% vim: tw=50 % 15/03/2023 11AM \newpage \section{Further Topics} \subsubsection*{Gauss Bonnet theorem revisited} Recall: \begin{enumerate}[(i] \item In a spherical triangle $T$ with internal angles $\alpha, \beta, \gamma$ we saw in Example Sheet 2 that \[ \Area_{S^2}(T) = \alpha + \beta + \gamma - \pi \] while a hyperbolic triangle has area \[ \Area_{\HH}(T) = \pi - \alpha - \beta - \gamma \] \item We also saw that for compact surfaces $\Sigma \subset \RR^3$, \[ \int_\Sigma \kappa \dd A = 2\pi \chi(\Sigma) \] \end{enumerate} \begin{flashcard}[local-gauss-bonnet] \begin{theorem}[Local Gauss-Bonnet] Let $\Sigma$ be an abstract smooth surface with Riemannian metric $g$. \cloze{Take a \emph{geodesic polygon} $R$ on $\Sigma$, i.e. it is \fcemph{homeomorphic to a disc} and its boundary is decomposed into \fcemph{finitely many geodesic arcs}. Then \[ \int_R \kappa \dd A = \sum_{i = 1}^n \alpha_i - (n - 2)\pi \] where $n = \text{\# of arcs}$, and $\alpha_i$ are the internal angles of the polygon.} \end{theorem} \end{flashcard} \begin{center} \includegraphics[width=0.6\linewidth] {images/e0e3b894c32211ed.png} \end{center} \begin{theorem}[Global Gauss-Bonnet] If $\Sigma$ is a compact smooth surface with Riemannian metric $g$, then \[ \int_\Sigma \kappa \dd A = 2\pi \chi(\Sigma) \] \end{theorem} \begin{remark*} \begin{enumerate}[(i)] \item $\kappa$ and $\dd A$ can be defined just using $g$. \item For our hyperbolic surfaces observed by identifying the edges of a regular $4g$-gon with angles $\frac{\pi}{2g}$ \begin{align*} \int_\Sigma 1 \dd A &= \Area(\operatorname{Polygon}) \\ &= (4g - 2)\pi - \sum_{n = 1}^{4g} \frac{\pi}{2g} \\ &= (4g - 4)\pi \\ &= 2(2g - 2)\pi \end{align*} and we had $\chi(\Sigma_g) = 2 - 2g$ and $\kappa \equiv -1$, so this agrees with the Global Gauss-Bonnet. \item If $\Sigma$ is a flat surface so $\kappa = 0$ and $\gamma$ is a closed geodesic, i.e. $\gamma : \RR \to \Sigma$ and $\exists T > 0$ such that $\gamma(t + T) = \gamma(t)$ for all $t \in \RR$, then $\gamma$ cannot bound a disc: \begin{center} \includegraphics[width=0.4\linewidth] {images/b7f9de02c32411ed.png} \end{center} Indeed, if we had such a $\gamma$, then \begin{center} \includegraphics[width=0.4\linewidth] {images/c66d1418c32411ed.png} \end{center} is a geodesic polygon with internal angles $\pi$ and local Gauss-Bonnet gives: \[ 0 = \int_R \kappa \dd A = \sum_{i = 1}^n \alpha_i - (n - 2)\pi = 2\pi \] (since $n = 2$), so such a polygon would violate Local Gauss-Bonnet. However, in a non-flat metric, we clearly \emph{can} have such a geodesic: \begin{center} \includegraphics[width=0.6\linewidth] {images/ddb982b4c32411ed.png} \end{center} \end{enumerate} \end{remark*} \subsubsection*{Flat metrics} Question: Can we understand \emph{all} flat metrics on $T^2$? \myskip The key to get a flat metric on $T^2$ was an atlas where transition functions were \emph{isometries}. \begin{center} \includegraphics[width=0.6\linewidth] {images/4e1eb646c32511ed.png} \end{center} So \emph{any} parallelogram $Q \subset \RR^2$ delivers a flat metric $g_Q$ on $T^2$. \[ (T^2, g_Q) = \RR^2 / \ZZ v_1 \oplus \ZZ v_2 \] Observation: \[ \Area_{g_Q}(T^2) = \Area_{\text{Euclidean}}(Q) \] Since $Q_1$ and $Q_2$ could have different ares, the metrics $g_{Q_1}$ and $g_{Q_2}$ are not \emph{isometric}. \begin{center} \includegraphics[width=0.6\linewidth] {images/b3940544c32511ed.png} \end{center} We'll consider flat metrics up to dilations: \begin{center} \includegraphics[width=0.6\linewidth] {images/c02c6c00c32611ed.png} \end{center} Under this assumption, given $Q$, we can put vertices at $0 \in \RR^2$, $1 \in \RR^2$ and $\tau \in \mathcal{H}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/fa98bf6ac32611ed.png} \end{center} This defines a map \[ \mathcal{H} \to \{\text{flat metrics on $T^2$}\} / \text{Dilations} \] But \emph{diffeomorphisms} acct on the set of \emph{flat metrics}. Given $g$ and $g : T^2 \to T^2$ diffeomorphism, we can ``pull-back'' $g$ by $f$: \[ Df |_p : T_p \Sigma \to T_{f(p)} \Sigma \] $f^* g$ is given by \[ \langle u, w \rangle_{f^* g} = \langle Df|_p(v), Df|_p(w) \rangle_g \] $v, w \in T_p\Sigma$. $(\Sigma, f^* g) \stackrel{f}{\longrightarrow} (\Sigma, g)$ isometry? \myskip Now $\SL(2, \ZZ)$ acts on $T^2$ by diffeomorphisms: it acts on $\RR^2$ and preserves the lattice $\ZZ^2$ \[ \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} : \RR^2 \to \RR^2 \] $\RR^2 / \ZZ^2 \to \RR^2 / \ZZ^2$. $\SL(2, \ZZ)$ also acts on $\mathcal{H}$ by M\"obius maps (as isometries of $g_{\text{hyp}}$!) \begin{theorem} The map \[ \mathcal{H} \to \{\text{flat metrics on $T^2$}\} / \text{Dilations} \] descends to a map \[ \mathcal{H} / \SL(2, \ZZ) \to \{\text{flat metrics on $T^2$}\} / \text{Dilations and Diffomorphisms$^+$} \] which is a \fbox{bijection}. We say that $\mathcal{H} / \SL(2, \ZZ)$ is the \emph{moduli space of flat metrics of $T^2$}. \end{theorem}