% vim: tw=50 % 27/01/2023 11AM \subsubsection*{More Examples} \begin{enumerate}[(1)] \item Octagon $P$: \begin{center} \includegraphics[width=0.3\linewidth] {images/645f661a9e3311ed.png} \end{center} Cut in half: \begin{center} \includegraphics[width=0.6\linewidth] {images/b05329809e3311ed.png} \end{center} So $P / \sim$ looks like: \begin{center} \includegraphics[width=0.3\linewidth] {images/ea6fb1569e3311ed.png} \end{center} \item Now projective plane example: \begin{center} \includegraphics[width=0.6\linewidth] {images/452a98f49e3411ed.png} \end{center} $\mathbb{RP}^2 = S^2 / \pm 1 = (\text{closed upper hemisphere}) / (\theta \sim -\theta)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/7cb5cd5c9e3411ed.png} \end{center} \end{enumerate} \subsection{Triangulations and Euler Characteristic} \begin{flashcard}[polygon-subdivision] \begin{definition*} A subdivision of compact topological surface $\Sigma$ comprises \begin{enumerate}[(i)] \item \cloze{a finite set $V$ of \emph{vertices}.} \item \cloze{a finite collection of edges $E = \{e_i \colon [0, 1] \to \Sigma\}$ such that: \begin{itemize} \item For all $i$, $e_i$ is a continuous injection on its interior and $e_i^{-1} V = \{0, 1\}$ \item $e_i$ and $e_j$ have disjoint image except perhaps at their endpoints in $V$. \end{itemize}} \item \cloze{We \emph{require} that each connected component of $\Sigma \setminus (\bigcup_i e_i [0, 1] \cup V)$ is homeomorphic to an open disc called a \emph{face}. (so the closure of a face has boundary $\ol{F} \setminus F$ lying in $\bigcup_i e_i [0, 1] \cup V$).} \end{enumerate} \fcscrap{A subdivision is a \emph{triangulation} if every closed face (closure of a face) contains exactly 3 edges and two closed faces are distinct, meet in exactly one edge or just one vertex.} \end{definition*} \end{flashcard} \subsubsection*{Examples} A subdivision of $S^2$: \begin{center} \includegraphics[width=0.2\linewidth] {images/44ba30fe9e3511ed.png} \end{center} A triangulation of $S^2$: \begin{center} \includegraphics[width=0.2\linewidth] {images/5ad90b589e3511ed.png} \end{center} Subdivision of $T^2$ (1 vertex, 2 edges and 1 face): \begin{center} \includegraphics[width=0.2\linewidth] {images/857d9ef09e3511ed.png} \end{center} Here the left drawing is not a triangulation of $T^2$ but the right one is: \begin{center} \includegraphics[width=0.4\linewidth] {images/c71aadda9e3511ed.png} \end{center} A very degenerate subdivision of $S^2$ ( 1 vertex, 0 edges, 1 face): \begin{center} \includegraphics[width=0.2\linewidth] {images/ee30d0e89e3511ed.png} \end{center} \begin{definition*} The Euler characteristic of a subdivision is \[ \#V - \#E + \#F \] \end{definition*} \begin{theorem} \begin{enumerate}[(i)] \item Every compact topological surface admits subdivisions and triangulation. \item The Euler characteristic, denote by $\chi(\Sigma)$, does \emph{not} depend on the choice of subdivision and defines a topological invariant of the surface (depends on on the homeomorphism type of $\Sigma$). \end{enumerate} \end{theorem} \begin{remark*} Hard to prove particularly (i). For (ii) there are cleaner approaches (Algebraic Topology part II). \end{remark*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $\chi(S^2) = 2$. \item $\chi(T^2) = 0$. \item $\Sigma_1$, $\Sigma_2$ compact topological surfaces, and we form $\Sigma_1 \# \Sigma_2$. We remove open discs $D_i \subset \Sigma_i$ which is a face of a triangulation in each surface. \begin{center} \includegraphics[width=0.2\linewidth] {images/504da1ec9e3711ed.png} \end{center} \[ \implies \chi(\Sigma_1 \# \Sigma_2) = \chi(\Sigma_1) + \chi(\Sigma_2) - 2 \] In particular if $\Sigma_g$ is a surface with $g$ holes ($\Sigma = \#_{c = 1}^g T^2$, then $\chi(\Sigma_g) = 2 - 2g$, $g$ is called the \emph{genus}. \end{enumerate} \subsection{Abstract Smooth Surfaces} $\Sigma$ topological surface. \begin{definition*} Let $(U, \varphi)$ be a pair where $U \subset \Sigma$ is open and $\varphi \colon U \to V \subset \RR^2$ is a homeomorphism (with $V$ open). Then this pair is called a \emph{chart}. THe inverse $\sigma = \varphi^{-1} \colon V \to U \subset \Sigma$ is called a \emph{local parametrisation} for $\Sigma$. \end{definition*} \begin{hiddenflashcard}[chart] What is a chart? \\ \cloze{ $(U, \varphi)$, $U \subset \Sigma$ \fcemph{open} and $\varphi : U \to V \subset \RR^2$ \fcemph{homeomorphism} (with $V$ open). } \end{hiddenflashcard} \begin{hiddenflashcard}[local-parametrisation] What is a local parametrisation? \\ \cloze{ $\sigma = \varphi^{-1} : V \to U \subset \Sigma$, where $(U, \varphi)$ is a chart. } \end{hiddenflashcard} \begin{definition*} A collection of charts \[ \{(U_i, \varphi_i)_{i \in I}\} \] such that $\bigcup_{i \in I} U_i = \Sigma$ is called an \emph{atlas} for $\Sigma$. \end{definition*} \begin{hiddenflashcard}[atlas] What is an atlas? \\ \cloze{ A collection of charts \[ \{(U_i, \varphi_i)_{i \in I}\} \] such that $\bigcup_{i \in I} U_i = \Sigma$. } \end{hiddenflashcard} \subsubsection*{Examples} \begin{enumerate}[(1)] \item If $z \subset \RR^2$ closed then $\RR^2 \setminus z$ is a topological surface with an atlas with \emph{one} chart: $(\RR^2 \setminus z, \varphi = \id)$. \item For $S^2$, we have an atlas with 2 charts: the 2 stereographic projections. \end{enumerate} \begin{definition*} Let $(U_i, \varphi_i)$, $i = 1, 2$ be two charts containing $p \in \Sigma$. The map $\varphi_2 \circ \varphi_1^{-1}|_{\varphi_1(U_1 \cap U_2)}$ is called a \emph{transition map} between charts. \end{definition*} \begin{hiddenflashcard}[transition-map] What is a transition map (between charts)? \\ \cloze{ $\varphi_2 \circ \varphi_1^{-1}|_{\varphi_1(U_1 \cap U_2)}$. } \end{hiddenflashcard} \begin{center} \includegraphics[width=0.6\linewidth] {images/c55e2c449e3811ed.png} \end{center} $\varphi_1(U_1 \cap U_2) \stackrel{\varphi_2 \circ \varphi_1^{-1}} {\longrightarrow} \varphi_2(U_1 \cap U_2)$ is a homeomorphism. \myskip Recall: If $V \subset \RR^n$ and $V' \subset \RR^m$ are open, a map $f \colon V \to V'$ is called \emph{smooth} if it is infinitely differentiable, i.e. it has continuous partial derivatives of all orders. A homeomorphism $f \colon V \to V'$ is called a \emph{diffeomorphism} if it is smooth and it has a smooth inverse. \begin{definition*} An abstract smooth surface $\Sigma$ is a topological surface with an atlas of charts $\{(U_i, \varphi_i)\}_{i \in I}$ such that all transition maps are \emph{diffeomorphisms}. \end{definition*} \begin{hiddenflashcard}[abstract-smooth-surface] What is an abstract smooth surface? \\ \cloze{ A topological surface with an atlas of charts such that all transition maps are \fcemph{diffeomorphisms}. } \end{hiddenflashcard}