% vim: tw=50 % 03/03/2023 11AM \begin{proposition} $d_g$ is a metric. \end{proposition} \begin{proof} We only show that $d_g(p, q)$ for $p \neq q$ for $p \neq q$. (See remarks from last lecture). Since \[ g = \begin{pmatrix} E(p) & F(p) \\ F(p) & G(p) \end{pmatrix} \] is positive definite, there is $\eps$ sufficiently small such that \[ \begin{pmatrix} E(p) - \eps^2 & F(p) \\ F(p) & G(p) - \eps^2 \end{pmatrix} \] is also positive definite. Moreover, the matrix \[ \begin{pmatrix} E(p') - \eps^2 & F(p') \\ F(p') & G(p') - \eps^2 \end{pmatrix} \] remains positive definite $\forall p' \in B(p, \delta) \subset V$. (Euclidean ball). Thus, for any $p' \in B(p, \delta)$ and $v = (v_1, v_2) \in \RR^2$ we have \begin{align*} \|v\|_{p'}^2 &= E(p') v_1^2 + 2F(p') v_1 v_2 + G(p') v_2^2 \\ &\ge \eps^2(v_1^2 + v_2^2) \end{align*} Hence if $\gamma$ is a curve in $B(p, \delta)$ then we have \[ L_g(\gamma) \ge \eps L_{\text{Euclidean}} (\gamma) \] Given $p \neq q$, let $\gamma : [a, b] \to V$ be any curve connecting $p$ to $q$. If $\gamma$ is not contained in $B(p, \delta)$ then there exists $t_0 \in [a, b]$ such that $\gamma|_{[a, t_0]}$ is in $B(p, \delta)$, but $\gamma(t_0)$ is on the boundary of the ball. \begin{center} \includegraphics[width=0.6\linewidth] {images/515e54d8b9b611ed.png} \end{center} Thus $L_g(\gamma) \ge L_g(\gamma|_{[a, t_0]}) \ge \eps \delta$. If however $\gamma$ is contained in $B(p, \delta)$, then \[ L_g(\gamma) \ge \eps d_{\text{Euclidean}} (p, q) \] Taking inf over all such $\gamma$ we get \[ d_g(p, q) \ge \eps \min\{\delta, d_{\text{Euclidean}}(p, q)\} > 0 \qedhere \] \end{proof} \begin{hiddenflashcard}[proof-d-g-metric] Proof that $d_g$ is a metric: \\ \cloze{ Everything except proving $d_g(p, q) > 0$ is fairly straightforward. To prove $> 0$, pick $\eps$ small enough so that \[ \begin{pmatrix} E(p) - \eps^2 & F(p) \\ F(p) & G(p) - \eps^2 \end{pmatrix} \] is positive definite at $p$, pick neighbourhood $B(p, \delta)$ such that it is positive definite in the ball. Then within the ball, \[ L_g(\gamma) \ge \eps L_{\text{Euclidean}}(\gamma) \] for any $\gamma$ entirely inside the ball. If $p \neq q$, then pick $\gamma$ to be any path between $p$ and $q$. Either $\gamma$ is always in the ball, in which case length $\gamma$ is at least $\eps$ times euclidean, which is $> 0$, or otherwise $\gamma$ is not always inside the ball, in which case it reaches the boundary, so length at least $\eps\delta$. So $d_g(p, q) > 0$. } \end{hiddenflashcard} \begin{remark*} $d_g$ gives the same topology that $V \subset \RR^2$ inherits from $\RR^2$ (can check this as an exercise). \end{remark*} \subsection{Hyperbolic Geometry} \begin{definition*} We define an abstract Riemannian metric on the disc \[ D = B(0, 1) = \{z \in \CC : |z| < 1\} \] by \[ g_{\text{hyp}} = \frac{4(\dd u^2 + \dd v^2)}{(1 - u^2 - v^2)^2} = \frac{4|\dd z|^2}{(1 - |z|^2)^2} .\] In other words, \[ E = G = \frac{4}{(1 - u^2 - v^2)^2} \qquad F = 0 \] \end{definition*} \begin{hiddenflashcard}[disk-model-riemannian-metric] Riemannian metric for the disk model? \\ \[ g_{\text{hyp}} = \cloze{\frac{4(\dd u^2 + \dd v^2)}{(1 - u^2 - v^2)^2} = \frac{4|\dd z|^2}{(1 - |z|^2)^2}} \] or in other words \[ E = G = \cloze{\frac{4}{(1 - u^2 - v^2)^2}} \qquad F = \cloze{0} \] \end{hiddenflashcard} \noindent Recall the M\"obius group \[ \Mob = \left\{ z \mapsto \frac{az + b}{cz + d} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \GL(2, \CC) \right\} \] acts on $\CC \cup \{\infty\}$. \begin{lemma} \[ \Mob(D) = \{T \in \Mob : T(D) = D\} = \left\{ z \mapsto e^{i\theta} \frac{z - a}{1 - \ol{a}z} : |a| < 1 \right\} \] \end{lemma} \begin{hiddenflashcard}[mobius-group-disk] \[ \Mob(D) = \cloze{\left\{ z \mapsto e^{i\theta} \frac{z - a}{1 - \ol{a}z} : |a| < 1 \right\}} \] \end{hiddenflashcard} \begin{proof} First we note: \begin{align*} \left| \frac{z - a}{1 - \ol{a}z} \right| = 1 &\iff (z - a)(\ol{z} - \ol{a}) = (1 - \ol{a}z)(1 - a\ol{z}) \\ &\iff z\ol{z} - \cancel{a\ol{z}} - \cancel{\ol{a}z} + a\ol{a} = 1 - \cancel{a\ol{z}} - \cancel{\ol{a}z} + a\ol{a} z\ol{z} \\ &\iff |z|^2(1 - |a|^2) = 1 - |a|^2 \\ &\iff |z| = 1 \end{align*} So $z \mapsto e^{i\theta} \frac{z - a}{1 - \ol{a}z}$ preserves $|z| = 1$ and maps $a$ to $0$, thus it belongs to $\Mob(D)$. To show that they are all of this form, pick $T \in \Mob(D)$. If $a = T^{-1}(0)$ and $Q(z) = \frac{z - a}{1 - \ol{a}z} \in \Mob(D)$, then $TQ^{-1}(0) = 0$ and preserves $|z| = 1$ and hence (\textcolor{red}{check!}) it must be of the form $z \mapsto e^{i\theta} z$. \end{proof} \begin{lemma} The Riemannian metric $g_{\text{hyp}}$ is invariant under $\Mob(D)$, i.e. it acts by hyperbolic isometries. \end{lemma} \begin{proof} $\Mob(D)$ is generated by $z \mapsto e^{i\theta} z$ and $z \mapsto \frac{z - a}{1 - \ol{a}z}$, $|a| < 1$. The first (rotation) clearly preserves $g_{\text{hyp}} = \frac{4|\dd z|^2}{(1 - |z|^2)^2}$. For the second type, let \[ w = \frac{z - a}{1 - \ol{a}z} ,\] so \begin{align*} \dd w &= \frac{\dd z}{1 - \ol{a}z} + \frac{(z - a)}{(1 - \ol{a}z)^2} \ol{a} \dd z \\ &= \frac{\dd z(1 - |a|^2)}{(1 - \ol{a}z)^2} \\ \frac{|\dd w|}{1 - |w|^2} &= \frac{|\dd z|(1 - |a|^2)}{|1 - \ol{a}z|^2 \left( 1 - \left| \frac{\ - a}{1 - \ol{a}z} \right|^2 \right)} \\ &= \frac{|az| (1 - |a|^2)}{|1 - \ol{a}z|^2 - |z - a|^2} &&(\text{check}) \\ &= \frac{|\dd z|}{1 - |z|^2} \qedhere \end{align*} \end{proof} \myskip ``Another view'' \[ g_{\text{hyp}} = \lambda \id \] $\lambda(z) = \frac{4}{(1 - |z|^2)^2}$, $f(z) = \frac{z - a}{1 - \ol{a}z}$, $|a| < 1$. To check isometry: \[ (Df|_z)^\top \ub{(g_{\text{hyp}})_{f(z)}}_{\lambda(f(z)) \id} Df|_z = \lambda(z) \id \] i.e. \[ \lambda(f(z)) (Df|_z)^\top Df|_z = \lambda (z) \id \] \[ \lambda(f(z)) |f'(z)|^2 = \lambda(z) \] and this is checked as previously! \begin{lemma} \begin{enumerate}[(i)] \item Every pair of points in $(D, \text{hyp})$ is joined by a unique geodesic (up to reparametrisation). \item The geodesics are diameters of the discs and circular arcs orthogonal to $\partial D$. \end{enumerate} \end{lemma} \begin{center} \includegraphics[width=0.3\linewidth] {images/92b63244b9ba11ed.png} \end{center} Geodesics in the hyperbolic disc. The whole geodesics are called hyperbolic lines (defined on all $\RR$).