% vim: tw=50 % 03/02/2023 11AM \subsubsection*{Examples} \begin{enumerate}[(1)] \item The \emph{ellipsoid} $E \subset \RR^3$ is $f^{-1}(0)$, for $f : \RR^3 \to \RR$ \[ f(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 \] $\forall p \in E = f^{-1}(0)$, $Df |_p \neq 0$, so $E$ is a smooth surface in $\RR^2$. \item Surfaces of revolution. \\ Let $\gamma : [a, b] \to \RR^3$ be a smooth map with image in the $xz$-plane \[ \gamma(t) = (f(t), 0, g(t)) \] Assume $\gamma$ is injective, $\gamma'(t) \neq 0 \forall t$ and $f > 0$. Rotate this curve around the $z$-axis. \begin{center} \includegraphics[width=0.6\linewidth] {images/df99520aa3b511ed.png} \end{center} The associated surface of revolution as \emph{allowable} parametrization \[ \sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u)) \] \[ (u, v) \subseteq (a, b) \times (\theta, \theta + 2\pi) \] $\theta \in [0, 2\pi)$ fixed. $\sigma$ homemorphic onto its image (check!) \[ \sigma_u = (f' \cos v, f'\sin v, g') \] \[ \sigma_v = (-f\sin v, f\cos v, 0) \] and $\|\sigma_u \times \sigma_v\|^2 = f^2(f'^2 + g'^2) \neq 0$. \end{enumerate} \subsection{Orientability} $V, V' \subset \RR^2$ open, $f : V \to V'$ a diffeomorphism. Then at any $x \in V$, $Df|_x \in \GL_2(\RR)$. Let $\GL^+_2(\RR) \subset \GL_2(\RR)$ be the subgroup of matrices of \emph{positive} determinant. \begin{definition*} We say that $f$ is \emph{orientation preserving} if $Df|_x \in \GL^+_2(\RR)$ for all $x \in V$. \end{definition*} \begin{flashcard}[orientable-surface] \begin{definition*} An abstract smooth surface $\Sigma$ is \emph{orientable} if \cloze{it admits an atlas such that the transition maps are \fcemph{orientation preserving diffeomorphisms} of open sets of $\RR^2$. \myskip A choice of such an atlas is an \emph{orientation} of $\Sigma$ and we say that $\Sigma$ is oriented.} \end{definition*} \end{flashcard} \begin{lemma} If $\Sigma_1$ and $\Sigma_2$ are abstract smooth surfaces and they are diffeomorphic then $\Sigma_1$ is orientable if and only if $\Sigma_2$ is orientable. \end{lemma} \begin{proof} Suppose $f : \Sigma_1 \to \Sigma_2$ is a diffeomorphism and $\Sigma_2$ is orientable and equipped with an oriented atlas \begin{center} \includegraphics[width=0.6\linewidth] {images/b1e0d364a3b611ed.png} \end{center} Consider the atlas on $\Sigma_1$ given by $(f^{-1}U, \psi \circ f|_{f^{-1} U})$, where $(U, \psi)$ is a chart of $\Sigma_2$. The transition function between two such charts is exactly the transition function in the $\Sigma_2$ atlas. \end{proof} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item There is no sensible classification of all smooth or topological surfaces, for example $\RR^2 \setminus Z$ for $Z$ closed realises all kinds of different homeomorphic types. \myskip By contrast, \emph{compact} smooth surfaces up to diffeomorphism are classified by Euler characteristic. \item There's a definition of orientation preserving homeomorphism that needs some algebraic topology. The M\"obius band is the surface: \begin{center} \includegraphics[width=0.3\linewidth] {images/b98ff8f0a3b711ed.png} \end{center} It turns out that abstract smooth surface is orientable $\iff$ it contains no sub-surface homeomorphic to a M\"obius band. \item We get other structure by demanding transition maps to be such that \[ D(\varphi_1 \varphi_2^{-1}) |_x \in G \subset \GL_2(\RR) \] $G = \GL_1(\CC) \subset \GL_2(\RR) \to$ Riemann surfaces. \end{enumerate} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $S^2$ with the atlas of 2 stereographic projections, you computed the transition map $(u, v) \mapsto \left( \frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2} \right)$ on $\RR^2 \setminus \{0\}$. Check: this is orientation preserving. \item $T^2$, transition maps are translations of $\RR^2$, so $T^2$ is orientated. \end{enumerate} For surfaces in $\RR^3$ we'd like to have orientability dictated by some ``ambient feature''. \begin{definition*} $\Sigma \subset \RR^3$ smooth surface, $p \in \Sigma$. Fix an allowable parametrization $\sigma : V \to U \subset \Sigma$, $\sigma(0) = p$. Then the \emph{tangent plane} $T_p \Sigma$ of $\Sigma$ at $p$ is $\Im(D\sigma|_0) \subset \RR^3$ a 2D vector subspace of $\RR^2$. The \emph{affine} tangent plane of $\Sigma$ at $p$, is $p + T_p \Sigma \subset \RR^3$. \begin{center} \includegraphics[width=0.6\linewidth] {images/294ff846a3ba11ed.png} \end{center} \end{definition*} \begin{hiddenflashcard}[tangent-plane] What is the definition of $T_p\Sigma$? \\ \cloze{$T_p \Sigma = \Im(D\sigma|_0) \subset \RR^3$. In particular this passes through $0 \in \RR^3$ rather than $p$. If this is desired instead then, consider the \emph{affine tangent plane} which is defined as $p + T_p\Sigma$.} \end{hiddenflashcard} \begin{lemma} $T_p \Sigma$ is well-defined, i.e. it is independent of the choice of allowable parametrisation near $p$. \end{lemma}