% vim: tw=50 % 20/01/2023 11AM \section{Surfaces (7-8 lectures)} \begin{flashcard}[topological-surface] \begin{definition*} A \emph{topological surface} is a topological space $\Sigma$ such that \cloze{ \begin{enumerate}[(a)] \item $\forall \rho \in \Sigma$, there is an open neighbourhood $p \in U \subset \Sigma$ such that $U$ is homeomorphic to $\RR^2$, or a disc $D^2 \subset \RR^2$, with its usual Euclidean topology. \item $\Sigma$ is Hausdorff and second countable (has a countable base) \end{enumerate} } \end{definition*} \end{flashcard} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item $\RR^2 \cong D(0, 1) = \{x \in \RR^2 \colon \|x\| < 1\}$ \item A space $X$ is \emph{Hausdorff} if for $p \neq q$ in $X$, there exists \emph{disjoint} open sets with $p \in U$ and $q \in V$ in $X$. A space is \emph{second countable} if it has a countable base, i.e. $\exists \{U_i\}_{i \in \NN}$ open sets such that every open set is a union of some of the $U_i$. Part (a) is the main point of the definition, and part (b) is technical honesty and convenience. \item If $X$ is Hausdorff / second countable so are subspaces of $X$. Euclidean space has these properties. (For second countable, consider open balls $B(c, r)$ with $c \in \QQ^n \subset \RR^n$ and $r \in \QQ_+ \subset \RR_+$). \end{enumerate} \subsubsection*{Examples of Topological Surfaces} \begin{enumerate}[(i)] \item $\RR^2$ the plane \item Any open set in $\RR^2$, i.e. $\RR^2 \setminus Z$ where $Z$ is closed, for example $Z = \{0\}$, $\RR^2 \setminus \{0\}$ is a surface, \[ Z = \{(0, 0) \cup \{(0, Y_n) \colon n = 1, 2, \dots\}\} \] \item Graphs: $f \colon \RR^2 \to \RR$ continuous graph: \[ \Gamma_f = \{(x, y, f(x, y)) \colon (x, y) \in \RR^2\} \subset \RR^3 \] subspace topology. Then this is a surface. \myskip Recall: if $X$, $Y$ topological spaces, then the product topology on $X \times Y$ has basic open sets $U \times V$ where $U \subset X$, $V \subset Y$ open. \myskip Feature: $g \colon Z \to X \times Y$ is continuous if and only if \[ \pi_X \circ g \colon Z \to X \] \[ \pi_Y \circ g \colon Z \to Y \] are both continuous (where $\pi_X \colon X \times Y \to X$ and $\pi_Y \colon X \times Y \to Y$ are the canonical projections). \myskip Application: $f \colon X \to Y$ continuous, $\Gamma_f \subset X \times Y$ is homeomorphic to $X$, $S(x) = (x, f(x))$ is continuous and then $\pi_X \mid_f$ and $S$ are inverse homeomorphisms. So $\Gamma_f \cong \RR^2$ for any $f \colon \RR^2 \to \RR$ continuous, so $\Gamma_f$ is a topological surface. \item The sphere: \[ S^2 = \{(x, y, ) \in \RR^3 \colon x^2 + y^2 + z^2 = 1\} \] (subspace topology). \begin{center} \includegraphics[width=0.6\linewidth] {images/2b7f2a5e98b811ed.png} \end{center} \[ \pi_+ \colon S^2 \setminus \{0, 0, 1\} \to \RR^2 \quad ((z = 0) \subset \RR^3) \] \[ (x, y, z) \mapsto \left( \frac{x}{1 - z}, \frac{y}{1 - z} \right) \] $\pi_+$ is continuous and has an inverse \[ (u, v) \mapsto \left( \frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right) \] so $\pi_+$ is a continuous bijection with continuous inverse and hence a homeomorphism. Similarly: \begin{center} \includegraphics[width=0.6\linewidth] {images/97dee23498b811ed.png} \end{center} $\pi_i \colon S^2 \setminus \{(0, 0, -1)\} \to \RR^2\}$ \[ (x, y, z) \mapsto \left( \frac{x}{1 + z}, \frac{y}{1 + z} \right) \] Stereographic projection from south pole, also a homeomorphism, so $S^2$ is a topological surface: the open sets $S^2 \setminus \{(0, 0, 1)\}$ and $S^2 \setminus \{0, 0, -1\}$ cover $S^2$ is Haudorff and second countable (inherited from $\RR^3$). Note: $S^2$ is compact. \item The \emph{real projective plane}. The group $\ZZ_2$ acts on $S^2$ by homeomorphisms via the antipodal map: $a \colon S^2 \to S^2$, $a(x, y, z) = (-x, -y, -z)$. $\ZZ_2 \injto \operatorname{Homeo}(S^2)$, non-trivial element $\to a$. \begin{definition*}[Real projective plane] The real projective plane is the quotient of $S^2$ by identifying every point with its antipodal image: \[ \mathbb{RP}^2 = S^2 / \ZZ_2 = S^2 / \sim \] where $x \sim a(x)$. \end{definition*} \end{enumerate}