% vim: tw=50 % 10/02/2023 11AM $\Sigma \ub \RR^3$, $p \in \Sigma$. Take allowable parametrisations: \begin{align*} \sigma &: V \to U \subset \Sigma, \qquad \sigma(0) = p \\ \tilde{\sigma} &: \tilde{V} \to U \subset \Sigma, \qquad \tilde{\sigma}(0) = p \end{align*} Transition map $f : \tilde{\sigma}^{-1} \circ \sigma : V \to \tilde{V}$. We have FFFs: \[ \begin{pmatrix} E & F \\ F & G \end{pmatrix} \qquad \text{for $\sigma$} \] \[ \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} \qquad \text{for $\tilde{\sigma}$} \] \begin{flashcard}[change-of-FFF-formula] \begin{lemma} If $f = \tilde{\sigma}^{-1} \circ \sigma$ is a \fcemph{transition map}, then \[ \begin{pmatrix} \cloze{E} & \cloze{F} \\ \cloze{F} & \cloze{G} \end{pmatrix} = \cloze{(Df)^\top} \begin{pmatrix} \cloze{\tilde{E}} & \cloze{\tilde{F}} \\ \cloze{\tilde{F}} & \cloze{\tilde{G}} \end{pmatrix} \cloze{Df} \] \fcscrap{($^\top$ is transpose)} \end{lemma} \prompt{ \begin{proof} \cloze{ \begin{align*} \begin{pmatrix} E & F \\ F & G \end{pmatrix} &= \cdots \\ &= (D\sigma)^\top (D\sigma) \\ &= (D\tilde{\sigma} Df)^\top (D\tilde{\sigma} Df) \\ &= (Df)^\top (D\tilde{\sigma})^\top D\tilde{\sigma} Df \\ &= (Df)^\top \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} \end{align*} } \end{proof} } \end{flashcard} \begin{proof} \begin{align*} \begin{pmatrix} E & F \\ F & G \end{pmatrix} &= \begin{pmatrix} \sigma_u \cdot \sigma_u & \sigma_u \cdot \sigma_v \\ \sigma_v \cdot \sigma_u & \sigma_v \cdot \sigma_v \end{pmatrix} \\ &= \begin{pmatrix} \sigma_u & \sigma_u \\ \sigma_v & \sigma_v \end{pmatrix} \begin{pmatrix} \sigma_u & \sigma_v \\ \sigma_u & \sigma_v \end{pmatrix} \\ &= (D\sigma)^\top (D\sigma) \\ &= (D\tilde{\sigma} Df)^\top (D\tilde{\sigma} Df) &&\text{using$\sigma = \tilde{\sigma} \circ f$} \\ &= (Df)^\top (D\tilde{\sigma})^\top D\tilde{\sigma} Df \\ &= (Df)^\top \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} Df \qedhere \end{align*} \end{proof} \subsubsection*{FFF and Angles} \begin{center} \includegraphics[width=0.3\linewidth] {images/f18af1e2a93411ed.png} \end{center} $v, w \in \RR^3$, $v \cdot w = |v| |w| \cos\theta$. If $v, w \in T_p\Sigma$, $\cos\theta = \frac{v \cdot w}{|v| |w|}$ ($*$). \begin{center} \includegraphics[width=0.6\linewidth] {images/2588bccca93511ed.png} \end{center} \begin{align*} w &= D\sigma|_0 (w_0) \\ v &= D\sigma|_0 (v_0) \\ v \cdot w &= v_0^\top \begin{pmatrix} E & F \\ F & G \end{pmatrix} w_0 \end{align*} So using ($*$) we can compute angles using the FFF of $\sigma$. \begin{flashcard}[conformal-FFF] \begin{lemma} $\sigma$ is \emph{conformal} (preserves angles) \cloze{exactly when $E = G$ and $F = 0$.} \end{lemma} \prompt{ \begin{proof} \cloze{ Let $\alpha(t) = (u(t), v(t))$, $\tilde{\alpha}(t) = (\tilde{u}(t), \tilde{v}(t))$ be curves with non-zero derivative that intersect for $t = 0$. Use $\cos(\theta) = \frac{v \cdot w}{|v| |w|}$. We calculate: \begin{align*} w &= D\sigma|_0 (w_0) \\ &= (E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2)^{1/2} \\ v &= D\sigma|_0 (v_0) \\ &= (E\dot{\tilde{u}}^2 + 2F\dot{\tilde{u}}\dot{\tilde{v}} + G\dot{\tilde{v}}^2)^{1/2} \\ v \cdot w &= v_0^\top \begin{pmatrix} E & F \\ F & G \end{pmatrix} w_0 \\ &= (E\dot{u}\dot{\tilde{u}} + F(\dot{u}\dot{\tilde{v}} + \dot{\tilde{u}}\dot{v}) + G\dot{v}\dot{\tilde{v}}) \end{align*} For the forward direction, consider $\alpha(t) = (t, 0)$, $\tilde{\alpha}(t) = (0, t)$. Then the angle is $\frac{\pi}{2}$, so $\cos\theta = 0$ then we deduce $F = 0$. Similarly use $\alpha(t) = (t, t)$, $\tilde{\alpha}(t) = (t, -t)$ to deduce $E = G$. \myskip If $E = G$ and $F = 0$ then \[ \cos \theta = \frac{\dot{u} \dot{\tilde{u}} + \dot{v} \dot{\tilde{v}}}{(\dot{u}^2 + \dot{v}^2)^{1/2}(\dot{\tilde{u}} + \dot{\tilde{v}}^2)^{1/2}} \] hence conformal. } \end{proof} } \end{flashcard} \begin{proof} Consider curves \begin{align*} \alpha(t) &= (u(t), v(t)) \\ \tilde{\alpha}(t) &= (\tilde{u}(t), \tilde{v}(t)) \end{align*} $\alpha(0) = \tilde{\alpha}(0) \in V$. The curves $\sigma \circ \alpha$ and $\sigma \circ \tilde{\alpha}$ meet at $p$ with angle $\theta$ given by \[ \cos \theta = \frac{E \dot{u}\dot{\tilde{u}} + F( \dot{u} \dot{\tilde{v}} + \dot{\tilde{u}} \dot{v}) + G \dot{v} \dot{\tilde{v}}}{(E \dot{u}^2 + 2F \dot{u} \dot{v} + G \dot{v}^2)^{1/2}(E\dot{\tilde{u}}^2 + 2F \dot{\tilde{u}} \dot{\tilde{v}} + G \dot{\tilde{v}}^2)^{1/2}} \tag{\dag} \] If $\sigma$ is conformal and $\alpha(t) = (t, 0)$, $\tilde{\alpha}(t) = (0, 1)$ meeting at angle $\frac{\pi}{2}$ in $V$, we get using (\dag) \[ 0 = F \] Similarly using $\alpha(t) = (t, t)$ and $\tilde{\alpha}(t) = (t, -t)$ we get $E = G$. \myskip Conversely, if $\sigma$ is such that $E = G$ and $F = 0$ then with respect to the FFF is just \[ \rho(\dd u^2 + \dd v^2) ,\] where $\rho = E = G : V \to \RR$. From (\dag) we see that \[ \cos\theta = \frac{\dot{u} \dot{\tilde{u}} + \dot{v} \dot{\tilde{v}}}{(\dot{u}^2 + \dot{v}^2)^{1/2} (\dot{\tilde{u}}^2 + \dot{\tilde{v}}^2)^{1/2}} \] i.e. angles do \emph{not} change. \end{proof} \subsubsection*{Areas} Recall that the area of a parallelogram spanned by vectors $v$ and $w$ is \[ |v \times w| = (|v|^2 |w|^2 - (v \cdot w)^2)^{1/2} \] \begin{center} \includegraphics[width=0.3\linewidth] {images/31b97bcea93711ed.png} \end{center} Suppose we have $\sigma : V \to U \subset \Sigma$, $\sigma(0) = p$ and consider $\sigma_u, \sigma_v \in T_p\Sigma$ \begin{center} \includegraphics[width=0.6\linewidth] {images/c268970ea93711ed.png} \end{center} They span a parallelogram in $T_p\Sigma$ of area: \[ (|\sigma_u|^2 |\sigma_v|^2 - (\sigma_u \cdot \sigma_v)^2)^{1/2} = \sqrt{EG - F^2} \] \begin{flashcard}[area-formula-defn] \begin{definition*} $\Area(U) = \cloze{\int_V \sqrt{EG - F^2} \dd u \dd v}$. \end{definition*} \end{flashcard} \begin{note*} Suppose $\sigma : V \to U$, $\tilde{\sigma} : \tilde{V} \to U$ allowable parametrisations. $\tilde{\sigma} = \sigma \circ \varphi$, $\varphi = \sigma^{-1} \circ \tilde{\sigma}$, $\varphi : \tilde{V} \to V$ transition map. By Lemma 2.3: \[ \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} = (D\varphi)^\top \begin{pmatrix} E & F \\ F & G \end{pmatrix} D\varphi \] Hence (taking determinants) \[ \sqrt{\tilde{E}\tilde{G} - \tilde{F}^2} = |\det(D\varphi)| \sqrt{EG - F^2} \] Note the change of variables formula for integration shows that \[ \int_{\tilde{V}} \sqrt{\tilde{E} \tilde{G} - \tilde{F}^2} \dd \tilde{u} \dd \tilde{v} = \int_V \sqrt{EG - F^2} \dd u \dd v \] so $\Area(U)$ is \emph{instrinsic} and well-defined. \end{note*} \begin{example*} Consider the graph \[ \Sigma = \{(u, v, f(u, v)) : (u, v) \subset \RR^2\} \] with $f : \RR^2 \to \RR$ smooth. \begin{align*} \sigma(u, v) &= (u, v, f(u, v)) \\ \sigma_u &= (1, 0, f_u) \\ \sigma_v &= (0, 1, f_v) \\ EG - F^2 &= 1 + f_u^2 + f_v^2 \end{align*} If $U_R \subset \Sigma$ is $\sigma(B(0, R))$ then \begin{align*} \Area(U_R) &= \int_{B(0, R)} \sqrt{1 + f_u^2 + f_v^2} \dd u \dd v \\ &\ge \pi R^2 \end{align*} \begin{center} \includegraphics[width=0.3\linewidth] {images/f83ca82aa9eb11ed.png} \end{center} With equality only when $f_u = f_v = 0$ in $B(0, R)$, i.e. only when $U_R$ is a subset of a $z = \text{const}$ plane. So projection from $\Sigma$ to $\RR_{xy}^2$ is \emph{not} area preserving unless $\Sigma$ is a plane parallel to $\RR_{xy}^2$. \end{example*} \begin{example*} Contrast (Archimedes). \begin{center} \includegraphics[width=0.3\linewidth] {images/5f5b5cf4a9ec11ed.png} \end{center} The horizontal radial projection (with centre the $z$-axis) from $S^2$ to the cylinder is \emph{area-preserving} (see Example Sheet 2). \end{example*}