% vim: tw=50 % 24/02/2023 11AM \noindent Important example: Surface of revolution again! We take $\eta(u) = (f(u), 0, g(u))$ in the $xz$-plane and rotate about the $z$-axis. ($\eta : [a, b] \to \RR^3$ smooth, injective, $\eta' \neq 0$, $f > 0$). \begin{center} \includegraphics[width=0.6\linewidth] {images/839903c6b43411ed.png} \end{center} Take the usual $\sigma$: \[ \sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u)) \] $a < u < b$, $v \in (0, 2\pi)$. The FFF is \[ (f'^2 + g'^2) \dd u^2 + f^2 \dd v^2 \] WLOG we assume $\eta$ is parametrised by arc-length so the FFF becomes \[ \dd u^2 + f^2 \dd v^2 \] Then Lagrangian for the geodesics is \[ L = \half (\dot{u}^2 + f^2 \dot{v}^2) \] (E-L) equations implies $\pfrac{L}{u} = ff' \dot{v}^2$ \[ \pfrac{L}{\dot{u}} = \dot{u} \implies \boxed{\ddot{u} = ff' \dot{v}^2} \] \[ \boxed{\dfrac{}{t} \left( \pfrac{L}{\dot{q}_i} \right) = \pfrac{L}{q_i}} \] \[ \pfrac{L}{v} = 0 \qquad \pfrac{L}{\dot{v}} = f^2 \dot{v} \] \[ (*) \begin{cases} \dfrac{}{t} (f^2 \dot{v}) = 0 \\ \ddot{u} = ff' \dot{v}^2 \end{cases} \] We also know that geodesics travel with constant speed: \[ \begin{cases} \dot{u}^2 + f^2 \dot{v}^2 = \text{const} \\ f^2\dot{v} = c \end{cases} \] \begin{example*}[``completely integrable''] Meridians: $v = v_0$m if $u(t) = t + u_0$, $t \mapsto (t + u_0, v_0)$ is a geodesic with speed 1 through $(u_0, v_0)$ (check this works). \myskip Parallels: $u = u_0$, $\dot{v} = a \mid_{f(u_0)}$. From ($*$) we see that we need \[ \boxed{f'(u_0) = 0} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/70085378b43611ed.png} \end{center} Let's look at the conserved quantity $f^2 \dot{v}$ in more detail: .image Suppose $\gamma$ makes an angle $\theta$ with a parallel of radius $\rho = f$. Write as usual $\gamma = \sigma(u(t), v(t))$, $\dot{\gamma} = \sigma_u \dot{u} + \sigma_v \dot{v}$ and note that $\sigma_v$ is tangent to the parallel since $\sigma_v = (-f \sin v, f \cos v, 0)$. Thus \[ \cos\theta = \frac{\langle \sigma_v, \sigma_u \dot{u} + \sigma_v \dot{v} \rangle}{|\sigma_v| |\dot{\gamma}|} \] Assume $\gamma$ is parametrised by arc-length, so $|\dot{\gamma}| = 1$. Using that $F = 0$ and $G = f^2$ we get \[ \cos\theta = \frac{f^2 \dot{v}}{f} = f\dot{v} \] and therefore if $\gamma$ is geodesic, \[ \boxed{\rho \cos\theta = \text{constant}} \] \emph{Clairut's relation}. This is just another way to write the conservation law arising from $\pfrac{L}{v} = 0$. \end{example*} \begin{example*} Sub-example: ellipsoid of revolution. \begin{center} \includegraphics[width=0.6\linewidth] {images/bf4affecb43811ed.png} \end{center} $\rho \cos\theta = c$, $c = \rho_0 \cos\theta_0 > 0$, $\theta_0 \in [0, \pi/2)$. $c = \rho\cos\theta \le \rho$. This means that $\gamma$ must move between the region bounded by the parallels of radius $c$. \begin{center} \includegraphics[width=0.6\linewidth] {images/e5f1994eb43811ed.png} \end{center} \end{example*} Recall Picard's theorem for ODEs: $I = [t_0 - a, t_0 + a] \subset \RR$. $B = \{x : \|x - x_0\| \le b\} \subseteq \RR^n$. $f : I \times B \to \RR^n$ and Lipschitz in the second variable \[ \|f(t, x_1) - f(t, x_2)\| \le K\|x_1 - x_2\| \] Then \[ \begin{cases} \dfrac{x(t)}{t} = f(t, x(t)) \\ x(t_0) = x_0 \end{cases} \] has a unique solution for some interval $|t - t_0| < h$. \myskip Addendum: If $f$ is smooth, then the solution is smooth \emph{and} depends smoothly on the initial condition. In our setting we have: \begin{align*} \dfrac{}{t} (E\dot{u} + F \dot{v}) &= \half (E_u \dot{u}^2 + 2F_u \dot{u} \dot{v} + G_u \dot{v}^2) \\ \dfrac{}{t} (F\dot{u} + G \dot{v}) &= \half (E_v \dot{u}^2 + 2F_v \dot{u} \dot{v} + G_v \dot{v}^2) \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} \ddot{u} \\ \ddot{v} \end{pmatrix} &= \mathcal{A} (u, \sigma, \dot{u}, \dot{v}) \end{align*} Since the matrix is invertible, we can write the geodesics equations as: \begin{align*} \ddot{u} &= A(u, v, \dot{u}, \dot{v}) \\ \ddot{v} &= B(u, v, \dot{u}, \dot{v}) \end{align*} for smooth $A$ and $B$. We can turn this into a first order system by the usual trick: \[ \dot{u} = X, \dot{v} = Y \] Then \[ \begin{cases} \dot{u} = X \\ \dot{v} = Y \\ \dot{X} = A(u, v, X, Y) \\ \dot{Y} = B(u, v, X, Y) \end{cases} \] So Picard's theorem applies, noting that since $A$ and $B$ are smooth, a local bound on $\|DA\|$ and $\|DB\|$ wil give the Lipschitz conditions. So we get: \begin{corollary} Let $\Sigma$ be a smooth surface in $\RR^3$. For $p \in \Sigma$ and $v \in T_p\Sigma$, there is $\eps > 0$ and a unique geodesic $\gamma : (-\eps, \eps) \to \Sigma$ with initial conditions $\gamma(0) = p$ and $\dot{\gamma}(0) = v$. Moreover, $\gamma$ depends smoothly on $(p, v)$. \end{corollary} \begin{hiddenflashcard}[Picard-geodesics] Picard geodesics? \\ \cloze{ For $p \in \Sigma$ and $v \in T_p\Sigma$, there is $\eps > 0$ and a unique geodesic $\gamma : (-\eps, \eps) \to \Sigma$ with initial conditions $\gamma(0) = p$ and $\dot{\gamma}(0) = v$. Moreover, $\gamma$ depends smoothly on $(p, v)$.} \end{hiddenflashcard} \begin{center} \includegraphics[width=0.6\linewidth] {images/31ce52fcb43a11ed.png} \end{center}