% vim: tw=50 % 01/03/2023 14AM \newpage \section{Hyperbolic Surfaces} We start by discussing \emph{abstract Riemannian metrics}. \begin{flashcard}[abstract-riemannian-metric] \begin{definition*}[Riemannian metric] Let $V \subset \RR^2$ be an open set. An abstract Riemannian metric on $V$ is \cloze{a smooth map: \[ V \to \{\text{positive definite symmetric forms}\} \subset \RR^4 \] \[ p \mapsto \begin{pmatrix} E(p) & F(g) \\ F(g) & G(p) \end{pmatrix} = g(p) \] $E > 0$, $G > 0$ and $EG - F^2 > 0$.} \end{definition*} \end{flashcard} \noindent \begin{center} \includegraphics[width=0.2\linewidth] {images/681d0094b83e11ed.png} \end{center} If $v$ is a vector at $p \in V$, then its norm is: \[ \|v\|_g^2 = v^\top \begin{pmatrix} E(p) & F(p) \\ F(p) & G(p) \end{pmatrix} v \] and if $\gamma : [a, b] \to V$ is smooth, then its length \begin{align*} L(\gamma) &= \int_a^b \|\dot{\gamma}(t)\|_g \dd t \\ &= \int_a^b (E\dot{u}^2 + 2F\dot{u}\dot{v} + G \dot{v}^2) \dd t \end{align*} where $\gamma(t) = (u(t), v(t))$. \begin{flashcard}[isometric-riemannian-metric] \begin{definition*} Given $(V, g)$, $(\tilde{V}, \tilde{g})$, we say that they are \emph{isometric} \cloze{if there exists a diffeomorphism $f : V \to \tilde{V}$ such that \[ \| Df|_p(v)\|_{\tilde{g}} = \|v\|_g \qquad \forall v \in T_pV = \RR^2, \forall p \in V \fcscrap{\tag{$*$}} \]} \fcscrap{This is \emph{equivalent} to saying that $f$ preserves the length of curves.} \end{definition*} \end{flashcard} \begin{note*} $Df_p : T_pV \to T_{f(p)}\tilde{V}$. Let's spell out this condition ($*$) using $g$ and $\tilde{g}$. \begin{align*} \|Df|_p(v)\|_{\tilde{g}}^2 &= (Df|_p v)^\top \tilde{g}_{f(p)} Df|_p v \\ &= v^\top (Df|_p)^\top \tilde{g}_{f(p)} Df|_p v \\ &= \|v\|_g^2 \\ &= v^\top g v \end{align*} This holds for all $v$ iff \[ \boxed{(Df|_p)^\top \tilde{g}_{f(p)} Df|_p = g} \tag{\dag} \] Recall that (\dag) is exactly the transformation law from Lemma 2.3 (Lecture \#9). \end{note*} \begin{flashcard}[riemannian-metric-on-a-surface] \begin{definition*}[Riemannian metric on a surface] Let $\Sigma$ be an abstract smooth surface, so $\Sigma = \bigcup_{i \in I} U_i$, $U_i \subset \Sigma$ open and $\varphi : U_i \to V_i \subset \RR^2$ homeomorphism with $V_i$ open such that \[ \varphi_i \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j) \] is smooth for all $i, j$. \myskip A \emph{Riemannian metric} on $\Sigma$ usually denoted by $g$ is \cloze{a choice of Riemannian metrics $g_i$ on each $V_i$ which are compatible in the following sense: \myskip For all $i, j$, $\varphi_i \varphi_j^{-1}$ is an isometry between $\varphi_j(U_i \cap U_j)$ and $\varphi_i(U_i \cap U_j)$, i.e. if we let $f = \varphi_i \varphi_j^{-1}$, then \[ (Df|_p)^\top \begin{pmatrix} E_i & F_i \\ F_i & G_i \end{pmatrix} _{f(p)} Df|_p = \begin{pmatrix} E_j & F_j \\ F_j & G_j \end{pmatrix} _p \qquad \forall p \in \varphi_j(U_i \cap U_j) \]} \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(1)] \item Recall the torus $T^2 = \RR^2 / \ZZ^2$ \begin{center} \includegraphics[width=0.3\linewidth] {images/d46d5bacb84011ed.png} \end{center} We exhibited charts where transition functions were restriction of translations. Equip each $V_i \subset \RR^2$ (image of such a chart) with the Euclidean metric $\dd u^2 + \dd v^2$, i.e. the $V_i \mapsto \id_{2 \times 2}$. If $f$ is a translation then $Df = \id$ so $(Df)^\top I Df = I$ is obvious! So $T^2$ inherits a global Riemannian metric everywhere locally isometric to $\RR^2$ (hence \emph{flat}). Since geodesics are well-defined for abstract Riemannian metrics (Energy only depends on $g$!) they are also well-defined on $T^2$ and they are just projections of straight lines in $\RR^2$: \begin{center} \includegraphics[width=0.6\linewidth] {images/e7efc42ab84111ed.png} \end{center} Exercise: Show that there are infinitely many cloesd geodesics and also infinitely many non-closed ones (think about lines with rational / irrational slope). \begin{note*} This flat metric on $T^2$ is \emph{not} induced by any embedding of $T^2$ in $\RR^3$! (For example because it would have to have an elliptic point). \end{note*} \item The real projective plane admits a Riemannian metric with constant curvature $+1$. Inded, in lecture 2 we exhibited an atlas for $\mathbb{RP}^2$ with charts of the form $(U, \varphi)$ where $U = q\hat{U}$, $q : S^2 \to \mathbb{RP}^2$, $\hat{U} \subset S^2$ open small enough so that $\hat{U}$ subset of open hemisphere and $\varphi : U \to V \subset \RR^2$ was $\varphi : \hat{\varphi} \circ q^{-1} |_U$, where $\hat{\varphi} : \hat{U} \to V$ chart of $S^2$. Transition maps for this atlas were all the identity or induced by the antipodal map. But both are isometries of the round metric in $S^2$. \item Exercise: The Klein bottle has a flat Riemannian metric induced from $\RR^2$. \begin{center} \includegraphics[width=0.3\linewidth] {images/95f956eeb84211ed.png} \end{center} \end{enumerate} \begin{proposition} Given a Riemannian metric $g$ on a \emph{connected} open set $V \subset \RR^2$, define the length metric \[ d_g(p, q) = \inf_\gamma L(\gamma) \] where $\gamma$ varies over all piece-wise smooth paths in $V$ from $p$ to $q$ and $L(\gamma)$ is computed using $g$. Then $d_g$ is a metric in $V$ (in the sence of metric spaces!) \begin{center} \includegraphics[width=0.4\linewidth] {images/010e8cf6b84311ed.png} \end{center} \end{proposition} \subsubsection*{Remarks / Examples} \begin{enumerate}[(1)] \item Given $p, q \in V$, there is always a piece-wise smooth path connecting $p$ to $q$. \item $d_g(p, q) \ge 0$. Also $d_g(p, q) = d_g(q, p)$ and $d_g(p, r) \le d_g(p, q) + d_g(q, r)$ \begin{center} \includegraphics[width=0.3\linewidth] {images/48a4ee98b84311ed.png} \end{center} The only non-trivial claim is that $d_g(p, q)= 0$ implies $p = q$ (proof next lecture). \item All this works on \emph{any} abstract smooth \emph{connected} surface $(\Sigma, g)$ equipped with a Riemmanian metric $g$. \end{enumerate}