% vim: tw=50 % 01/02/2023 11AM \begin{theorem*}[Inverse function theorem] Let $U \subset \RR^n$ be open and let $f : U \to \RR^n$ be a continuously differentiable map. Let $p \in U$, $f(p) = q$ and suppose $Df|_p$ is invertible. Then there is an open neighbourhood $V$ of $q$ and a differentiable map $g : V \to \RR^n$, $g(q) = p$ with image an open neighbourhood $U' \subset U$ of $p$ such that $f \circ g = \id_V$ and $g \circ f = \id_U$. If $f$ is smooth, then so is $g$. \end{theorem*} \begin{hiddenflashcard}[inverse-fn-thm-geom] \begin{theorem*}[Inverse function theorem for geometry] Let $U \subset \RR^n$ be open and let $f : U \to \RR^n$ be \cloze{a \fcemph{continuously differentiable} map. Let $p \in U$, $f(p) = q$ and suppose $Df|_p$ \fcemph{invertible}. Then there is an open neighbourhood $V$ of $q$ and a differentiable map $g : V \to \RR^n$ with image an open neighbourhood $U' \subset U$ of $p$ such that $f \circ g = \id_V$ and $g \circ f = \id_U$. \fcemph{If $f$ is smooth then so is $G$.} } \end{theorem*} \end{hiddenflashcard} \begin{remark*} $Df|_q = (Df|_p)^{-1}$ by the chain rule. \end{remark*} \noindent If we have a map $f : \RR^n \to \RR^m$ where $n > m$, what can we say if $Df |_p$ is surjective? \[ Df|_p = \left( \pfrac{f_i}{x_j} \right)_{m \times n} \] having full rank means that permuting coordinates if necessary, we can assume that the first (or last) $m$ columns are linearly independent. \begin{theorem*}[Implicit function theorem] Let $p = (x_0, y_0) \in U$, $U \subset \RR^k \times \RR^l$ open and let $f : U \to \RR^l$, $p \mapsto 0$ be a continuously differentiable map with $\left( \pfrac{f_i}{y_j} \right)_{l \times l}$ an isomorphism at $p$. Then there exists an open neighbourhood $x_0 \in V \subset \RR^k$ and a continuously differentiable map $g : V \to \RR^l$ such that if $(x, y) \in U \cap (V \times \RR^l)$, then \[ f(x, y) = 0 \iff y = g(x) \] If $f$ is smooth so is $g$. \end{theorem*} \begin{proof} Introduce $F : U \to \RR^k \times \RR^l$, $(x, y) \mapsto (x, f(x, y))$. Then \[ DF = \begin{pmatrix} I & * \\ 0 * \pfrac{f_i}{y_j} \end{pmatrix} \] So $DF|_{(x_0, y_0)}$ is an isomorphism. So the inverse function theorem says that $F$ is locally invertible near \[ F(x_0, y_0) = (x_0, f(x_0, y_0)) = (x_0, 0) \] Take a product open neighbourhood $(x_0, 0) \in V \times V'$, $V \subset \RR^t$ open, $V' \subset \RR^l$ open and the continuously differentiable inverse $G : V \times V' \to U' \subset U \subset \RR^k \times \RR^l$ such that $F \circ G = \id_{V \times V'}$. Write \[ G(x, y) = (\varphi(v, y), \psi(x, y)) \] Then \begin{align*} F \circ G(x, y) &= (\varphi(x, y), f(\varphi(x, y), \psi(x, y)) \\ &= (x, y) \\ \implies \varphi(x, y) &= x \\ \text{and } f(x, \psi(x, y)) &= y \end{align*} when $(x, y) \in V \times V'$. Thus \[ f(x, y) = 0 \iff y = \psi(x 0) \] Define $g : V \to \RR^l$ as $x \to \psi(x, 0)$, $v_0 \mapsto y_0$ and does what we want. \end{proof} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $f : \RR^2 \to \RR$ smooth, $f(x_0, y_0) = 0$. Assume $\pfrac{f}{y} |_{(x_0, y_0)} \neq 0$. Then there exists smooth $g : (x_0 - \eps, x_0 + \eps) \to \RR$ such that \[ g(x_0) = g(y_0) \] and \[ f(x, y) = 0 \iff y = g(x) \] \begin{center} \includegraphics[width=0.6\linewidth] {images/f28e2834a23b11ed.png} \end{center} Since $f(x, g(x)) = 0$, chain rule implies \begin{align*} \pfrac{f}{x} + \pfrac{f}{y}g'(x) &= 0 \\ \implies g'(x) &= -\frac{\pfrac{f}{x}}{\pfrac{f}{y}} \end{align*} \item Let $f : \RR^3 \to \RR$ smooth and $f(x_0, y_0, z_0) = 0$, and assume $Df|_{(x_0, y_0, z_0)} \neq 0$. Permuting coordinates if necessary we may assume that $\left. \pfrac{f}{z} \right|_{(x_0, y_0, z_0)} \neq 0$. Then there exists an open neighbourhood $(x_0, y_0) \in V \subset \RR^2$ and a smooth $g : V \to \RR$, $g(x_0, y_0) = z_0$ such that for an open set $U \ni (x_0, y_0, z_0)$ \[ f^{-1}(0) \cap U = \operatorname{graph}(g) \] ($\{(x, y, g(x, y)) : (x, y) \in V\}$) \end{enumerate} \noindent We return to Theorem 1.7. Recall: \begin{theorem*} For a subset $\Sigma \subset \RR^3$, the following are equivalent (TFAE): \begin{enumerate}[(a)] \item $\Sigma$ is a smooth surface in $\RR^3$ \item $\Sigma$ is locally a graph over a coordinate plane. \item $\Sigma$ is locally $f^{-1}(0)$, $f$ smooth and $Df|_p \neq 0$ \item $\Sigma$ is locally the image of an allowable parametrisation $\sigma : V \to \Sigma \subset \RR^3$, $\sigma$ smooth, $\sigma$ homeomorphism onto $\sigma(V)$ and $D\sigma$ injective. \end{enumerate} \end{theorem*} \begin{proof} \begin{enumerate}[(1)] \item (b) implies all others. \myskip If $\Sigma$ is locally $\{(x, y, g(x, y)) : (x, y) \in V\}$ then we get a chart from projection $\Pi_{xy}$ which is smooth and defined on an open neighbourhood of $\Sigma$, hence (b) implies (c). \myskip Also, it is cut out by \[ f(x, y, z) = z - g(x, y) \] Clearly $\pfrac{f}{z} = 1 \neq 0$, (b) implies (c). Also $\sigma(x, y) = (x, y, f(x, y))$ is allowable and smooth: \begin{align*} \sigma_x &= (1, 0, g_x) \\ \sigma_y &= (0, 1, g_y) \end{align*} are linearly independent, (b) implies (d). \item (a) implies (d) is part of the definition of being a smooth surface in $\RR^3$ and hence locally diffeomorphic to $\RR^2$ (the inverse of the local diffeomorphism is the allowable parametrisation). \item (c) implies (b) was example number 2 above for the implicit function theorem. \item We'll show that (d) implies (b) and we're done. Let $p \in \Sigma$, $\sigma : V \to U \subset \Sigma$, $\sigma(0) = p \in U$. \begin{align*} \sigma &= (\sigma_1(u, v), \sigma_2(u, v), \sigma_3(u, v)) \\ D\sigma &= \begin{pmatrix} \pfrac{\sigma_1}{u} & \pfrac{\sigma_1}{v} \\ \pfrac{\sigma_2}{u} & \pfrac{\sigma_2}{v} \\ \pfrac{\sigma_3}{u} & \pfrac{\sigma_3}{v} \end{pmatrix} \end{align*} So there exists 2 rows defining an invertible matrix. Suppose first two rows \[ \Pi_{xy} \circ \sigma : V \to \RR^2, D(\Pi_{xy} \circ \sigma)|_0 \] \emph{isomorphism}. Then inverse function theorem implies locally invertible, let $\phi = \Pi_{xy} \circ \sigma$. $\Sigma$ is now the graph of \[ (x, y, \sigma(\phi^{-1}(x, y)) = (\sigma_1(u, v), \sigma_2(u, v), \sigma_3(u, v)) \in \Sigma \qedhere \] \end{enumerate} \end{proof}