% vim: tw=50 % 13/02/2023 11AM \subsubsection*{The Second Fundamental Form} Let's try to measure how much $\Sigma \subset \RR^3$ deviates from its own tangent planes. \begin{center} \includegraphics[width=0.6\linewidth] {images/c5780c7cab8f11ed.png} \end{center} Let's take $\sigma : V \to U \subset \Sigma$. Using Taylor's theorem \begin{align*} \sigma(u + h, v + l) &= \sigma(u, v) + h\sigma_u(u, v) + l\sigma_v(u, v) + \half(h^2\sigma_{uu}(u, v) + 2hl \sigma_{uv}(u, v) + l^2 \sigma_{vv} (u, v)) + O(h^3, l^3) \end{align*} where $(h, l)$ are small enough so that $(u, v)$ and $(u + h, v + l) \in V$. Let's take projection in the normal direction: \begin{align*} \langle n, \sigma(u + h), v + l) - \sigma(u, v) \rangle &= \half (\langle n, \sigma_{uu} \rangle h^2 + 2\langle n, \sigma_{ub} \rangle hl + \langle n, \sigma_{vv} \rangle l^2) + O(h^3, l^3) \end{align*} \begin{flashcard}[second-fundamental-form] \begin{definition*} The \emph{second fundamental form} of $\Sigma \subset \RR^3$ in the parametrisation $\sigma$ is the quadratic form: \[ L\dd u^2 + 2M \dd u \dd v + N \dd v^2 \] where \begin{align*} L &= \cloze{\langle n, \sigma_{uu} \rangle} \\ M &= \cloze{\langle n, \sigma_{uv} \rangle} \\ N &= \cloze{\langle n, \sigma_{vv} \rangle} \end{align*} and \cloze{$n = \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|}$.} \end{definition*} \end{flashcard} \begin{lemma} Let $V$ be connected and $\sigma : V \to U \subset \Sigma$ such that second FFF vanishes identically. Then $U$ lies in an affine plane in $\RR^3$. \end{lemma} \begin{proof} Recall $\langle n, \sigma_u \rangle = \langle n, \sigma_v \rangle = 0$. Hence \begin{align*} \langle n_u, \sigma_u \rangle + \langle n, \sigma_{uu} \rangle &= 0 \\ \langle n_v, \sigma_v \rangle + \langle n, \sigma_{vv} \rangle &= 0 \\ \langle n_v, \sigma_u \rangle + \langle n, \sigma_{uv} \rangle &= 0 \end{align*} \begin{align*} L &= \langle n, \sigma{uu} \rangle = -\langle n_u, \sigma_u \rangle \\ M &= \langle n, \sigma_{uv} \rangle = -\langle n_v, \sigma_u \rangle = -\langle n_u, \sigma_v \rangle \\ N &= \langle n, \sigma_{vv} \rangle = -\langle n_v, \sigma_v \rangle \end{align*} So if second FFF vanishes then $n_u$ is orthogonal to $\sigma_u$ and $\sigma_v$. Also $\langle n, n \rangle = 1$ implies (differentiate with respect to $u$) $\langle n, n_u \rangle = 0$. Hence $n_u$ is orthogonal to $\{n, \sigma_u \sigma_v\}$, hence $n_u \equiv 0$. Similarly $n_u \equiv 0$. So $n$ is \emph{constant} ($V$ connected and mean value inequality). This implies that $\langle \sigma, n \rangle = \text{constant}$ (since $\langle \sigma, n_u \rangle = \langle \sigma_u, n \rangle = \langle \sigma, n_v \rangle = \langle \sigma_v, n \rangle = 0$) and $U$ is contained in a plane. \end{proof} \begin{remark*} Recall that FFF in the parametrisation $\sigma$ has \[ (D\sigma)^\top D\sigma = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \sigma_u \cdot \sigma_v & \sigma_u \cdot \sigma_v \\ \sigma_v \cdot \sigma_u & \sigma_v \cdot \sigma_v \end{pmatrix} \] Analogously the second FFF: \[ -(Dn)^\top D\sigma = \begin{pmatrix} L & M \\ M & N \end{pmatrix} = \begin{pmatrix} n_u \cdot \sigma_u & n_u \cdot \sigma_v \\ n_v \cdot \sigma_u & n_v \cdot \sigma_v \end{pmatrix} \] (using the alternative exrpessions for $L$, $M$ and $N$ in the previous proof). So if $\sigma : V \to U \subset \Sigma$, $\tilde{\sigma} : \tilde{V} \to U \subset \Sigma$ are 2 parametrisations with transition map \[ \varphi : \tilde{V} \to V, \qquad \varphi = \sigma^{-1} \circ \tilde{\sigma} \] ($\tilde{\sigma} = \sigma \varphi$) then \[ n_{\tilde{\sigma}}(\tilde{u}, \tilde{v}) = \pm n_\sigma (\varphi(\tilde{u}, \tilde{v})) \] (use the $-$ sign if $\det(D\varphi) < 0$). Recall the discusssion on orientabioilty Lemma 1.10). \begin{align*} \begin{pmatrix} \tilde{L} & \tilde{M} \\ \tilde{M} & \tilde{N} \end{pmatrix} &= -(Dn_{\tilde{\sigma}})^\top D\tilde{\sigma} \\ &= \pm (D\varphi)^\top \begin{pmatrix} L & M \\ M & N \end{pmatrix} D\varphi \end{align*} (use $-$ sign if $\varphi$ is orientation preserving). \end{remark*} \begin{hiddenflashcard}[second-fundamental-form-matrix-expression] \[ \begin{pmatrix} L & M \\ M & N \end{pmatrix} = \cloze{-(Dn)^\top D\sigma} \] \end{hiddenflashcard} \begin{example*} The cylinder has \[ \sigma(u, v) = (a\cos u, \sin u, v) \] \begin{center} \includegraphics[width=0.6\linewidth] {images/bfe3eaacab9311ed.png} \end{center} Note $\sigma_{uv} = \sigma_{vv} = 0$ hence $M = N = 0$. Check that second FFF is \[ \begin{pmatrix} -a & 0 \\ 0 & 0 \end{pmatrix} \] ($-adu^2$). \end{example*} \begin{flashcard}[Gauss-map] \begin{definition*}[The gauss map] Let \cloze{$\Sigma \subset \RR^3$ be a smooth \emph{oriented} surface}. The \emph{Gauss map} is \[ \cloze{n : \Sigma \to S^2 = \{x \in \RR^3 : |x| = 1\}} \] is the map $p \mapsto n(p)$, \cloze{the unit normal vector at $p$ (well-defined by the orientation of $\Sigma$).} \end{definition*} \end{flashcard} \begin{center} \includegraphics[width=0.6\linewidth] {images/1638c332ab9411ed.png} \end{center} \begin{lemma} The Gauss map $n : \Sigma \to S^2$ is \emph{smooth}. \end{lemma} \begin{proof} Smoothness can be checked locally. If $\sigma : V \to U \subset \Sigma$ is allowable and compatible with the orientation, then at $\sigma(u, v) = p \in \Sigma$ \[ n(\sigma(u, v)) = \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|} \] (smooth since $\sigma$ is). $n \circ \sigma : V \to S^2 \subseteq \RR^3$. \end{proof} \begin{center} \includegraphics[width=0.8\linewidth] {images/8d31d23aab9411ed.png} \end{center} \begin{note*} $T_p\Sigma = T_{n(p)} S^2$. Thus we can view \[ Dn|_p : T_p \Sigma \to T_{n(p)} S^2 = T_p\Sigma \] (recall Q9, Example Sheet 1). \end{note*} \noindent We can also view $Dn|p$ acting on tangent vectors in terms of curves \[ \gamma : (-\eps, \eps) \to \Sigma, \qquad \gamma(1) = p, \quad \gamma'(0) = v \] \[ Dn|_p(v) = Dn|_p(\gamma'(0)) = (n \circ \gamma)'(0) \] (by chain rule).