% vim: tw=50 % 30/01/2023 11AM \subsubsection*{Examples} \begin{enumerate}[(1)] \item (See Example Sheet 1). The atlas of 2 charts with stereographic projections gives $S^2$ the structure of an abstract smooth surface. \item The torus $T^2 = \RR^2 / \ZZ^2$. Recall that we obtained charts from (the inverses of) the projection restricted to small discs in $\RR^2$. \begin{center} \includegraphics[width=0.6\linewidth] {images/b40046a4a08f11ed.png} \end{center} The transition maps are \emph{translations} so $T^2$ inherits the structure of a smooth surface. \begin{center} \includegraphics[width=0.6\linewidth] {images/c8d2c71ea08f11ed.png} \end{center} $e(t, s) = (e^{2\pi i t}, e^{2\pi i s})$. Consider an atlas \[ \{(e(D_\eps(x, y)), e^{-1} \text{ on its image})\} \] $\eps < \frac{1}{3}$. \end{enumerate} \begin{definition*} Let $\Sigma$ be an abstract smooth surface and $f : \Sigma \to \RR^n$ a map. We say that $f$ is smooth at $p \in \Sigma$ if whenever $(U, \varphi)$ is a chart at $p$, belonging to the smooth atlas for $\Sigma$, the map \[ f \circ \varphi^{-1} : \varphi(U) \to \RR^n \] is smooth at $\varphi(p) \in \RR^2$. \begin{center} \includegraphics[width=0.6\linewidth] {images/1fcb4de8a09011ed.png} \end{center} \end{definition*} \begin{note*} If it holds for one chart at $p$, it holds for \emph{all} charts at $p$: \[ f \circ \varphi^{-1} = f \circ \varphi_2^{-1} \circ \ub{(\varphi_2 \circ \varphi_1^{-1})}_{\text{diffeomorphism}} \] Chain rule! \end{note*} \begin{definition*} $\Sigma_1, \Sigma_2$ abstract smooth surfaces. A map $f : \Sigma_1 \to \Sigma_2$ is \emph{smooth} if it is smooth in local charts: there are charts $(U, \varphi)$ at $p$ and $(V, \psi)$ at $f(p)$ with $f(U) \subset V$ such that $\psi \circ f \circ \varphi^{-1}$ is smooth at $\varphi(p)$. \begin{center} \includegraphics[width=0.8\linewidth] {images/99644d4ca09211ed.png} \end{center} \end{definition*} \begin{hiddenflashcard}[smooth-surface-function] When is $f : \Sigma_1 \to \Sigma_2$ smooth at $p$? \\ \cloze{ The map is smooth if it is smooth in local charts, i.e. there are charts $(U, \varphi)$ at $p$ and $(V, \psi)$ at $f(p)$ with $f(U) \subset V$ such that $\psi \circ f \circ \varphi^{-1} : \RR^2 \to \RR^2$ is smooth at $\varphi(p)$. } \end{hiddenflashcard} \noindent Again, if $f$ is smooth at $p$, then smoothness of the local representation of $f$ at $p$ will hold for all charts at $p$ and $f(p)$ on the given atlas. \begin{definition*} $\Sigma_1$ and $\Sigma_2$ are diffeomorphic if there exists $f : \Sigma_1 \to \Sigma_2$ that is smooth with smooth inverse. \end{definition*} \begin{definition*} If $Z \subset \RR^n$ is an arbitrary subset, we say that $f : Z \to \RR^n$ is smooth near $p \in Z$ if there exists open $B$, $p \in B \subset \RR^n$ and a \emph{smooth} $F : B \to \RR^n$ such that $F |_{B \cap Z} = f|_{B \cap Z}$, i.e. $f$ is locally the restriction of a smooth map defined on an open set. \begin{center} \includegraphics[width=0.6\linewidth] {images/2a62177aa09311ed.png} \end{center} \end{definition*} \begin{definition*} If $X \subset \RR^n$ and $Y \subset \RR^m$ are subsets, we say that $X$ and $Y$ are diffeomorphic if there exists $f : X \to Y$ smooth with smooth inverse. \end{definition*} \begin{definition*} A \emph{smooth surface} in $\RR^3$ is a subset $\Sigma \subset \RR^3$ such that $\forall p \in \Sigma$ there exists an open set $p \in U \subset \Sigma$ such that $U$ is diffeomorphic to an open set in $\RR^2$. In other words, for all $p \in \Sigma$ there exists an open ball $B$ such that $p \in B \subset \RR^3$ and $F : B \to V \subset \RR^2$ smooth such that $F|_{B \cap \Sigma} : B \cap \Sigma \to V$ is a homeomorphism with inverse $V \to B \cap \Sigma$ smooth. \begin{center} \includegraphics[width=0.6\linewidth] {images/9bafca9ea09311ed.png} \end{center} So we have 2 notions: one abstract and one taking advantage of the ambient space $\RR^3$. \end{definition*} \begin{hiddenflashcard}[smooth-surface-in-R3] \begin{definition*}[Smooth surface in $\RR^3$] A \emph{smooth surface} in $\RR^3$ is a subset $\Sigma \subset \RR^3$ \cloze{with the \fcemph{subspace topology} such that $\forall p \in \Sigma$ there exists an open set $p \in U \subset \Sigma$ such that $U$ is \fcemph{diffeomorphic} to an open set in $\RR^2$.} \end{definition*} \end{hiddenflashcard} \begin{theorem} For a subset $\Sigma \subset \RR^3$, the following are equivalent (TFAE): \begin{enumerate}[(a)] \item $\Sigma$ is a smooth surface in $\RR^3$ \item $\Sigma$ is locally the graph of a smooth function over one of the coordinate planes, i.e. $\forall p \in \Sigma$ there exists open $p \in B \subset \RR^3$ and open $V \subset \RR^2$ such that \[ \Sigma \cap B = \{(x, y, g(x, y)) : (g : V \to \RR), \text{$g$ smooth}\} \] (or the graph over the $xz$ or $yz$ plane locally). \item $\Sigma$ is locally cut out by a smooth function with non-zero derivative, i.e. $\forall p \in \Sigma$, there exists $p \in B \subset \RR^n$ ($B$ open) and $f : B \to \RR$ such that $\Sigma \cap B = f^{-1}(0)$ and $Df|_x \neq 0$ for all $x \in B$. \item $\Sigma$ is locally the image of an \emph{allowable parametrisation} i.e. if $p \in \Sigma$, there exists open $p \in U \subset \Sigma$ and $\sigma : V \to U$ smooth such that $\sigma$ is a homeomorphism and $D\sigma|_x$ has rank 2 for all $x \in V$. \end{enumerate} \end{theorem} \begin{hiddenflashcard}[tfae-smooth-surface-in-R3] \begin{theorem*} For a subset $\Sigma \subset \RR^3$, the following are equivalent: \begin{enumerate}[(a)] \item \cloze{$\Sigma$ is a \fcemph{smooth surface} in $\RR^3$.} \item \cloze{$\Sigma$ is \fcemph{locally} the graph of a \fcemph{smooth} function over one of the coordinate planes.} \item \cloze{$\Sigma$ is \fcemph{locally} cut out by a \fcemph{smooth} function with \fcemph{non-zero derivative}.} \item \cloze{$\Sigma$ is locally the image of an \fcemph{allowable parametrisation}.} \end{enumerate} \end{theorem*} \end{hiddenflashcard} \begin{hiddenflashcard}[allowable-parametrisation-in-R3] What is an \emph{allowable} parametrisation? \\ \cloze{ An allowable parametrisation for a \fcemph{smooth surface in $\RR^3$} is a \fcemph{smooth} function $\sigma : V \to U$, $V$ open in $\RR^2$ and $p \in U \subset \Sigma$ open such that $\sigma$ is a \fcemph{homeomorphism} and $D\sigma|_x$ \fcemph{has rank 2} for all $x \in V$. } \end{hiddenflashcard} \begin{remark*} (b) says that if $\Sigma$ is a smooth surface in $\RR^3$, each $p \in \Sigma$ belongs to a chart $(U, \varphi)$ where $\varphi$ is the restriction of $\pi_{xy}$, $\pi_{yz}$, $\pi_{xz}$ from $\RR^3$ to $\RR^2$. \begin{center} \includegraphics[width=0.6\linewidth] {images/337b3ef4a0b611ed.png} \end{center} The transition map \[ (x, y) \mapsto (x, y, f(x, y)) \to (y, g(x, y)) \] has inverse \[ (y, z) \to (h(y, z), y, z) \to (h(y, z), y) \] are \emph{clearly smooth}. This gives $\Sigma$ the structure of an abstract smooth surface. \end{remark*}