% vim: tw=50 % 20/02/2023 11AM $\kappa(p) = \det(Dn|_p)$ ($\kappa = \frac{LN - M^2}{EG - F^2}$) The Gauss urvature is constraint by 2 \emph{amazing theorems}. \myskip The first is called ``theorema egregium'' (remarkable theorem) \begin{flashcard}[theorema-egregium] \begin{theorem*}[Theorema Egregium] \cloze{The Guass curvature of a smooth surface in $\RR^3$ is an \emph{isometry invariant} i.e. if $f : \Sigma_1 \to \Sigma_2$ is an isometry, then \[ \kappa_1(p) = \kappa_2(f(p)) \qquad \forall p \in \Sigma_1 \] In fact, $\kappa$ can be computed exclusively in terms of $I_p$ even though it was defined using $I_p$ and $\II_p$.} \end{theorem*} \end{flashcard} \noindent The second result is a \emph{global result}: \begin{flashcard}[gauss-bonnet] \begin{theorem*}[Gauss-Bonnet Theorem] \cloze{If $\Sigma$ is a \fcemph{compact} smooth surface in $\RR^3$, then \[ \int_\Sigma \kappa \dd A_\Sigma = 2\pi \chi(\Sigma) \] } \end{theorem*} \end{flashcard} This is an amazing result because the left side of this equation is a quantity involving a lot of complicated geometric notions, but the right hand side is purely a topological property! \myskip The proofs of these theorems will be in Part II Differential Geometry. \newpage \section{Geodesics} Recall, if $\gamma : [a, b] \to \RR^3$ is smooth then \[ \length(\gamma) = L(\gamma) = \int_a^b |\gamma'(0)| \dd t \] \begin{flashcard}[energy] \begin{definition*} The \emph{energy} of $\gamma$ is \[ E(\gamma) \defeq \cloze{\int_a^b |\gamma'(t)|^2 \dd t} \] \end{definition*} \end{flashcard} \noindent Think \[ \Omega_{pq} = \{\text{all smooth curves $\gamma : [a, b] \to \RR^3$, $\gamma(a) = p$, $\gamma(b) = q$}\} \] \begin{center} \includegraphics[width=0.3\linewidth] {images/2bd0db70b11211ed.png} \end{center} $E : \Omega_{pq} \to \RR$. In fact what we really want is given $\Sigma \subset \RR^3$, $\gamma : [a, b] \to \Sigma$ ``Variational Principles.'' \begin{flashcard}[one-parameter-variation] \begin{definition*} Let $\gamma : [a, b] \to \Sigma \subset \RR^3$ be smooth. A one-parameter variation \cloze{(with fixed end points) of $\gamma$ is a smooth map \[ \Gamma : (-\eps, \eps) \times [a, b] \to \Sigma \] such that $\gamma_s \defeq \Gamma(s, \bullet)$, then \begin{enumerate}[(a)] \item $\gamma_0(t) = \gamma(t)$ for all $t$, \item $\gamma_s(a)$, $\gamma_s(b)$ are independent of $s$. \end{enumerate} } \fcscrap{ \begin{center} \includegraphics[width=0.6\linewidth] {images/86c4b754b11211ed.png} \end{center} } \end{definition*} \end{flashcard} \begin{flashcard}[geodesic] \begin{definition*} A smooth curve $\gamma : [a, b] \to \Sigma$ is a \emph{geodesic} \cloze{if for every \fcemph{variation} $\gamma_s$ of $\gamma$ with \fcemph{fixed end points} we have: \[ \left. \dfrac{}{s} \right|_{s = 0} E(\gamma_s) = 0 \] i.e. $\gamma$ is a ``critical point'' of the energy functional on curves from $\gamma(a)$ to $\gamma(b)$.} \end{definition*} \end{flashcard} \noindent Suppose $\gamma$ has image contained in the image of a parametrisation $\sigma$ and we write \[ \gamma_s(t) = \sigma(u(s, t), v(s, t)) \] FFF is $E \dd u^2 + 2F \dd u\dd v + G \dd v^2$. \[ R \defeq E \dot{u}^2 + 2F \dot{u} \dot{v} + G\dot{v}^2 \] ($E$, $F$, $G$ are functions of $u(s, t)$, $v(s, t)$) where $\dot{u} = \pfrac{u}{t}$, $\dot{v} = \pfrac{v}{t}$. $R$ depends on $s$ \[ E(\gamma_s) = \int_a^b R \dd t \] \begin{align*} \pfrac{R}{s} &= (E_u \dot{u}^2 + 2F_u \dot{u} \dot{v} + G_u \dot{v}^2) \pfrac{u}{s} + (E_v \dot{u}^2 + 2F_v \dot{u} \dot{v} + G_v \dot{v}^2) \pfrac{v}{s} \\ &~~~+ 2(E\dot{u} + F\dot{v}) \pfrac{\dot{u}}{s} + 2(F\dot{u} + G\dot{v}) \pfrac{\dot{v}}{s} \end{align*} so $\dfrac{}{s} E(\gamma_s) = \int_a^b \pfrac{R}{s} \dd t$ \begin{note*} $\pfrac{\dot{u}}{s} = \frac{\partial^2 u}{\partial s \partial t}$, $\pfrac{\dot{v}}{s} = \frac{\partial^2 v}{\partial s \partial t}$, and we can integrate by parts and note $\pfrac{u}{s}$, $\pfrac{v}{s}$ vanish at the end points of $a$ and $b$. We get \[ \left. \dfrac{}{s} \right|_{s = 0} E(\gamma_s) = \int_a^b \left[ A \pfrac{u}{s} + B \pfrac{v}{s} \right] \dd t \tag{$*$} \] where \[ A = E_u \dot{u}^2 + 2F_u \dot{u} \dot{v} + G_u \dot{v}^2 - 2 \dfrac{}{t} (E\dot{u} + F \dot{v}) \] \[ B = E_v \dot{u}^2 + 2F_v \dot{u} \dot{v} + G_v \dot{v}^2 - 2 \dfrac{}{t}(F\dot{u} + G \dot{v}) \] Note that we have absolute freedom for choosing the ``rotational vector field'' \[ W(t) = \left( \pfrac{u}{s}(0, t), \pfrac{v}{s}(0,t) \right) \] \begin{center} \includegraphics[width=0.4\linewidth] {images/0395f6b0b11511ed.png} \end{center} Going back to ($*$) we see that $\gamma$ is a geodesic if and only if $A = B = 0$. That is $\gamma$ is a geodesic if and only if $\gamma(t) = \sigma(u(t), v(t))$, then we have the \emph{geodesic equations} \begin{flashcard}[geodesic-equations] \prompt{Geodesic equations?} \[ \cloze{\dfrac{}{t} (E\dot{u} + F\dot{v}) = \half (E_u \dot{u}^2 + 2F_u \dot{u} \dot{v} + G_u \dot{v}^2)} \] \[ \cloze{\dfrac{}{t} (F\dot{u} + G\dot{v}) = \half (E_v \dot{u}^2 + 2F_v \dot{u} \dot{v} + G_v \dot{v}^2)} \] \end{flashcard} \end{note*} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item If $W(t)$ with $W(a) = W(b) = 0$ then \[ \gamma_s(t) = \sigma((u(t), v(t)) + sw(t)) \] for $s$ small enough is a variation of $\gamma$ with fixed and points and vertical field $W$. \item Recall Q10 in Example Sheet 4 of IA Analysis: \[ \int_a^b f(x)g(x) \dd x = 0 \] for all $g : [a, b] \to \RR$, $g(a) = g(b)$, then we had to prove that $f \equiv 0$. \end{enumerate}