% vim: tw=50 % 06/02/2023 11AM \begin{proof} $\sigma : V \to U \subset \Sigma$, $\sigma(0) = p$, $\tilde{\sigma} : \tilde{V} \to \tilde{U} \subset \Sigma$, $\tilde{\sigma}(0) = p$. Transition map $\sigma^{-1} \circ \tilde{\sigma}$ implies: \[ \tilde{\sigma} = \sigma \circ (\sigma^{-1} \circ \tilde{\sigma}) \] So $D(\sigma^{-1} \circ \tilde{\sigma})|_0$ isan isomorphism. Chain rule implies \[ \Im(D\tilde{\sigma}|_0) = \Im(D\sigma|_0) \] \end{proof} \begin{definition*} $\Sigma \subset \RR^3$. The normal direction at $p$ is $(T_p \Sigma)^\perp$ (Euclidean orthogonal ocmplement to $T_p\Sigma$). At each $p \in \Sigma$ we have two unit normal vectors. \end{definition*} \begin{flashcard}[two-sided-surface-in-R3] \begin{definition*} A smooth surface \cloze{in $\RR^3$} is \emph{two-sided} \cloze{if it admits a \fcemph{continuous} global choice of \fcemph{unit} normal vectors.} \end{definition*} \end{flashcard} \begin{lemma} A smooth surface in $\RR^3$ is orientable with its abstract smooth surface structure if and only if it is two-sided. \end{lemma} \begin{proof} Let $\sigma : V \to U \subset \Sigma$ be allowable. Define the \emph{positive} unit normal with respect to $\sigma$ at $p$ as the unique $n_\sigma(p)$ such that $\{\sigma_u, \sigma_v, n_\sigma(p)\}$ and $\{e_1, e_2, e_3\}$ induce the same orientation in $\RR^3$ (ie they are related by a choice of basis matrix with positive determinant). \begin{center} \includegraphics[width=0.6\linewidth] {images/8a93721aa61011ed.png} \end{center} Explicitly: \[ n_\sigma(p) = \frac{\sigma_n \times \sigma_v}{\|\sigma_u \times \sigma_v\|} \] Let $\tilde{\sigma}$ be another allowable parametrisation. \[ \tilde{\sigma} : \tilde{V} \to \tilde{U} \subset \Sigma \] and suppose $\Sigma$ is orientable as an abstract smooth surface with $\sigma$ and $\tilde{\sigma}$ belonging to the same oriented atlas. \[ \sigma = \tilde{\sigma} \circ \varphi \qquad \varphi = \tilde{\sigma}^{-1} \circ \sigma \] and \[ D\varphi|_0 = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \] Chain rule: \begin{align*} \sigma_u &= \alpha \tilde{\sigma}_{\tilde{w}} + \gamma \tilde{\sigma}_{\tilde{v}} \sigma_v &= \beta \tilde{\sigma}_{\tilde{w}} + \delta \tilde{\sigma}_{\tilde{v}} \end{align*} and \[ \sigma_u \times \sigma_v = \ub{\det(D\varphi|_0)}_{> 0} \tilde{\sigma}_{\tilde{u}} \times \tilde{\sigma}_{\tilde{v}} \tag{$*$} \] So the positive unit normal at $p$ was intrinsic and does not depend on the parametrisation. Since \[ \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|} \] is continuous, $\Sigma$ is 2-sided. \myskip Conversely, if $\Sigma$ is 2-sided we have a global choice of $n$, so we can consider the subatlas of the smooth atlas such that we have a chart $(U, \varphi) = \varphi^{-1} = \sigma$ and $\{\sigma_u, \sigma_v, u\}$ is an orientable basis of $\RR^3$. ($*$) shows that transition maps between such charts are orientation preserving. Hence $\Sigma$ is orientable. \end{proof} \begin{hiddenflashcard}[orientable-iff-two-sided] \begin{lemma*} A smoth surface in $\RR^3$ is orientable with its abstract smooth surface structure if and only if it is two-sided. \end{lemma*} \begin{proof} \begin{enumerate} \item[$(\Rightarrow)$] \cloze{Define \[ n_\sigma (u, v) = \frac{\sigma_u \times \sigma_v} {\|\sigma_u \times \sigma_v\|} \] and show that it is independent of the choice of parametrisation (when working within a particular oriented atlas.} \item[$(\Leftarrow)$] \cloze{If $\Sigma$ is two-sided, then we have a global choice of $n$, and we construct the atlas such that each chart $(U, \varphi)$ always has $\{\sigma_u, \sigma_v, n\}$ being the same orientation.} \end{enumerate} \end{proof} \end{hiddenflashcard} \begin{remark*} Given $\gamma : (-\eps, \eps) \to \RR^3$ smooth with $\Im(\gamma) \subset \Sigma$ and $\gamma(0) = p$ \begin{center} \includegraphics[width=0.6\linewidth] {images/89c97fe4a61211ed.png} \end{center} \[ \gamma(t) = \sigma(u(t), v(t)) \] \[ \gamma'(0) = D\sigma|_0 (u'(0), v'(0)) \in T_p \Sigma \] This gives that \begin{align*} T_p\Sigma &= \{\gamma'(0) : \text{with $\gamma$ as above}\} \\ &= \text{``tangent vector to curves in $\Sigma$''} \end{align*} \end{remark*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $S^2 \subset \RR^3$ \begin{center} \includegraphics[width=0.6\linewidth] {images/da97c6eca61211ed.png} \end{center} Take any $\gamma : (-\eps, \eps) \to S^2$, $\gamma(0) = p$, $|\gamma(t)|^2 = 1$. Differentiation at $t = 0$ \begin{align*} \langle \gamma'(0), p \rangle &= 0 \\ \implies (T_p S^2)^\perp &= \RR p \\ \implies n(p) &= p \end{align*} $S^2$ is 2-sided. \item The M\"obius band, start with unit circle in the $xy$-plane. \begin{center} \includegraphics[width=0.6\linewidth] {images/88947456a61411ed.png} \end{center} and take an open interval of length $1$. Rotate this line in the $cz$-plane s we move around the circle such that it has rotate by $\frac{\theta}{2}$ after moving an angle $\theta$ in the circle (see picture). After a full turn the segment returns to its original position by iwth end points inverted. We can describe the surface with \[ \sigma(t, \theta) = \left( \left( 1 - t\sin \frac{\theta}{2} \right) \cos\theta, \left( 1 - t\sin \frac{\theta}{2} \right) \sin \theta , t \cos \frac{\theta}{2} \right) \] where $(t, \theta)$ belongs to \begin{align*} V_1 &= \left\{ t \in \left( -\half, \half \right), \theta \in (0, 2\pi) \right\} \\ &\text{or} \\ V_2 &= \left\{ t \in \left( -\half, \half \right), \theta \in (-\pi, \pi) \right\} \\ \end{align*} Check: if $\sigma_i$ is $\sigma$ on $V_i$ then $\sigma_i$ is allowable. A computation shows \[ \sigma_t \times \sigma_\theta(0, \theta) = \left(-\cos\theta \cos \frac{\theta}{2}, -\sin\theta \cos \frac{\theta}{2}, -\sin \frac{\theta}{2}\right) \defeq n_\theta \] As $\theta \to 0^+$, $h_\theta \to (-1, 0, 0)$. As $\theta \to 2\pi^-$, $n_\theta \to (1, 0, 0)$. Hence the M\"obius band is \emph{not} 2-sided. \end{enumerate} \newpage \section{Surfaces in 3-space} $\gamma : (a, b) \to \RR^3$ smooth, the length of $\gamma$ is \begin{flashcard}[length-of-gamma-in-R3] \prompt{What is the length of $\gamma : (a, b) \to \RR^3$?} \[ L(\gamma) = \cloze{\int_a^b \|\gamma'(t)\| \dd t} \] \end{flashcard} If $s : (A, B) \to (a, b)$ is monotone increasing and we let $\tau(t) = \gamma(s(t))$, then \begin{align*} L(\tau) &= \int_A^B \|\tau'(t)\| \dd t \\ &= \int_A^B \|\gamma'(s(t))\| |\ub{s'(t)}_{\ge 0}| \dd t \\ &= \int_a^b \|\gamma'(s)\| \dd s \\ &= L(\gamma) \end{align*} \begin{lemma} If $\gamma : (a, b) \to \RR^3$ and $\gamma'(t) \neq 0$ for all $t$, then $\gamma$ can be paramaterised by \emph{arc-length}, i.e. a parameter such that $\|\gamma'(s)\| = 1$ for all $s$. \end{lemma}