{1 + a^2} r \sin \left( \frac{a\theta}{\sqrt{1 + a^2}} \right) , 0 \right) \] $r > 0$, $\theta \in (0, 2\pi)$ Check: FFF: $(1 + a^2) \dd r^2 + r^2 a^2 \dd \theta^2$, $V = (0, \infty) \times (0, 2\pi)$. So the cone is locally isometric to the plane! \end{example*} \begin{remark*} The cone can't be \emph{globally isometric} to the plane, since they are not even homeomorphic \end{remark*}