Geometry

June 3, 2023

Contents

Lectures

[Lecture 1](#page-2-1) [Lecture 2](#page-4-0) [Lecture 3](#page-9-0) [Lecture 4](#page-12-0) [Lecture 5](#page-17-0) [Lecture 6](#page-21-0) [Lecture 7](#page-24-0) [Lecture 8](#page-27-0) [Lecture 9](#page-33-1) [Lecture 10](#page-38-0) [Lecture 11](#page-43-0) [Lecture 12](#page-47-0) [Lecture 13](#page-51-0) [Lecture 14](#page-55-0) [Lecture 15](#page-60-0) [Lecture 16](#page-63-0) [Lecture 17](#page-68-0) [Lecture 18](#page-72-0) [Lecture 19](#page-76-0) [Lecture 20](#page-80-0) [Lecture 21](#page-84-0) [Lecture 22](#page-88-0) [Lecture 23](#page-94-0)

[Lecture 24](#page-100-0)

Start of

[lecture 1](https://notes.ggim.me/Geom#lecturelink.1) 1 Surfaces (7-8 lectures)

Definition. A topological surface is a topological space Σ such that

- (a) $\forall \rho \in \Sigma$, there is an open neighbourhood $p \in U \subset \Sigma$ such that U is homeomorphic to \mathbb{R}^2 , or a disc $D^2 \subset \mathbb{R}^2$, with its usual Euclidean topology.
- (b) Σ is Hausdorff and second countable (has a countable base)

Remarks

- (1) $\mathbb{R}^2 \cong D(0,1) = \{x \in \mathbb{R}^2 : ||x|| < 1\}$
- (2) A space X is Hausdorff if for $p \neq q$ in X, there exists disjoint open sets with $p \in U$ and $q \in V$ in X. A space is second countable if it has a countable base, i.e. $\exists \{U_i\}_{i\in\mathbb{N}}$ open sets such that every open set is a union of some of the U_i . Part (a) is the main point of the definition, and part (b) is technical honesty and convenience.
- (3) If X is Hausdorff / second countable so are subspaces of X. Euclidean space has these properties. (For second countable, consider open balls $B(c,r)$ with $c \in \mathbb{Q}^n \subset \mathbb{R}^n$ and $r \in \mathbb{Q}_+ \subset \mathbb{R}_+$).

Examples of Topological Surfaces

- (i) \mathbb{R}^2 the plane
- (ii) Any open set in \mathbb{R}^2 , i.e. $\mathbb{R}^2 \setminus Z$ where Z is closed, for example $Z = \{0\}$, $\mathbb{R}^2 \setminus \{0\}$ is a surface,

$$
Z = \{(0,0) \cup \{(0,Y_n): n = 1,2,\dots\}\}\
$$

(iii) Graphs: $f: \mathbb{R}^2 \to \mathbb{R}$ continuous graph:

$$
\Gamma_f = \{(x, y, f(x, y)) \colon (x, y) \in \mathbb{R}^2\} \subset \mathbb{R}^3
$$

subspace topology. Then this is a surface.

Recall: if X, Y topological spaces, then the product topology on $X \times Y$ has basic open sets $U \times V$ where $U \subset X, V \subset Y$ open.

Feature: $g: Z \to X \times Y$ is continuous if and only if

$$
\pi_X \circ g \colon Z \to X
$$

$$
\pi_Y \circ g \colon Z \to Y
$$

are both continuous (where $\pi_X \colon X \times Y \to X$ and $\pi_Y \colon X \times Y \to Y$ are the canonical projections).

Application: $f: X \to Y$ continuous, $\Gamma_f \subset X \times Y$ is homeomorphic to $X, S(x) =$ $(x, f(x))$ is continuous and then $\pi_X |f$ and S are inverse homeomorphisms. So $\Gamma_f \cong \mathbb{R}^2$ for any $f: \mathbb{R}^2 \to \mathbb{R}$ continuous, so Γ_f is a topological surface.

(iv) The sphere:

$$
S^2 = \{(x, y,) \in \mathbb{R}^3 \colon x^2 + y^2 + z^2 = 1\}
$$

(subspace topology).

$$
\pi_+ : S^2 \setminus \{0, 0, 1\} \to \mathbb{R}^2 \quad ((z = 0) \subset \mathbb{R}^3)
$$

$$
(x, y, z) \mapsto \left(\frac{x}{1 - z}, \frac{y}{1 - z}\right)
$$

 π_{+} is continuous and has an inverse

$$
(u, v) \mapsto \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)
$$

so π_{+} is a continuous bijection with continuous inverse and hence a homeomorphism. Similarly:

 $\pi_i: S^2 \setminus \{(0,0,-1)\} \to \mathbb{R}^2$

$$
(x,y,z)\mapsto \left(\frac{x}{1+z},\frac{y}{1+z}\right)
$$

Stereographic projection from south pole, also a homeomorphism, so S^2 is a topological surface: the open sets $S^2 \setminus \{(0,0,1)\}$ and $S^2 \setminus \{0,0,-1\}$ cover S^2 is Haudorff and second countable (inherited from \mathbb{R}^3). Note: S^2 is compact.

(v) The real projective plane. The group \mathbb{Z}_2 acts on S^2 by homeomorphisms via the antipodal map: $a: S^2 \to S^2$, $a(x, y, z) = (-x, -y, -z)$. $\mathbb{Z}_2 \hookrightarrow \text{Homeo}(S^2)$, nontrivial element $\rightarrow a$.

Definition (Real projective plane). The real projective plane is the quotient of $S²$ by identifying every point with its antipodal image:

$$
\mathbb{RP}^2 = S^2/\mathbb{Z}_2 = S^2/\sim
$$

where $x \sim a(x)$.

Start of

[lecture 2](https://notes.ggim.me/Geom#lecturelink.2) **Lemma 1.1.** As a set, \mathbb{RP}^2 is naturally in bijection with the set of straight lines through 0.

> *Proof.* Any straight line through $0 \in \mathbb{R}^3$ meets S^2 in exactly a pair of antipodal points and each pair determines a straight line.

Lemma 1.2. \mathbb{RP}^2 is a topological surface with the quotient topology.

Recall: Quotient topology: $q: X \to Y, V \subset Y$ is open if and only if $q^{-1}V \subset X$ is open in X (so q is continuous).

Proof. First we check that \mathbb{RP}^2 is Hausdorff. If $[p] \neq [q] \in \mathbb{RP}^2$, then $\pm p, \pm q \in \S^2$ are distinct antipodal pairs. Take small open discs centred at p and q and their antipodal image as in picture

This gives open neighbourhood of [p] and [q] in \mathbb{RP}^2 . $q: S^2 \to \mathbb{RP}^2$, $q(B_\delta(p))$ is open since

$$
r^{-1}(q(B_\delta(p)) = B_\delta(p) \cup (-B_\delta(p))
$$

 \mathbb{RP}^2 is second countable: Let \mathcal{U}_0 be a countable base for S^2 and let

$$
\overline{\mathcal{U}} = \{q(u) \colon U \in \mathcal{U}\}
$$

 $q(u)$ is open:

$$
q^{-1}(qU) = U \cup (-U)
$$

 \bar{U} is clearly countable since U is Take $V \subset \mathbb{RP}^2$ open. By definition, $q^{-1}V$ is open in S^2 hence $q^{-1}V = \bigcup_{\alpha} U_{\alpha}, U_{\alpha} \in \mathcal{U}$.

$$
V = q(q^{-1}V) = q\left(\bigcup_{\alpha} U_{\alpha}\right) = \bigcup_{\alpha} q(U_{\alpha})
$$

Finally, let $p \in S^2$ and $[p] \in \mathbb{RP}^2$ its image. Let \overline{D} be a small closed disc neighbourhood of $p \in S^2$.

 $q|_{\overline{D}}\colon \overline{D} \to q(\overline{D}) \subset \mathbb{RP}^2$ is injective and continuous, from a compact space to a Hausdorff space. (Recall "Topological inverse function theorem"). A continuous bijection from a compact space to a Hausdorff space is a homemorphism (Analysis and Topology). So $q|_{\overline{D}}: \overline{D} \to q(\overline{D})$ is a homeomorphism. This induces a homemorphism

$$
q|_D\colon D\to q(D)\subset\mathbb{RP}^2
$$

(*D* is open disc). So $[p] \in q(D)$ has an open neighbourhood in \mathbb{RP}^2 homeomorphic to an open disc and we're done. \Box

(vi) Let $S^1 = \{z \in \mathbb{Z} : |z| = 1\}$. The forms $S^1 \times S^1$ with the subspace topology of \mathbb{C}^2 (check: is the same as product topology).

Lemma 1.3. The forms is a topological surface.

Proof. $\mathbb{R}^2 \stackrel{e}{\to} S^1 \times S^1 \subset \mathbb{C} \times \mathbb{C}, (s,t) \mapsto (e^{2\pi i s}, e^{2\pi i t}).$

Equivalence relation on \mathbb{R}^2 given by translating by $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$. The map

 $[0,1]^2 \hookrightarrow \mathbb{R}^2 \overset{q}{\rightarrow} \mathbb{R}^2/\mathbb{Z}^2$

is onto, so $\mathbb{R}^2/\mathbb{Z}^2$ is compact. Note that \hat{e} is a continuous bijection. By Topological Inverse Function Theorem, \hat{e} is a homeomorphism.

Note. We already know that $S^1 \times S^1$ is compact, Hausdorff and second countable (closed and bounded in \mathbb{R}^4).

As for the case of $S^2 \to \mathbb{RP}^2$, pick $[p] \in q(p), p \in \mathbb{R}^2$ and small closed disc $\overline{D}(p) \subset \mathbb{R}^2$ such that $\forall (u, v) \neq (0, 0) \in \mathbb{Z}^2$, $\overline{D}(p) \cap (\overline{D}(p) + (u, v)) = \emptyset$.

Then $e|_{\overline{D}(p)}$ and $q|_{\overline{D}(p)}$ are injective. Now restricting to the open disc as before, we get an open disc neighbourhood of $[p] \in \mathbb{R}^2/\mathbb{Z}^2$ hence $S^1 \times S^1$ is a topological \Box surface.

Another viewpoint: $\mathbb{R}^2/\mathbb{Z}^2$ is also given by imposing on $[0,1]^2$ the equivalence relation $(x, 0) \sim (x, 1) \forall 0 \le x \le 1$, $(0, y) \sim (1, y) \forall 0 \le y \le 1$.

(vii) Let P be a planar Euclidean polygon (including interior). Assume the edges are oriented and paired and for simplicity assume Euclidean lengths of e and \hat{e} are equal if $\{e, \hat{e}\}\$ are paired.

Label by letters and describe orientation by a sign \pm relative to the clock with orientation of \mathbb{R}^2 .

If ${e, \hat{e}}$ are parallel edges, there is a unique isometry from from e to \hat{e} respecting their orientation, say

$$
f_{e\hat e}\colon e\to \hat e
$$

These maps generate an equivalence relation on P where we identify $x \in \partial P$ with $f_{e\hat{e}}(x)$ whenever $x \in e$.

Lemma 1.4. P/\sim (with the quotient topology) is a topological surface.

Start of [lecture 3](https://notes.ggim.me/Geom#lecturelink.3)

If $p \in \text{interior}(P)$ we pick $\delta > 0$ small so that $\overline{B_{\delta}(p)}$ lies in the interior(P). Now argue as before: the quotient map is injective on $\overline{B_{\delta}(P)}$ and homeomorphism on its interior. If $p \in \text{edge}(P)$:

Say $p = (0, y_0) \sim (1, y_0) = p'$. Take δ small enough so half discs of radius δ as shown don't meet the vertices. Define a map as

$$
(x,y) \mapsto \begin{cases} (x, y - y_0) & \text{on } U \\ (x - 1, y - y_0) & \text{on } V \end{cases}
$$

Recall: If $X = A \cup B$, A, B closed and $f: A \rightarrow Y$ and $g: B \rightarrow Y$ are continuous, and $g|_{A\cap B} = g|_{A\cap B}$ then they define a continuous map on X.

 f_u and f_V are continuous on $U, V \subset [0, 1]^2$, they induce continuous maps on q_U and q_V. $(q: [0,1]^2) \to [0,1]^2 / \sim)$. In T^2 , $\frac{1}{2}$ $\frac{1}{2}$ discs, q_U and q_V overlap, but our maps agree as they are compatible with the equivalence relation. So f_U and f_V "glue" to give a continuous map on an open neighbourhood of $[p] \in T^2$ to \mathbb{R}^2 . Now the "usual argument" (pass to closed disc, use Topological Inverse Function Theorem pass back to interior) shows that if $[p] \in T^2$ lies in edge(P), it has a neighbourhood homeomorphic to a disc.

Finally at a vertex of $[0, 1]^2$

and analogously we get that a vertex has a neighbourhood homeomorphic to a sic and $[0, 1]^2 / \sim$ is a topological surface.

For a general polygon: *similar idea*. Same situation as T^2 for interior points and points on edges. How about vertices?

If $v \in \text{vertex}(P)$ has k vertices in its equivalence class, there exist k sectors in P. Any sector can be identified with our favourite sector (for example a quarter circle is homemorphic to a semi circle). In $(*)$ we get an open disc neighbourhood of v (red dots) via

If we have $k = 1$, we must have either

But this quotient space is homemorphic to $D^2 \subset \mathbb{R}^2$. These open neighbourhoods of points in P/\sim show that P is locally homeomorphic to a disc.

Exercise: Check that P/\sim is Hausdorff and second countable.

(viii) Connected sums: Given topological surfaces Σ_1 and Σ_2 we can remove an open disc from each and glue the resulting boundary circles

Explicitly take $\Sigma_1 \setminus D_1 \perp \!\!\! \perp \Sigma_2 \setminus D_2$ and impose a quotient relation $\theta \in \partial D_1 \sim \theta \in$ ∂D_2 where θ parametrisation. $S' = \partial D_i$, ∂D_i is the boundary of ∂D_i . The result $\Sigma_1 \# \Sigma_2$ is called the connected sum of Σ_1 and Σ_2 . In principle this depends on many choices and it takes some effort to prove that it is well-defined.

Lemma 1.5. The connected sum $\Sigma_1 \# \Sigma_2$ is a topological surface (no proof in this course).

If you want to learn more:

- Introduction to topological manifolds by Jack Lee.
- Introduction to smooth manifolds by Jack Lee.

Start of

[lecture 4](https://notes.ggim.me/Geom#lecturelink.4) More Examples

(1) Octagon P:

Cut in half:

So P/\sim looks like:

(2) Now projective plane example:

 $\mathbb{RP}^2 = S^2/\pm 1 = \text{(closed upper hemisphere)/(}\theta \sim -\theta\text{)}.$

1.1 Triangulations and Euler Characteristic

Definition. A subdivision of compact topological surface Σ comprises

- (i) a finite set V of vertices.
- (ii) a finite collection of edges $E = \{e_i : [0,1] \to \Sigma\}$ such that:
	- For all *i*, e_i is a continuous injection on its interior and $e_i^{-1}V = \{0, 1\}$
	- e_i and e_j have disjoint image except perhaps at their endpoints in V.
- (iii) We require that each connected component of $\Sigma \setminus (\bigcup_i e_i[0,1] \cup V)$ is homeomorphic to an open disc called a *face*. (so the closure of a face has boundary $\overline{F} \setminus F$ lying in $\bigcup_i e_i[0,1] \cup V$.

A subdivision is a triangulation if every closed face (closure of a face) contains exactly 3 edges and two closed faces are distinct, meet in exactly one edge or just one vertex.

Examples

A subdivision of S^2 :

A triangulation of S^2 :

Subdivision of T^2 (1 vertex, 2 edges and 1 face):

Here the left drawing is not a triangulation of T^2 but the right one is:

A very degenerate subdivision of S^2 (1 vertex, 0 edges, 1 face):

Definition. The Euler characteristic of a subdivision is

$$
\#V - \#E + \#F
$$

Theorem 1.6. (i) Every compact topological surface admits subdivisions and triangulation.

(ii) The Euler characteristic, denote by $\chi(\Sigma)$, does not depend on the choice of subdivision and defines a topological invariant of the surface (depends on on the homeomorphism type of Σ).

Remark. Hard to prove particularly (i). For (ii) there are cleaner approaches (Algebraic Topology part II).

Examples

- (1) $\chi(S^2) = 2$.
- (2) $\chi(T^2) = 0$.
- (3) Σ_1 , Σ_2 compact topological surfaces, and we form $\Sigma_1 \# \Sigma_2$. We remove open discs $D_i \subset \Sigma_i$ which is a face of a triangulation in each surface.

$$
\implies \chi(\Sigma_1 \# \Sigma_2) = \chi(\Sigma_1) + \chi(\Sigma_2) - 2
$$

In particular if Σ_g is a surface with g holes $(\Sigma = \#_{c=1}^g T^2$, then $\chi(\Sigma_g) = 2 - 2g$, g is called the genus.

1.2 Abstract Smooth Surfaces

 Σ topological surface.

Definition. Let (U, φ) be a pair where $U \subset \Sigma$ is open and $\varphi: U \to V \subset \mathbb{R}^2$ is a homeomorphism (with V open). Then this pair is called a *chart*. THe inverse $\sigma = \varphi^{-1} \colon V \to U \subset \Sigma$ is called a *local parametrisation* for Σ .

Definition. A collection of charts

 $\{(U_i,\varphi_i)_{i\in I}\}\$

such that $\bigcup_{i \in I} U_i = \Sigma$ is called an *atlas* for Σ .

Examples

- (1) If $z \subset \mathbb{R}^2$ closed then $\mathbb{R}^2 \setminus z$ is a topological surface with an atlas with one chart: $(\mathbb{R}^2 \setminus z, \varphi = \mathrm{id}).$
- (2) For S^2 , we have an atlas with 2 charts: the 2 stereographic projections.

Definition. Let (U_i, φ_i) , $i = 1, 2$ be two charts containing $p \in \Sigma$. The map $\varphi_2 \circ$ $\varphi_1^{-1}|_{\varphi_1(U_1 \cap U_2)}$ is called a *transition map* between charts.

 $\varphi_1(U_1 \cap U_2) \stackrel{\varphi_2 \circ \varphi_1^{-1}}{\longrightarrow} \varphi_2(U_1 \cap U_2)$ is a homeomorphism.

Recall: If $V \subset \mathbb{R}^n$ and $V' \subset \mathbb{R}^m$ are open, a map $f: V \to V'$ is called smooth if it is infinitely differentiable, i.e. it has continuous partial derivatives of all orders. A homeomorphism $f: V \to V'$ is called a *diffeomorphism* if it is smooth and it has a smooth inverse.

Definition. An abstract smooth surface Σ is a topological surface with an atlas of charts $\{(U_i, \varphi_i)\}_{i \in I}$ such that all transition maps are *diffeomorphisms*.

Start of [lecture 5](https://notes.ggim.me/Geom#lecturelink.5) Examples

- (1) (See Example Sheet 1). The atlas of 2 charts with stereographic projections gives $S²$ the structure of an abstract smooth surface.
- (2) The torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. Recall that we obtained charts from (the inverses of) the projection restricted to small discs in \mathbb{R}^2 .

The transition maps are *translations* so T^2 inherits the structure of a smooth surface.

 $e(t,s) = (e^{2\pi i t}, e^{2\pi i s})$. Consider an atlas

$$
\{(e(D_{\varepsilon}(x,y)),e^{-1} \text{ on its image})\}
$$

 $\varepsilon < \frac{1}{3}$.

Definition. Let Σ be an abstract smooth surface and $f : \Sigma \to \mathbb{R}^n$ a map. We say that f is smooth at $p \in \Sigma$ if whenever (U, φ) is a chart at p, belonging to the smooth atlas for Σ , the map

$$
f \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}^n
$$

is smooth at $\varphi(p) \in \mathbb{R}^2$.

Note. If it holds for one chart at p , it holds for all charts at p :

$$
f\circ\varphi^{-1}=f\circ\varphi_2^{-1}\circ\underbrace{(\varphi_2\circ\varphi_1^{-1})}_{\text{diffeomorphism}}
$$

Chain rule!

Definition. Σ_1 , Σ_2 abstract smooth surfaces. A map $f : \Sigma_1 \to \Sigma_2$ is smooth if it is smooth in local charts: there are charts (U, φ) at p and (V, ψ) at $f(p)$ with $f(U) \subset V$ such that $\psi \circ f \circ \varphi^{-1}$ is smooth at $\varphi(p)$.

Again, if f is smooth at p, then smoothness of the local representation of f at p will hold for all charts at p and $f(p)$ on the given atlas.

Definition. Σ_1 and Σ_2 are diffeomorphic if there exists $f : \Sigma_1 \to \Sigma_2$ that is smooth with smooth inverse.

Definition. If $Z \subset \mathbb{R}^n$ is an arbitrary subset, we say that $f: Z \to \mathbb{R}^n$ is smooth near $p \in Z$ if there exists open $B, p \in B \subset \mathbb{R}^n$ and a smooth $F : B \to \mathbb{R}^n$ such that $F|_{B \cap Z} = f|_{B \cap Z}$, i.e. f is locally the restriction of a smooth map defined on an open set.

Definition. If $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ are subsets, we say that X and Y are diffeomorphic if there exists $f : X \to Y$ smooth with smooth inverse.

Definition. A smooth surface in \mathbb{R}^3 is a subset $\Sigma \subset \mathbb{R}^3$ such that $\forall p \in \Sigma$ there exists an open set $p \in U \subset \Sigma$ such that U is diffeomorphic to an open set in \mathbb{R}^2 . In other words, for all $p \in \Sigma$ there exists an open ball B such that $p \in B \subset \mathbb{R}^3$ and $F: B \to V \subset \mathbb{R}^2$ smooth such that $F|_{B \cap \Sigma}: B \cap \Sigma \to V$ is a homeomorphism with inverse $V \to B \cap \Sigma$ smooth.

So we have 2 notions: one abstract and one taking advantage of the ambient space \mathbb{R}^3 .

Theorem 1.7. For a subset $\Sigma \subset \mathbb{R}^3$, the following are equivalent (TFAE):

- (a) Σ is a smooth surface in \mathbb{R}^3
- (b) Σ is locally the graph of a smooth function over one of the coordinate planes, i.e. $\forall p \in \Sigma$ there exists open $p \in B \subset \mathbb{R}^3$ and open $V \subset \mathbb{R}^2$ such that

$$
\Sigma \cap B = \{(x, y, g(x, y)) : (g: V \to \mathbb{R}), g \text{ smooth}\}\
$$

(or the graph over the xz or yz plane locally).

- (c) Σ is locally cut out by a smooth function with non-zero derivative, i.e. $\forall p \in \Sigma$, there exists $p \in B \subset \mathbb{R}^n$ (B open) and $f : B \to \mathbb{R}$ such that $\Sigma \cap B = f^{-1}(0)$ and $Df|_x \neq 0$ for all $x \in B$.
- (d) Σ is locally the image of an *allowable parametrisation* i.e. if $p \in \Sigma$, there exists open $p \in U \subset \Sigma$ and $\sigma : V \to U$ smooth such that σ is a homeomorphism and $D\sigma|_x$ has rank 2 for all $x \in V$.

Remark. (b) says that if Σ is a smooth surface in \mathbb{R}^3 , each $p \in \Sigma$ belongs to a chart (U, φ) where φ is the restriction of $\pi_{xy}, \pi_{yz}, \pi_{xz}$ from \mathbb{R}^3 to \mathbb{R}^2 .

The transition map

$$
(x, y) \mapsto (x, y, f(x, y)) \mapsto (y, g(x, y))
$$

has inverse

$$
(y, z) \rightarrow (h(y, z), y, z) \rightarrow (h(y, z), y)
$$

are *clearly smooth*. This gives Σ the structure of an abstract smooth surface.

Start of

[lecture 6](https://notes.ggim.me/Geom#lecturelink.6) Theorem (Inverse function theorem). Let $U \subset \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}^n$ be a continuously differentiable map. Let $p \in U$, $f(p) = q$ and suppose $Df|_p$ is invertible. Then there is an open neighbourhood V of q and a differentiable map $g: V \to \mathbb{R}^n$, $g(q) = p$ with image an open neighbourhood $U' \subset U$ of p such that $f \circ g = id_V$ and $g \circ f = id_U$. If f is smooth, then so is g.

Remark. $Df|_q = (Df|_p)^{-1}$ by the chain rule.

If we have a map $f : \mathbb{R}^n \to \mathbb{R}^m$ where $n > m$, what can we say if $Df|_p$ is surjective?

$$
Df|_p = \left(\frac{\partial f_i}{\partial x_j}\right)_{m \times n}
$$

having full rank means that permuting coordinates if necessary, we can assume that the first (or last) m columns are linearly independent.

Theorem (Implicit function theorem). Let $p = (x_0, y_0) \in U$, $U \subset \mathbb{R}^k \times \mathbb{R}^l$ open and let $f: U \to \mathbb{R}^l$, $p \mapsto 0$ be a continuously differentiable map with $\left(\frac{\partial f_i}{\partial u}\right)$ ∂y_j \setminus $\int_{l\times l}$ and isomorphism at p. Then there exists an open neighbourhood $x_0 \in V \subset \mathbb{R}^k$ and a continuously differentiable map $g: V \to \mathbb{R}^l$ such that if $(x, y) \in U \cap (V \times \mathbb{R}^l)$, then

$$
f(x,y) = 0 \iff y = g(x)
$$

If f is smooth so is q .

Proof. Introduce $F: U \to \mathbb{R}^k \times \mathbb{R}^l$, $(x, y) \mapsto (x, f(x, y))$. Then

$$
DF = \begin{pmatrix} I & * \\ 0 & * \frac{\partial f_i}{\partial y_j} \end{pmatrix}
$$

So $DF|_{(x_0,y_0)}$ is an isomorphism. So the inverse function theorem says that F is locally invertible near

$$
F(x_0, y_0) = (x_0, f(x_0, y_0)) = (x_0, 0)
$$

Take a product open neighbourhood $(x_0, 0) \in V \times V'$, $V \subset \mathbb{R}^t$ open, $V' \subset \mathbb{R}^l$ open and the continuously differentiable inverse $G: V \times V' \to U' \subset U \subset \mathbb{R}^k \times \mathbb{R}^l$ such that $F \circ G = id_{V \times V'}$. Write

$$
G(x, y) = (\varphi(v, y), \psi(x, y))
$$

Then

$$
F \circ G(x, y) = (\varphi(x, y), f(\varphi(x, y), \psi(x, y)))
$$

= (x, y)
 $\implies \varphi(x, y) = x$
and $f(x, \psi(x, y)) = y$

when $(x, y) \in V \times V'$. Thus

$$
f(x, y) = 0 \iff y = \psi(x0)
$$

Define $g: V \to \mathbb{R}^l$ as $x \to \psi(x, 0)$, $v_0 \mapsto y_0$ and does what we want.

 \Box

Examples

(1) $f: \mathbb{R}^2 \to \mathbb{R}$ smooth, $f(x_0, y_0) = 0$. Assume $\frac{\partial f}{\partial y}|_{(x_0, y_0)} \neq 0$. Then there exists smooth $g:(x_0-\varepsilon,x_0+\varepsilon)\to\mathbb{R}$ such that

$$
g(x_0) = g(y_0)
$$

and

$$
f(x,y) = 0 \iff y = g(x)
$$

Since $f(x, g(x)) = 0$, chain rule implies

$$
\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} g'(x) = 0
$$

$$
\implies g'(x) = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}
$$

(2) Let $f: \mathbb{R}^3 \to \mathbb{R}$ smooth and $f(x_0, y_0, z_0) = 0$, and assume $Df|_{(x_0, y_0, z_0)} \neq 0$. Permuting coordinates if necessary we may assume that $\frac{\partial f}{\partial z}\Big|_{(x_0,y_0,z_0)} \neq 0$. Then there exists an open neighbourhood $(x_0, y_0) \in V \subset \mathbb{R}^2$ and a smooth $g: V \to \mathbb{R}$, $g(x_0, y_0) = z_0$ such that for an open set $U \ni (x_0, y_0, z_0)$

$$
f^{-1}(0) \cap U = \text{graph}(g)
$$

 $(\{(x, y, g(x, y)) : (x, y) \in V\})$

We return to Theorem 1.7. Recall:

Theorem. For a subset $\Sigma \subset \mathbb{R}^3$, the following are equivalent (TFAE):

- (a) Σ is a smooth surface in \mathbb{R}^3
- (b) Σ is locally a graph over a coordinate plane.
- (c) Σ is locally $f^{-1}(0)$, f smooth and $Df|_p \neq 0$
- (d) Σ is locally the image of an allowable parametrisation $\sigma: V \to \Sigma \subset \mathbb{R}^3$, σ smooth, σ homeomorphism onto $\sigma(V)$ and $D\sigma$ injective.

Proof. (1) (b) implies all others.

If Σ is locally $\{(x, y, g(x, y)) : (x, y) \in V\}$ then we get a chart from projection $\Pi_{x,y}$ which is smooth and defined on an open neighbourhood of Σ , hence (b) implies (c).

Also, it is cut out by

$$
f(x, y, z) = z - g(x, y)
$$

Clearly $\frac{\partial f}{\partial z} = 1 \neq 0$, (b) implies (c). Also $\sigma(x, y) = (x, y, f(x, y))$ is allowable and smooth:

$$
\sigma_x = (1, 0, g_x)
$$

$$
\sigma_y = (0, 1, g_y)
$$

are linearly independent, (b) implies (d).

- (2) (a) implies (d) is part of the definition of being a smooth surface in \mathbb{R}^3 and hence locally diffeomorphic to \mathbb{R}^2 (the inverse of the local diffeomorphism is the allowable parametrisation).
- (3) (c) implies (b) was example number 2 above for the implicit function theorem.
- (4) We'll show that (d) implies (b) and we're done. Let $p \in \Sigma$, $\sigma : V \to U \subset \Sigma$, $\sigma(0) = p \in U$.

$$
\sigma = (\sigma_1(u, v), \sigma_2(u, v), \sigma_3(u, v))
$$

$$
D\sigma = \begin{pmatrix} \frac{\partial \sigma_1}{\partial u} & \frac{\partial \sigma_1}{\partial v} \\ \frac{\partial \sigma_2}{\partial u} & \frac{\partial \sigma_2}{\partial v} \\ \frac{\partial \sigma_3}{\partial u} & \frac{\partial \sigma_3}{\partial v} \end{pmatrix}
$$

So there exists 2 rows defining an invertible matrix. Suppose first two rows

$$
\Pi_{xy} \circ \sigma : V \to \mathbb{R}^2, D(\Pi_{xy} \circ \sigma)|_0
$$

isomorphism. Then inverse function theorem implies locally invertible, let $\phi =$ $\Pi_{xy} \circ σ$. Σ is now the graph of

$$
(x, y, \sigma(\phi^{-1}(x, y)) = (\sigma_1(u, v), \sigma_2(u, v), \sigma_3(u, v)) \in \Sigma
$$

Start of

[lecture 7](https://notes.ggim.me/Geom#lecturelink.7) Examples

(1) The ellipsoid $E \subset \mathbb{R}^3$ is $f^{-1}(0)$, for $f : \mathbb{R}^3 \to \mathbb{R}$

$$
f(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1
$$

 $\forall p \in E = f^{-1}(0), Df|_p \neq 0$, so E is a smooth surface in \mathbb{R}^2 .

(2) Surfaces of revolution.

Let $\gamma : [a, b] \to \mathbb{R}^3$ be a smooth map with image in the xz-plane

$$
\gamma(t) = (f(t), 0, g(t))
$$

Assume γ is injective, $\gamma'(t) \neq 0 \forall t$ and $f > 0$. Rotate this curve around the z-axis.

The associated surface of revolution as allowable parametrization

$$
\sigma(u, v) = (f(u)\cos v, f(u)\sin v, g(u))
$$

$$
(u, v) \subseteq (a, b) \times (\theta, \theta + 2\pi)
$$

 $\theta \in [0, 2\pi)$ fixed. σ homemorphic onto its image (check!)

$$
\sigma_u = (f' \cos v, f' \sin v, g')
$$

$$
\sigma_v = (-f \sin v, f \cos v, 0)
$$

and $\|\sigma_u \times \sigma_v\|^2 = f^2(f^2 + g^2) \neq 0.$

1.3 Orientability

 $V, V' \subset \mathbb{R}^2$ open, $f: V \to V'$ a diffeomorphism. Then at any $x \in V$, $Df|_x \in GL_2(\mathbb{R})$. Let $\operatorname{GL}_2^+(\mathbb{R}) \subset \operatorname{GL}_2(\mathbb{R})$ be the subgroup of matrices of *positive* determinant.

Definition. We say that f is *orientation preserving* if $Df|_x \in GL_2^+(\mathbb{R})$ for all $x \in V$.

Definition. An abstract smooth surface Σ is *orientable* if it admits an atlas such that the transition maps are orientation preserving diffeomorphisms of open sets of \mathbb{R}^2 .

A choice of such an atlas is an *orientation* of Σ and we say that Σ is oriented.

Lemma 1.8. If Σ_1 and Σ_2 are abstract smooth surfaces and they are diffeomorphic then Σ_1 is orientable if and only if Σ_2 is orientable.

Proof. Suppose $f : \Sigma_1 \to \Sigma_2$ is a diffeomorphism and Σ_2 is orientable and equipped with an oriented atlas

Consider the atlas on Σ_1 given by $(f^{-1}U, \psi \circ f|_{f^{-1}U})$, where (U, ψ) is a chart of Σ_2 . The transition function between two such charts is exactly the transition function in the Σ_2 atlas. \Box

Remarks

(1) There is no sensible classification of all smooth or topological surfaces, for example $\mathbb{R}^2 \setminus Z$ for Z closed realises all kinds of different homeomorphic types.

By contrast, compact smooth surfaces up to diffeomorphism are classified by Euler characteristic.

(2) There's a definition of orientation preserving homeomorphism that needs some algebraic topology. The Möbius band is the surface:

It turns out that abstract smooth surface is orientable \iff it contains no subsurface homeomorphic to a Möbius band.

(3) We get other structure by demanding transition maps to be such that

$$
D(\varphi_1\varphi_2^{-1})|_x \in G \subset \mathrm{GL}_2(\mathbb{R})
$$

 $G = GL_1(\mathbb{C}) \subset GL_2(\mathbb{R}) \rightarrow$ Riemann surfaces.

Examples

- (1) $S²$ with the atlas of 2 stereographic projections, you computed the transition map $(u, v) \mapsto \left(\frac{u}{u^2+v^2}, \frac{v}{u^2+v^2}\right)$ on $\mathbb{R}^2 \setminus \{0\}$. Check: this is orientation preserving.
- (2) T^2 , transition maps are translations of \mathbb{R}^2 , so T^2 is orientated.

For surfaces in \mathbb{R}^3 we'd like to have orientability dictated by some "ambient feature".

Definition. $\Sigma \subset \mathbb{R}^3$ smooth surface, $p \in \Sigma$. Fix an allowable parametrization $\sigma: V \to U \subset \Sigma$, $\sigma(0) = p$. Then the tangent plane $T_p \Sigma$ of Σ at p is $\text{Im}(D\sigma|_0) \subset \mathbb{R}^3$ a 2D vector subspace of \mathbb{R}^2 . The *affine* tangent plane of Σ at p, is $p + T_p \Sigma \subset \mathbb{R}^3$.

Lemma 1.9. $T_p \Sigma$ is well-defined, i.e. it is independent of the choice of allowable parametrisation near p.

Start of [lecture 8](https://notes.ggim.me/Geom#lecturelink.8)

Proof. $\sigma: V \to U \subset \Sigma$, $\sigma(0) = p$, $\tilde{\sigma}: \tilde{V} \to \tilde{U} \subset \Sigma$, $\tilde{\sigma}(0) = p$. Transition map $\sigma^{-1} \circ \tilde{\sigma}$ implies:

$$
\tilde{\sigma} = \sigma \circ (\sigma^{-1} \circ \tilde{\sigma})
$$

So $D(\sigma^{-1} \circ \tilde{\sigma})|_0$ isan isomorphism. Chain rule implies

$$
\mathrm{Im}(D\tilde{\sigma}|_0) = \mathrm{Im}(D\sigma|_0)
$$

 \Box

Definition. $\Sigma \subset \mathbb{R}^3$. The normal direction at p is $(T_p \Sigma)^{\perp}$ (Euclidean orthogonal ocmplement to $T_p \Sigma$). At each $p \in \Sigma$ we have two unit normal vectors.

Definition. A smooth surface in \mathbb{R}^3 is *two-sided* if it admits a continuous global choice of unit normal vectors.

Lemma 1.10. A smooth surface in \mathbb{R}^3 is orientable with its abstract smooth surface structure if and only if it is two-sided.

Proof. Let $\sigma: V \to U \subset \Sigma$ be allowable. Define the *positive* unit normal with respect to σ at p as the unique $n_{\sigma}(p)$ such that $\{\sigma_u, \sigma_v, n_{\sigma}(p)\}\$ and $\{e_1, e_2, e_3\}$ induce the same orientation in \mathbb{R}^3 (ie they are related by a choice of basis matrix with positive determinant).

$$
\frac{\sqrt{\frac{1}{n}e^{i\theta}}\int_{\theta_{i}}^{0}e_{i}^{2}}{\int_{\theta_{i}}^{0}e_{i}^{2}}\sqrt{\frac{2}{\epsilon_{i}}}\int_{\theta_{i}}^{\theta_{i}}e_{i}^{2}
$$

Explicitly:

$$
n_{\sigma}(p) = \frac{\sigma_n \times \sigma_v}{\|\sigma_u \times \sigma_v\|}
$$

Let $\tilde{\sigma}$ be another allowable parametrisation.

$$
\tilde{\sigma}:\tilde{V}\to \tilde{U}\subset \Sigma
$$

and suppose Σ is orientable as an abstract smooth surface with σ and $\tilde{\sigma}$ belonging to the same oriented atlas.

$$
\sigma = \tilde{\sigma} \circ \varphi \qquad \varphi = \tilde{\sigma}^{-1} \circ \sigma
$$

and

$$
D\varphi|_0=\begin{pmatrix}\alpha&\beta\\\gamma&\delta\end{pmatrix}
$$

Chain rule:

$$
\sigma_u = \alpha \tilde{\sigma}_{\tilde{w}} + \gamma \tilde{\sigma}_{\tilde{v}} \sigma_v \qquad \qquad = \beta \tilde{\sigma}_{\tilde{w}} + \delta \tilde{\sigma}_{\tilde{v}}
$$

and

$$
\sigma_u \times \sigma_v = \underbrace{\det(D\varphi|_0)}_{>0} \tilde{\sigma}_{\tilde{u}} \times \tilde{\sigma}_{\tilde{v}} \tag{*}
$$

So the positive unit normal at p was intrinsic and does not depend on the parametrisation. Since

$$
\frac{\sigma_{u}\times\sigma_{v}}{\left\Vert \sigma_{u}\times\sigma_{v}\right\Vert }
$$

is continuous, Σ is 2-sided.

Conversely, if Σ is 2-sided we have a global choice of n, so we can consider the subatlas of the smooth atlas such that we have a chart $(U, \varphi) = \varphi^{-1} = \sigma$ and $\{\sigma_u, \sigma_v, u\}$ is an orientable basis of \mathbb{R}^3 . (*) shows that transition maps between such charts are orientation preserving. Hence Σ is orientable. \Box

$$
T_p \Sigma = \{ \gamma'(0) : \text{with } \gamma \text{ as above} \}
$$

= "tangent vector to curves in Σ "

Examples

 (1) $S^2 \subset \mathbb{R}^3$

Take any $\gamma: (-\varepsilon, \varepsilon) \to S^2$, $\gamma(0) = p$, $|\gamma(t)|^2 = 1$. Differentiation at $t = 0$ $\langle \gamma'(0), p \rangle = 0$ $\implies (T_pS^2)^{\perp} = \mathbb{R}p$ $\implies n(p) = p$

 S^2 is 2-sided.

(2) The Möbius band, start with unit circle in the xy -plane.

and take an open interval of length 1. Rotate this line in the cz-plane s we move around the circle such that it has rotate by $\frac{\theta}{2}$ after moving an angle θ in the circle (see picture). After a full turn the segment returns to its original position by iwth end points inverted. We can describe the surface with

$$
\sigma(t,\theta) = \left(\left(1 - t \sin \frac{\theta}{2} \right) \cos \theta, \left(1 - t \sin \frac{\theta}{2} \right) \sin \theta, t \cos \frac{\theta}{2} \right)
$$

where (t, θ) belongs to

$$
V_1 = \left\{ t \in \left(-\frac{1}{2}, \frac{1}{2} \right), \theta \in (0, 2\pi) \right\}
$$

or

$$
V_2 = \left\{ t \in \left(-\frac{1}{2}, \frac{1}{2} \right), \theta \in (-\pi, \pi) \right\}
$$

Check: if σ_i is σ on V_i then σ_i is allowable. A computation shows

$$
\sigma_t \times \sigma_\theta(0,\theta) = \left(-\cos\theta\cos\frac{\theta}{2}, -\sin\theta\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\right) := n_\theta
$$

As $\theta \to 0^+$, $h_\theta \to (-1, 0, 0)$. As $\theta \to 2\pi^-$, $n_\theta \to (1, 0, 0)$. Hence the Möbius band is not 2-sided.

2 Surfaces in 3-space

 $\gamma : (a, b) \to \mathbb{R}^3$ smooth, the length of γ is

$$
L(\gamma) = \int_a^b \|\gamma'(t)\| \mathrm{d} t
$$

If $s : (A, B) \to (a, b)$ is monotone increasing and we let $\tau(t) = \gamma(s(t))$, then

$$
L(\tau) = \int_A^B \|\tau'(t)\| dt
$$

=
$$
\int_A^B \|\gamma'(s(t))\| \le \int_{\ge 0}^B |dt
$$

=
$$
\int_a^b \|\gamma'(s)\| ds
$$

=
$$
L(\gamma)
$$

Lemma 2.1. If $\gamma : (a, b) \to \mathbb{R}^3$ and $\gamma'(t) \neq 0$ for all t, then γ can be paramaterised by arc-length, i.e. a parameter such that $\|\gamma'(s)\| = 1$ for all s.

 $\Sigma \subset \mathbb{R}^3$, $\sigma: V \to U \subset \Sigma$ allowable. If $\gamma: (a, b) \to U$ is smooth, write

$$
\gamma(t) = \sigma(u(t), v(t))
$$

with $(u, v) : (a, b) \to V$ smooth. Then

$$
\gamma'(t) = \sigma_u u'(t) + \sigma_v v'(t)
$$

then

Start of [lecture 9](https://notes.ggim.me/Geom#lecturelink.9)

$$
\|\gamma'(t)\|^2 = E(u'(t))^2 + 2Fu'(t)v'(t) + G(v'(T))^2
$$

where

$$
E = \langle \sigma_u, \sigma_u \rangle = ||\sigma_u||^2
$$

$$
F = \langle \sigma_u, \sigma_v \rangle = \langle \sigma_v, \sigma_u \rangle
$$

$$
G = \langle \sigma_v, \sigma_v \rangle = ||\sigma_v||^2
$$

(smooth functions on V). They depend only on σ and not γ .

Definition. The first fundamental form (FFF) in the parametrisation σ is the expression 2

$$
E\mathrm{d}u^2 + 2F\mathrm{d}u\mathrm{d}v + G\mathrm{d}v
$$

The notation is designed to remind you that

$$
L(\gamma) = \int_a^b \sqrt{E u'^2 + 2Fu'v' + G v'^2} \mathrm{d}t,
$$

where $\gamma(t) = \sigma(u(t), v(t)).$

Remark. The FFF is sometimes defined as the quadratic form in $T_p \Sigma$ given by the restriction of the standard inner product in \mathbb{R}^3 .

$$
I_p(w) = |w|^2 = \langle w, w \rangle_{\mathbb{R}^3}, w \in T_p \Sigma
$$

After picking σ , $\sigma(0) = p$ and after writing $w = D\sigma|_0(u', v')$ we have

$$
I_p(w) = Eu'^2 + 2Fu'v' + Gv'^2
$$

This is an example of a Riemannian metric.

Examples

(1) The xy-plane \mathbb{R}^3 :

$$
\sigma(u, v) = (u, v, 0)
$$

so

$$
\sigma_u = (1, 0, 0), \quad \sigma_v = (0, 1, 0)
$$

and FFF is $du^2 + dv^2$, $E = G = 1$, $F = 0$. In polar coordinates

 $\sigma(r, \theta) = (r \cos \theta, r \sin \theta, 0)$

 $r \in (0, \infty, (0, 2\pi),$ we have

$$
\sigma_r = (\cos \theta, \sin \theta, 0)
$$

$$
\sigma_\theta = (-r \sin \theta, r \cos \theta, 0)
$$

and FFF is $dr^2 + r^2 d\theta^2$, $E = 1$, $F = 0$, $G = r^2$.

$$
\begin{pmatrix} E & F \\ F & G \end{pmatrix}
$$

Definition. $\Sigma, \Sigma' \subset \mathbb{R}^3$ smooth surfaces. We say that Σ and Σ' are *isometric* if there exists $f : \Sigma \to \Sigma'$ diffeomorphic such that for every smooth curve $\gamma : (a, b) \to \Sigma$,

$$
L_{\Sigma}(\gamma) = L_{\Sigma'}(f \circ \gamma)
$$

Example. If $\Sigma' = f(\Sigma)$ where $f : \mathbb{R}^3 \to \mathbb{R}^3$ is a "rigid motion" i.e. $f(x) = Ax + b$, $A \in O(3)$, $b \in \mathbb{R}^3$ (so f preserves $\langle \bullet, \bullet \rangle_{\mathbb{R}^3}$). $f : \Sigma \to \Sigma'$ isometry because

$$
|(f \circ \gamma)'(t)| = |A\gamma'(t)|
$$

= $|\gamma'(t)|$

hence lengths of curves are preserved. Often we're interested in local statements.

Definition. Σ, Σ' are locally isometric (near points $p \in \Sigma$ and $p' \in \Sigma'$) if there exists open neighbourhoods $p \in U \subset \Sigma$ and $p' \in U' \subset \Sigma'$ which are isometric.

Lemma 2.2. $\Sigma, \Sigma' \subset \mathbb{R}^3$ are locally isometric near $p \in \Sigma$ and $p' \in \Sigma'$ if and only if there exists allowable parametrisation

$$
\sigma: V \to U \subset \Sigma
$$

$$
\sigma': V \to U' \subset \Sigma'
$$

for which the FFFs are equal in $V(E = E', F = F', G = G')$.

Proof. We know (by definition) that the FFF of σ determines the lengths of all curves on $\sigma(V) = U$. If we have σ and σ' as in the lemma, then

$$
\sigma' \circ \sigma^{-1}: U \to U'
$$
is an isometry since

$$
\sigma^{-1}(\gamma(t)) = (u(t), v(t))
$$

$$
\left| \frac{d}{dt} \underbrace{\sigma' \circ \sigma^{-1}}_{f} \circ \gamma \right|^{2} = \left| \frac{d}{dt} \sigma'(u(t), v(t)) \right|^{2}
$$
\n
$$
= E'u^{2} + 2F'u\dot{v} + G'\dot{v}^{2}
$$
\n
$$
= E\dot{u}^{2} + 2F\dot{u}\dot{v} + G\dot{v}^{2}
$$
\n
$$
= \left| \frac{d}{dt} \gamma(t) \right|^{2} \implies l(\sigma' \circ \sigma^{-1} \circ \gamma) = L(\gamma)
$$

For the converse, we'll show first that the lengths of the curves in U determine the FFF of σ .

$$
\sigma : (0, f) \to U \subset \Sigma, \sigma(0) = p
$$

 $\gamma_{\varepsilon} : [0, \varepsilon] \to U$, $t \mapsto \sigma(t, 0)$. Then

$$
\frac{\mathrm{d}}{\mathrm{d}\varepsilon}L(\gamma_{\varepsilon}) = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_0^{\varepsilon} \sqrt{E(t,0)} \mathrm{d}t
$$

$$
= \sqrt{E(\varepsilon,0)}
$$

So length of curve determine $E(0,0)$. Similarly, $\chi_{\varepsilon} : [0, \varepsilon] \to U$, $t \mapsto \sigma(0, t)$ determine $G(0,0)$. Finally considering $\lambda_{\varepsilon} : [0, \varepsilon] \to U$, $t \mapsto \sigma(t, t)$ we get $\sqrt{(E + 2F + G)(0, 0)}$, so knowing E and G we get F. So if $f: U \to U'$ is a local isometry take any allowable parametrization $\sigma' : V \to U'$, then $\sigma = f^{-1} \circ \sigma'$ is such that the FFFs of σ and σ' agree. \Box Example (Cone). $u > 0$, $v \in (0, 2\pi)$.

parametrizes the complement of the line of the cone. FFF:

 $(1+a^2)du^2 + a^2u^2dv^2$

If we cut open the cone and unfold it we get a plane such that

 $\theta_0 = \frac{2\pi a}{\sqrt{1+a^2}}$ $\frac{2\pi a}{1+a^2}$. Parametrize the plane sector by

$$
\sigma(r,\theta) = \left(\sqrt{1+a^2}r\cos\left(\frac{a\theta}{\sqrt{1+a^2}}\right), \sqrt{1+a^2}r\sin\left(\frac{a\theta}{\sqrt{1+a^2}}\right),0\right)
$$

 $r > 0, \ \theta \in (0, 2\pi)$ Check: FFF: $(1 + a^2)dr^2 + r^2a^2d\theta^2$, $V = (0, \infty) \times (0, 2\pi)$. So the cone is locally isometric to the plane!

Remark. The cone can't be *globally isometric* to the plane, since they are not even homeomorphic

Start of [lecture 10](https://notes.ggim.me/Geom#lecturelink.10) Σ 3 R \sim , $p \in \Sigma$. Take allowable parametrisations:

 $\sigma: V \to U \subset \Sigma, \qquad \sigma(0) = p$ $\tilde{\sigma}: \tilde{V} \to U \subset \Sigma, \quad \tilde{\sigma}(0) = p$

Transition map $f : \tilde{\sigma}^{-1} \circ \sigma : V \to \tilde{V}$. We have FFFs:

Lemma 2.3. If $f = \tilde{\sigma}^{-1} \circ \sigma$ is a transition map, then

$$
\begin{pmatrix} E & F \\ F & G \end{pmatrix} = (Df)^{\top} \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} Df
$$

 $({}^{\top}$ is transpose)

Proof.

$$
\begin{aligned}\n\begin{pmatrix}\nE & F \\
F & G\n\end{pmatrix} &= \begin{pmatrix}\n\sigma_u \cdot \sigma_u & \sigma_u \cdot \sigma_v \\
\sigma_v \cdot \sigma_u & \sigma_v \cdot \sigma_v\n\end{pmatrix} \\
&= \begin{pmatrix}\n\sigma_u & \sigma_u \\
\sigma_v & \sigma_v\n\end{pmatrix} \begin{pmatrix}\n\sigma_u & \sigma_v \\
\sigma_u & \sigma_v\n\end{pmatrix} \\
&= (D\sigma)^\top (D\sigma) \\
&= (D\tilde{\sigma}Df)^\top (D\tilde{\sigma}Df) \qquad \text{using } \sigma = \tilde{\sigma} \circ f \\
&= (Df)^\top (D\tilde{\sigma})^\top D\tilde{\sigma}Df \\
&= (Df)^\top \begin{pmatrix}\n\tilde{E} & \tilde{F} \\
\tilde{F} & \tilde{G}\n\end{pmatrix} Df \qquad \Box\n\end{aligned}
$$

FFF and Angles

 $v, w \in \mathbb{R}^3$, $v \cdot w = |v||w| \cos \theta$. If $v, w \in T_p \Sigma$, $\cos \theta = \frac{v \cdot w}{|v||w|}$ $\frac{v \cdot w}{|v||w|}$ (*).

So using $(*)$ we can compute angles using the FFF of σ .

Lemma 2.4. σ is *conformal* (preserves angles) exactly when $E = G$ and $F = 0$.

Proof. Consider curves

$$
\alpha(t) = (u(t), v(t))
$$

$$
\tilde{\alpha}(t) = (\tilde{u}(t), \tilde{v}(t))
$$

 $\alpha(0) = \tilde{\alpha}(0) \in V$. The curves $\sigma \circ \alpha$ and $\sigma \circ \tilde{\alpha}$ meet at p with angle θ given by

$$
\cos \theta = \frac{E\dot{u}\dot{\tilde{u}} + F(\dot{u}\dot{\tilde{v}} + \dot{\tilde{u}}\dot{v}) + G\dot{v}\dot{\tilde{v}}}{(E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2)^{1/2}(E\dot{\tilde{u}}^2 + 2F\dot{\tilde{u}}\dot{\tilde{v}} + G\dot{\tilde{v}}^2)^{1/2}}
$$
(†)

If σ is conformal and $\alpha(t) = (t, 0)$, $\tilde{\alpha}(t) = (0, 1)$ meeting at angle $\frac{\pi}{2}$ in V, we get using $(+)$

 $0 = F$

Similarly using $\alpha(t) = (t, t)$ and $\tilde{\alpha}(t) = (t, -t)$ we get $E = G$.

Conversely, if σ is such that $E = G$ and $F = 0$ then with respect to the FFF is just

$$
\rho(\mathrm{d}u^2 + \mathrm{d}v^2),
$$

where $\rho = E = G : V \to \mathbb{R}$. From (†) we see that

$$
\cos \theta = \frac{i\dot{\tilde{u}} + \dot{v}\dot{\tilde{v}}}{(i\dot{u}^2 + \dot{v}^2)^{1/2}(\dot{\tilde{u}}^2 + \dot{\tilde{v}}^2)^{1/2}}
$$

i.e. angles do not change.

Areas

Recall that the area of a parallelogram spanned by vectors v and w is

Suppose we have $\sigma: V \to U \subset \Sigma$, $\sigma(0) = p$ and consider $\sigma_u, \sigma_v \in T_p \Sigma$

 \Box

They span a parallelogram in $T_p\Sigma$ of area:

$$
(|\sigma_u|^2 |\sigma_v|^2 - (\sigma_u \cdot \sigma_v)^2)^{1/2} = \sqrt{EG - F^2}
$$

Definition. Area $(U) = \int_V$ √ $EG - F^2 du dv.$

Note. Suppose $\sigma: V \to U$, $\tilde{\sigma}: \tilde{V} \to U$ allowable parametrisations. $\tilde{\sigma} = \sigma \circ \varphi$, $\varphi = \sigma^{-1} \circ \tilde{\sigma}, \varphi : \tilde{V} \to V$ transition map. By Lemma 2.3:

$$
\begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} = (D\varphi)^{\top} \begin{pmatrix} E & F \\ F & G \end{pmatrix} D\varphi
$$

Hence (taking determinants)

$$
\sqrt{\tilde{E}\tilde{G}-\tilde{F}^2} = |\det(D\varphi)|\sqrt{EG-F^2}
$$

Note the change of variables formula for integration shows that

$$
\int_{\tilde{V}} \sqrt{\tilde{E}\tilde{G} - \tilde{F}^2} \tilde{d}\tilde{u} d\tilde{v} = \int_{V} \sqrt{EG - F^2} \tilde{d}u dv
$$

so $Area(U)$ is *instrinsic* and well-defined.

Example. Consider the graph

$$
\Sigma = \{(u, v, f(u, v)) : (u, v) \subset \mathbb{R}^2\}
$$

with $f : \mathbb{R}^2 \to \mathbb{R}$ smooth.

$$
\sigma(u, v) = (u, v, f(u, v))
$$

$$
\sigma_u = (1, 0, f_u)
$$

$$
\sigma_v = (0, 1, f_v)
$$

$$
EG - F^2 = 1 + f_u^2 + f_v^2
$$

If $U_R \subset \Sigma$ is $\sigma(B(0,R))$ then

Area
$$
(U_R)
$$
 = $\int_{B(0,R)} \sqrt{1 + f_u^2 + f_v^2} \, du \, dv$
\n $\geq \pi R^2$

With equality only when $f_u = f_v = 0$ in $B(0, R)$, i.e. only when U_R is a subset of a z = const plane. So projection from Σ to \mathbb{R}^2_{xy} is not area preserving unless Σ is a plane parallel to \mathbb{R}^2_{xy} .

Example. Contrast (Archimedes).

The horizontal radial projection (with centre the z -axis) from S^2 to the cylinder is area-preserving (see Example Sheet 2).

[lecture 11](https://notes.ggim.me/Geom#lecturelink.11) The Second Fundamental Form

Start of

Let's try to measure how much $\Sigma \subset \mathbb{R}^3$ deviates from its own tangent planes.

Let's take $\sigma: V \to U \subset \Sigma$. Using Taylor's theorem

$$
\sigma(u+h, v+l) = \sigma(u, v) + h\sigma_u(u, v) + l\sigma_v(u, v) + \frac{1}{2}(h^2\sigma_{uu}(u, v) + 2hl\sigma_{uv}(u, v) + l^2\sigma_{vv}(u, v)) + O(h^3, l^3)
$$

where (h, l) are small enough so that (u, v) and $(u + h, v + l) \in V$. Let's take projection in the normal direction:

$$
\langle n, \sigma(u+h), v+l \rangle - \sigma(u, v) \rangle = \frac{1}{2} (\langle n, \sigma_{uu} \rangle h^2 + 2 \langle n, \sigma_{ub} \rangle h l + \langle n, \sigma_{vv} \rangle l^2) + O(h^3, l^3)
$$

Definition. The second fundamental form of $\Sigma \subset \mathbb{R}^3$ in the parametrisation σ is the quadratic form:

 $L \mathrm{d}u^2 + 2M \mathrm{d}u \mathrm{d}v + N \mathrm{d}v^2$

where

$$
L = \langle n, \sigma_{uu} \rangle
$$

$$
M = \langle n, \sigma_{uv} \rangle
$$

$$
N = \langle n, \sigma_{vv} \rangle
$$

and $n = \frac{\sigma_u \times \sigma_v}{\|\sigma\| \times \sigma_v}$ $\|\sigma_u\times\sigma_v\|$

Lemma 2.5. Let V be connected and $\sigma: V \to U \subset \Sigma$ such that second FFF vanishes identically. Then U lies in an affine plane in \mathbb{R}^3 .

Proof. Recall $\langle n, \sigma_u \rangle = \langle n, \sigma_v \rangle = 0$. Hence

.

 $\langle n_u, \sigma_u \rangle + \langle n, \sigma_{uu} \rangle = 0$ $\langle n_v, \sigma_v \rangle + \langle n, \sigma_{vv} \rangle = 0$ $\langle n_v, \sigma_u \rangle + \langle n, \sigma_{uv} \rangle = 0$ $L = \langle n, \sigma uu \rangle = -\langle n_u, \sigma_u \rangle$

$$
M = \langle n, \sigma_{uv} \rangle = -\langle n_v, \sigma_u \rangle = -\langle n_u, \sigma_v \rangle
$$

$$
N = \langle n, \sigma_{vv} \rangle = -\langle n_v, \sigma_v \rangle
$$

So if second FFF vanishes then n_u is orthogonal to σ_u and σ_v . Also $\langle n, n \rangle = 1$ implies (differentiate with respect to u) $\langle n, n_u \rangle = 0$. Hence n_u is orthogonal to $\{n, \sigma_u \sigma_v\}$, hence $n_u \equiv 0$. Similarly $n_u \equiv 0$. So n is constant (V connected and mean value inequality). This implies that $\langle \sigma, n \rangle = \text{constant}$ (since $\langle \sigma, n_u \rangle = \langle \sigma_u, n \rangle = \langle \sigma_v, n_v \rangle = \langle \sigma_v, n \rangle = 0$) and U is contained in a plane. \Box **Remark.** Recall that FFF in the parametrisation σ has

$$
(D\sigma)^{\top} D\sigma = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \sigma_u \cdot \sigma_v & \sigma_u \cdot \sigma_v \\ \sigma_v \cdot \sigma_u & \sigma_v \cdot \sigma_v \end{pmatrix}
$$

Analogously the second FFF:

$$
-(Dn)^{\top}D\sigma = \begin{pmatrix} L & M \\ M & N \end{pmatrix} = \begin{pmatrix} n_u \cdot \sigma_u & n_u \cdot \sigma_v \\ n_v \cdot \sigma_u & n_v \cdot \sigma_v \end{pmatrix}
$$

(using the alternative exrpessions for L, M and N in the previous proof). So if $\sigma: V \to U \subset \Sigma$, $\tilde{\sigma}: \tilde{V} \to U \subset \Sigma$ are 2 parametrisations with transition map

$$
\varphi : \tilde{V} \to V, \qquad \varphi = \sigma^{-1} \circ \tilde{\sigma}
$$

 $(\tilde{\sigma} = \sigma \varphi)$ then

$$
n_{\tilde{\sigma}}(\tilde{u}, \tilde{v}) = \pm n_{\sigma}(\varphi(\tilde{u}, \tilde{v}))
$$

(use the – sign if $\det(D\varphi) < 0$). Recall the discusssion on orientabioilty Lemma 1.10).

$$
\begin{pmatrix}\n\tilde{L} & \tilde{M} \\
\tilde{M} & \tilde{N}\n\end{pmatrix} = -(Dn_{\tilde{\sigma}})^{\top} D \tilde{\sigma}
$$
\n
$$
= \pm (D\varphi)^{\top} \begin{pmatrix} L & M \\
M & N \end{pmatrix} D\varphi
$$

(use – sign if φ is orientation preserving).

Definition (The gauss map). Let $\Sigma \subset \mathbb{R}^3$ be a smooth *oriented* surface. The *Gauss* map is

$$
n: \Sigma \to S^2 = \{x \in \mathbb{R}^3 : |x| = 1\}
$$

is the map $p \mapsto n(p)$, the unit normal vector at p (well-defined by the orientation of Σ).

Lemma 2.6. The Gauss map $n : \Sigma \to S^2$ is smooth.

Proof. Smoothness can be checked locally. If $\sigma: V \to U \subset \Sigma$ is allowable and compatible with the orientation, then at $\sigma(u, v) = p \in \Sigma$

$$
n(\sigma(u,v)) = \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|}
$$

(smooth since σ is). $n \circ \sigma : V \to S^2 \subseteq \mathbb{R}^3$.

Note. $T_p \Sigma = T_{n(p)} S^2$. Thus we can view

$$
Dn|_p: T_p \Sigma \to T_{n(p)}S^2 = T_p \Sigma
$$

(recall Q9, Example Sheet 1).

We can also view $Dn|p$ acting on tangent vectors in terms of curves

$$
\gamma : (-\varepsilon, \varepsilon) \to \Sigma, \qquad \gamma(1) = p, \quad \gamma'(0) = v
$$

$$
Dn|_p(v) = Dn|_p(\gamma'(0)) = (n \circ \gamma)'(0)
$$

(by chain rule).

Start of [lecture 12](https://notes.ggim.me/Geom#lecturelink.12) Recall FFF $I_p: T_p\Sigma \times T_p\Sigma \to \mathbb{R}, I_p(v, w) = \langle v, w \rangle_{\mathbb{R}^3}$.

48

 \Box

Lemma 2.7. $Dn|_p : T_p \Sigma \to T_p \Sigma$ is self-adjoint with respect to I_p , i.e.

$$
I_p(Dn|_p(v), w) = I_p(v, Dn|_p(w))
$$

Proof. Take σ a parametrisation with $\sigma(0) = p$. Then $\{\sigma_u, \sigma_v\}$ is a basis of $T_p \Sigma$. To prove self-adjoint if suffices to check that

$$
\langle n_u, \sigma_v \rangle = \langle \sigma_u, n_v \rangle
$$

(because $n_u = Dn|_p(\sigma_u)$ and $n_v = Dn|_p(\sigma_v)$). Note that

$$
\langle n, \sigma_u \rangle = \langle n, \sigma_v \rangle = 0
$$

Differentiate the first term with respect to v :

$$
\langle n_v, \sigma_u \rangle + \langle n, \sigma_{uv} \rangle = 0
$$

Similarly differentiate the second:

$$
\langle n_u, \sigma_v \rangle + \langle n, \sigma_{uv} \rangle = 0
$$

So $\langle n_u, \sigma_v \rangle = \langle n_v, \sigma_u \rangle$ as desired.

(Recall $M = -\langle n_v, \sigma_u \rangle = -\langle n_u, \sigma_v \rangle$).

Let's try to find the matrix of $Dn|_p$ in the basis $\{\sigma_u, \sigma_v\}$.

$$
n_u = Dn|_p(\sigma_u) = a_{11}\sigma_u + a_{21}\sigma_v
$$

$$
n_v = Dn|_p(\sigma_v) = a_{12}\sigma_u + a_{22}\sigma_v
$$

Taking products of the above with σ_u and σ_v (check!):

$$
-\underbrace{\begin{pmatrix} L & M \\ M & N \end{pmatrix}}_{Q} = \underbrace{\begin{pmatrix} E & F \\ F & G \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}_{A}
$$

$$
Q = -PA = A^{\top}P
$$

If $V = D\sigma|_0(\hat{v}), w = D\sigma|_0(\hat{w}),$ then

$$
- \hat{v}^{\top} \begin{pmatrix} L & M \\ M & N \end{pmatrix} \hat{w} = -v^{\top} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \hat{w}
$$

$$
= I_p(v, -Dn|_p(w))
$$

$$
= I_p(-Dn|_p(v), w)
$$

Then the second FF has an intrinsic form given by the symmetric bilinear form

$$
\mathbb{I}: T_p \Sigma \times T_p \Sigma \to \mathbb{R}
$$

given by

$$
\mathbb{I}(v, w) = I_p(-Dn_p(v), w)
$$

 \Box

Definition. Let $\Sigma \subset \mathbb{R}^3$ smooth surface. The *Gauss curvature* $\kappa : \Sigma \to \mathbb{R}$ of Σ is the function

$$
p \mapsto \det(Dn|_p)
$$

Remark. This is always well-defined even if Σ is not oriented. We can always choose a local expression for n. If we replace it by $-n$, the determinant will not change (this is because $\det(A) = \det(-A)$ if A is 2 × 2).

Computing κ : If we pick σ using (†) we see that taking det:

$$
LN - M^2 = (EG - F^2)\kappa
$$

hence

$$
\kappa = \det(A) = \frac{LN - M^2}{EG - F^2}
$$

Example. Cylinder we saw last time. We computed second fundamental form is

$$
\sigma(u, v) = (a \cos u, a \sin u, v)
$$

$$
\begin{pmatrix} -a & 0 \\ 0 & 0 \end{pmatrix} \implies \kappa(p) = 0
$$

for all p.

 $n:\Sigma\to \mathrm{Equator}\subset S^2$. So if $\gamma:(-\varepsilon,\varepsilon)\to\Sigma$ is a vertical curve, then

$$
Dn|_p(\gamma'(0)) = (n \circ \gamma)'(0)
$$

 \implies det $(Dn|_p)=0$

Definition. Σ is said to be flat if $\kappa \equiv 0$ on Σ .

Example. If Σ is a graph of a smooth function f, then it is easy to check that

$$
E = 1 + f_u^2
$$

\n
$$
G = 1 + f_v^2
$$

\n
$$
F = f_u f_v
$$

\n
$$
EG - F^2 = 1 + f_u^2 + f_v^2
$$

\n
$$
L = \frac{f_{uu}}{\sqrt{EG - F^2}}
$$

\n
$$
M = \frac{f_{uv}}{\sqrt{EG - F^2}}
$$

\n
$$
N = \frac{f_{vv}}{\sqrt{EG - F^2}}
$$

\n
$$
\kappa = \frac{f_{uu} f_{vv} - f_{uv}^2}{(1 + f_u^2 + f_v^2)^2}
$$

So depends on the $Hessian$ of f .

Definition. $\Sigma \subset \mathbb{R}^3$, $p \in \Sigma$. We say that p is:

- *elliptic* if $\kappa(p) > 0$
- hyperbolic if $\kappa(p) < 0$
- parabolic if $\kappa(p) = 0$

Graphs

(1)
$$
f(u, v) = \frac{u^2 + v^2}{2}
$$
 at $(0, 0)$, $\kappa(0, 0, 0) = 1$.
\n(2) $f(u, v) = \frac{(u^2 - v^2)}{2}$, $\kappa(0, 0, 0) = -1$

Lemma 2.8. (a) In a sufficiently small neighbourhood of an elliptic point p , Σ lies entirely on one side of the affine tangent plane $p + T_p \Sigma$.

(b) In a sufficiently small neighbourhood of a hyperbolic point, Σ meets both sides of its affine tangent plane.

Proof. Take a parametrisation σ near p.

$$
\kappa = \frac{LN-M^2}{EG-F^2}
$$

and $EG - F^2 > 0$. Recall also that if

$$
w = n\sigma_n + l\sigma_v \in T_p\Sigma,
$$

then $\frac{1}{2} \mathbb{I}_p(w, w)$ measured the signed distance from $\sigma(h, l)$ to $p + T_p \Sigma(\sigma(0) = p)$ measured via the inner product with positive normal:

$$
\frac{1}{2}(Lh^2 + 2Mhl + Nl^2) + O(h^3, l^3)
$$

p elliptic implies

$$
\begin{pmatrix} L & M \\ M & N \end{pmatrix}
$$

has eigenvalues of the same sign, so positive or negative definite at p , so in a neighbourhood of p, κ is signed distance only has one sign locally.

If p is hyperbolic, then \mathbb{I}_p is indefinite, so Σ meets both sides of $p + T_p \Sigma$.

 \Box

Remark. If p is parabolic we can't conclude either.

Start of [lecture 13](https://notes.ggim.me/Geom#lecturelink.13)

All points lie on one side of the tangent plane.

$$
\sigma(u, v) = (u, v, u^3 - 3v^2u)
$$

at $p = \sigma(0,0)$, $\kappa(p) = 0$, but locally Σ meets both sides of its tangent plane. Monkey saddle: see picture.

Proposition 2.9. Let Σ be a compact surface in \mathbb{R}^3 . Then Σ has an elliptic point.

Proof. Σ compect implies $\Sigma \subset \overline{B(0,R)}$ for some R large enough. Decrease R to the minimal such value. Up to applying a rotation and translation we may assume that the point of contact is on the z axis. Locally near p view Σ as the graph of a smooth function f such that

$$
f - \sqrt{\kappa^2 - u^2 - v^2} \le 0
$$

 $f: V \to \mathbb{R}, V$ open in \mathbb{R}^2 . Since f has a local maximum at $(0,0) \implies f_v = f_0 = 0$ at $(0, 0), f(0, 0) = p.$

$$
F(u, v) = f(u, v) - \sqrt{R^2 - u^2 - v^2} \le 0
$$
\n^(*)

An easy computation shows: $F_u = F_v = 0$ at $(0, 0)$,

$$
F_{uu} = f_{uu} + \frac{1}{R} \quad (\text{at } (0,0)) F_{uv} = f_{uv} \quad (\text{at } (0,0)) F_{vv} = f_{vv} + \frac{1}{R} \quad (\text{at } (0,0))
$$

 $(*) \implies$ (Taylor expansion and use that 0 is a local maximum):

$$
\implies \left(f_{uu} + \frac{1}{R}\right)h^2 + 2f_{uv}hl + \left(f_{vv} + \frac{1}{R}\right)l^2 \le 0
$$

for (h, l) small enough.

$$
\implies f_{uu}h^2 + 2f_{uv}hl + f_{vv}l^2 \le -\frac{1}{R}(h^2 + l^2)
$$

$$
\implies \begin{pmatrix} L & M \\ M & N \end{pmatrix} = \begin{pmatrix} f_{uu} & f_{uv} \\ f_{uv} & f_{vv} \end{pmatrix}
$$

Is negative definite at (0,0). At (0,0, $E = G = 1, F = 0$, hence $\kappa(p) > 0$.

 $\hfill \square$

Gauss Curvature and Area

Theorem 2.10. $\Sigma \subset \mathbb{R}^3$, $p \in \Sigma$, $\kappa(p) \neq 0$. Let $U \subset \Sigma$ be a small open neighbourhood of p and consider a sequence $p \in A_i \subset U \subset \Sigma$ (A_i open) such that A_i "shrink to p" in the sense that $\forall \varepsilon > 0$, $A_i \subset B(p, \varepsilon) \subset \mathbb{R}^3$ for all i large enough. Then

i.e. the Gaussian curvature is an i -finiteseimal measure of how much the Gauss map n distorts areas.

Proof. κ is all "local", so take $\sigma: V \to U \subset \Sigma$ with $\sigma(0) = p$ and let $V_i = \sigma^{-1}(A_i) \subset V$ open. Since A_i shrinks to p ,

$$
\bigcap_{i\geq 1} V_i = \{(0,0)\}
$$

$$
\text{Area}_{\Sigma}(A_i) = \int_{V_i} \sqrt{EG - F^2} \text{d}u \text{d}v
$$

$$
= \int_{V_i} ||\sigma_u \times \sigma_v|| \text{d}u \text{d}v
$$

Now $n \circ \sigma : V \to S^2 \subset \mathbb{R}^2$. $Dn|_p \circ D\sigma|_0$ has rank 2 since $\kappa(p) \neq 0$. This $n \circ \sigma$ defines an allowable parametrisation in an open neighbourhood of $n(p) \subset S^2$ by the inverse function theorem.

$$
\text{Area}_{S^2}(n(A_i)) = \int_{V_i} ||n_u \times n_v|| \text{d}u \text{d}v
$$

(Same source as $(*)$ but for S^2 !)

$$
||n_u \times n_v|| = ||Dn(\sigma_u) \times Dn(\sigma_v)||
$$

Recall from last lecture

$$
Dn(\sigma_u) = a_{11}\sigma_u + a_{21}\sigma_v
$$

\n
$$
Dn(\sigma_v) = a_{12}\sigma_u + a_{22}\sigma_v
$$

\n
$$
\implies Dn(\sigma_u) \times Dn(\sigma_v) = (a_{11}\sigma_u + a_{21}\sigma_v) \times (a_{12}\sigma_u + a_{22}\sigma_v)
$$

\n
$$
= \underbrace{(a_{11}a_{22} - a_{12}a_{21})}_{\det(Dn) = \kappa(p)} \sigma_u \times \sigma_v
$$

\n
$$
\implies \text{Area}_{S^2}(n(A_i)) = \int_{V_i} ||n_u \times n_v||
$$

\n
$$
= \int_{V_i} |\det Dn|| |\sigma_u \times \sigma_v|| \text{d}u \text{d}v
$$

\n
$$
= \int_{V_i} |\kappa(u, v)|| |\sigma_u \times \sigma_v|| \text{d}u \text{d}v
$$

Since κ is continuous, given $\varepsilon > 0$, $\exists \delta > 0$ such that $|\kappa(u, v) - \kappa(0, 0)| < \varepsilon$ for all $(u, v) \in B((0, 0), \delta) \subset V$. So if $i \geq i_0$ we have

$$
|\kappa(p)| - \varepsilon \le |\kappa(u, v)| \le |\kappa(p)| + \varepsilon \qquad \forall (u, v) \in V_i
$$

$$
\implies (|\kappa(p)| - \varepsilon) \int_{V_i} ||\sigma_u \times \sigma_v|| dudv
$$

\n
$$
\leq \int_{V_i} |\kappa(u, v)|| |\sigma_u \times \sigma_v|| dudv
$$

\n
$$
\leq (|\kappa(p)| + \varepsilon) \underbrace{\int_{V_i} ||\sigma_u \times \sigma_v|| dudv}_{Area_{\Sigma}(A_i)}
$$

\n
$$
\implies |\kappa(p)| - \varepsilon \leq \frac{Area_{S^2}(n(A_i))}{Area_{\Sigma}(A_i)}
$$

\n
$$
\leq |\kappa(p)| + \varepsilon
$$

 \Box

for all $i \geq i_0$.

Start of [lecture 14](https://notes.ggim.me/Geom#lecturelink.14) $\kappa(p) = \det(Dn|p)$ $(\kappa = \frac{LN-M^2}{EG-F^2})$ The Gauss urvature is constraint by 2 amazing theorems.

The first is called "theorema egregium" (remarkable theorem)

Theorem (Theorema Egregium). The Guass curvature of a smooth surface in \mathbb{R}^3 is an *isometry invariant* i.e. if $f : \Sigma_1 \to \Sigma_2$ is an isometry, then

$$
\kappa_1(p) = \kappa_2(f(p)) \qquad \forall p \in \Sigma_1
$$

In fact, κ can be computed exclusively in terms of I_p even though it was defined using I_p and \mathbb{I}_p .

The second result is a *global result*:

Theorem (Gauss-Bonnet Theorem). If Σ is a compact smooth surface in \mathbb{R}^3 , then Z Σ $\kappa \mathrm{d} A_\Sigma = 2\pi \chi(\Sigma)$

This is an amazing result because the left side of this equation is a quantity involving a lot of complicated geometric notions, but the right hand side is purely a topological property!

The proofs of these theorems will be in Part II Differential Geometry.

3 Geodesics

Recall, if $\gamma : [a, b] \to \mathbb{R}^3$ is smooth then

$$
length(\gamma) = L(\gamma) = \int_a^b |\gamma'(0)| dt
$$

Definition. The energy of γ is

$$
E(\gamma) := \int_a^b |\gamma'(t)|^2 dt
$$

Think

 $\Omega_{pq} = \{$ all smooth curves $\gamma : [a, b] \to \mathbb{R}^3$, $\gamma(a) = p$, $\gamma(b) = q\}$

 $E: \Omega_{pq} \to \mathbb{R}$. In fact what we really want is given $\Sigma \subset \mathbb{R}^3$, $\gamma : [a, b] \to \Sigma$ "Variational Principles."

Definition. Let $\gamma : [a, b] \to \Sigma \subset \mathbb{R}^3$ be smooth. A one-parameter variation (with fixed end points) of γ is a smooth map

$$
\Gamma: (-\varepsilon, \varepsilon) \times [a, b] \to \Sigma
$$

such that $\gamma_s := \Gamma(s, \bullet)$, then

(a) $\gamma_0(t) = \gamma(t)$ for all t,

(b) $\gamma_s(a), \gamma_s(b)$ are independent of s.

Definition. A smooth curve $\gamma : [a, b] \to \Sigma$ is a *geodesic* if for every variation γ_s of γ with fixed end points we have:

$$
\left. \frac{\mathrm{d}}{\mathrm{d}s} \right|_{s=0} E(\gamma_s) = 0
$$

i.e. γ is a "critical point" of the energy functional on curves from $\gamma(a)$ to $\gamma(b)$.

Suppose γ has image contained in the image of a parametrisation σ and we write

$$
\gamma_s(t)=\sigma(u(s,t),v(s,t))
$$

FFF is $E \mathrm{d}u^2 + 2F \mathrm{d}u \mathrm{d}v + G \mathrm{d}v^2$.

$$
R \mathrel{\mathop:}= E \dot u^2 + 2 F \dot u \dot v + G \dot v^2
$$

 $(E, F, G$ are functions of $u(s,t)$, $v(s,t)$) where $\dot{u} = \frac{\partial u}{\partial t}$, $\dot{v} = \frac{\partial v}{\partial t}$. R depends on s

$$
E(\gamma_s) = \int_a^b R \mathrm{d}t
$$

$$
\frac{\partial R}{\partial s} = (E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2) \frac{\partial u}{\partial s} + (E_v \dot{u}^2 + 2F_v \dot{u}\dot{v} + G_v \dot{v}^2) \frac{\partial v}{\partial s} \n+ 2(E\dot{u} + F\dot{v}) \frac{\partial \dot{u}}{\partial s} + 2(F\dot{u} + G\dot{v}) \frac{\partial \dot{v}}{\partial s}
$$

so $\frac{\mathrm{d}}{\mathrm{d}s}E(\gamma_s) = \int_a^b$ $\frac{\partial R}{\partial s}$ dt

Note. $\frac{\partial \dot{u}}{\partial s} = \frac{\partial^2 u}{\partial s \partial t}$, $\frac{\partial \dot{v}}{\partial s} = \frac{\partial^2 v}{\partial s \partial t}$, and we can integrate by parts and note $\frac{\partial u}{\partial s}$, $\frac{\partial v}{\partial s}$ vanish at the end points of a and b. We get

$$
\frac{\mathrm{d}}{\mathrm{d}s}\bigg|_{s=0} E(\gamma_s) = \int_a^b \left[A \frac{\partial u}{\partial s} + B \frac{\partial v}{\partial s} \right] \mathrm{d}t \tag{*}
$$

where

$$
A = E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2 - 2\frac{d}{dt}(E\dot{u} + F\dot{v})
$$

$$
B = E_v \dot{u}^2 + 2F_v \dot{u}\dot{v} + G_v \dot{v}^2 - 2\frac{d}{dt}(F\dot{u} + G\dot{v})
$$

Note that we have absolute freedom for choosing the "rotational vector field"

Going back to (*) we see that γ is a geodesic if and only if $A = B = 0$. That is γ is a geodesic if and only if $\gamma(t) = \sigma(u(t), v(t))$, then we have the *geodesic equations*

$$
\frac{\mathrm{d}}{\mathrm{d}t}(E\dot{u} + F\dot{v}) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2)
$$

$$
\frac{\mathrm{d}}{\mathrm{d}t}(F\dot{u} + G\dot{v}) = \frac{1}{2}(E_v\dot{u}^2 + 2F_v\dot{u}\dot{v} + G_v\dot{v}^2)
$$

Remarks

(1) If $W(t)$ with $W(a) = W(b) = 0$ then

$$
\gamma_s(t) = \sigma((u(t), v(t)) + sw(t))
$$

for s small enough is a variation of γ with fixed and points and vertical field W.

(2) Recall Q10 in Example Sheet 4 of IA Analysis:

Recall from last time the quadratic equations:

$$
\int_{a}^{b} f(x)g(x) \mathrm{d}x = 0
$$

2)

for all $g : [a, b] \to \mathbb{R}$, $g(a) = g(b)$, then we had to prove that $f \equiv 0$.

Start of [lecture 15](https://notes.ggim.me/Geom#lecturelink.15)

$$
(*)\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}(E\dot{u} + F\dot{v}) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2) \\ \frac{\mathrm{d}}{\mathrm{d}t}(F\dot{u} + G\dot{v}) = \frac{1}{2}(E_v\dot{u}^2 + 2F_v\dot{u}\dot{v} + G_v\dot{v}^2) \end{cases}
$$

Probably the best way to think about these is via the *Euler-Lagrange* (E-L) equations of the Lagrangian:

$$
L(u, v, \dot{u}, \dot{v}) = \frac{1}{2} (E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2)
$$

(purely kinetic energy). Recall from Variational Principles that the (E-L) equations are:

$$
\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_i} = \frac{\partial L}{\partial \dot{q}_i}
$$

and here $q_1 = u, q_2 = v.$ (†) = (*).

Proposition 3.1. Let $\Sigma \subset \mathbb{R}^3$ a smooth surface. A smooth curve $\gamma : [a, b] \to \Sigma$ is a geodesic if and only if $\ddot{\gamma}(t)$ is *everywhere* normal to Σ .

Proof. The statement is purely local so we can work in a parametrisation $\sigma : V \to U \subset \Sigma$ and as usual, $\gamma(t) = \sigma(u(t), v(t)),$ $\dot{\gamma}(t) = \sigma_u \dot{u} + \sigma_v \dot{v}$. So $\ddot{\gamma}(t)$ is normal to Σ exactly when it is orthogonal to $T_{\gamma(t)}\Sigma$ spanned by $\{\sigma_u, \sigma_v\}$. In other words:

$$
\left\langle \frac{\mathrm{d}}{\mathrm{d}t} (\sigma_u \dot{u} + \sigma_v \dot{v}), \sigma_u \right\rangle = 0 \tag{*1}
$$

$$
\left\langle \frac{\mathrm{d}}{\mathrm{d}t} (\sigma_u \dot{u} + \sigma_v \dot{v}), \sigma_v \right\rangle = 0 \tag{42}
$$

 $(*₁)$ is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{d}t}\langle \sigma_u \dot{u} + \sigma_v \dot{v}, \sigma_u \rangle - \langle \sigma_u \dot{u} + \sigma_v \dot{v}, \frac{\mathrm{d}}{\mathrm{d}t} \sigma_u \rangle = 0
$$

Noting that $E = \langle \sigma_u, \sigma_u \rangle$ and $F = \langle \sigma_u, \sigma_v \rangle$, this is:

$$
\frac{\mathrm{d}}{\mathrm{d}t}(E\dot{u} + F\dot{v}) - \langle \sigma_u \dot{u} + \sigma_v \dot{v}, \sigma_{uu} \dot{u} + \sigma_{vv} \dot{v} \rangle = 0
$$

This second term is:

$$
\dot{u}^2 \langle \sigma_u, \sigma_{uu} \rangle + \dot{u} \dot{v} (\langle \sigma_u, \sigma_{uv} \rangle + \langle \sigma_v, \sigma_{uu} \rangle) + \dot{v}^2 \langle \sigma_u, \sigma_{uv} \rangle
$$

But

$$
E = \langle \sigma_u, \sigma_u \rangle \qquad \Longrightarrow \qquad E_u = 2 \langle \sigma_u, \sigma_{uu} \rangle F = \langle \sigma_u, \sigma_v \rangle \qquad \Longrightarrow \qquad F_u = \langle \sigma_u, \sigma_{uv} \rangle + \langle \sigma_v, \sigma_{uu} \rangle G = \langle \sigma_v, \sigma_v \rangle \qquad \Longrightarrow \qquad G_u = 2 \langle \sigma_v, \sigma_{uv} \rangle
$$

Thus $(*_1)$ becomes:

$$
\frac{\mathrm{d}}{\mathrm{d}t}(E\dot{u} + F\dot{v}) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2)
$$

which is the first geodesic equation. Similarly for $(*_2)$.

Corollary 3.2. If $\gamma : [a, b] \to \Sigma$ is a geodesic, then $|\dot{\gamma}(t)|$ is constant.

Proof.

$$
\frac{\mathrm{d}}{\mathrm{d}t}\langle\dot\gamma,\dot\gamma\rangle=2\langle\ddot\gamma,\dot\gamma\rangle=0
$$
 Since $\ddot\gamma\perp T_{\gamma(t)}\Sigma$ and
 $\dot\gamma(t)\in T_{\gamma(t)}\Sigma.$

Length vs Energy

Energy is sensitive to parametrisations. Given $\gamma : [a, b] \to \mathbb{R}^3$, we always have:

$$
(L(\gamma))^2 \le (b-a)E(\gamma)
$$

Thus geodesics are parametrised with constant speed (i.e. proporitonal to arc-length).

with *equality* if and only if $|\dot{\gamma}|$ is constant. Indeed, using Cauchy-Schwarz:

$$
\left(\int_a^b \frac{|\dot{\gamma}(t)|}{|\dot{\gamma}(t)|} dt\right)^2 \leq \underbrace{\left(\int_a^b |\dot{\gamma}(t)|^2 dt\right)}_{=E(\gamma)} \underbrace{\left(\int_a^b 1 dt\right)}_{=(b-a)}
$$

with equality if and only if $|\dot{\gamma}(t)|$ is constant.

 \Box

 $\hfill \square$

Corollary 3.3. A smooth curve $\gamma : [a, b] \to \Sigma \subset \mathbb{R}^3$ that minimises length and has constant speed is a geodesic.

Proof. Need to prove γ is a critical point of E. $\tau : [a, b] \to \Sigma$ any other curve connecting $\gamma(a)$ to $\gamma(b)$.

$$
E(\gamma) = \frac{(L(\gamma))^2}{b - a}
$$
 |\gamma| constant
\n
$$
\leq \frac{(L(\tau))^2}{b - a}
$$
 |\gamma| contains the length
\n
$$
\leq E(\tau)
$$

Hence γ is critical for E and hence a geodesic.

 \Box

But geodesics might not be global minimisers (examples coming up) but they are always local minimisers. (No proof in this course, see Wilson's book).

Examples

(1) The plane \mathbb{R}^2 has $\sigma(u, v) = (u, v, 0)$ and FFF $du^2 + dv^2$. Geodesic equations are

$$
\frac{\mathrm{d}}{\mathrm{d}t}(\dot{u}) = 0, \qquad \frac{\mathrm{d}}{\mathrm{d}t}(\dot{v}) = 0
$$

So $u(t) = \alpha t + \beta$, $v(t) = \gamma t + \delta$, which is a straight line parametrised by constant speed.

(2) Take the unit sphere with σ given by spherical coordinates:

$$
\sigma(\varphi, \theta) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
$$

$$
\sigma_{\varphi} = (-\sin \theta \sin \varphi, \sin \theta \cos \varphi, 0)
$$

$$
\sigma_{\theta} = (\cos \theta \cos \varphi, -\cos \theta \sin \varphi, -\sin \theta)
$$

$$
\implies E = \sin^2 \theta, F = 0, G = 1
$$

 $L=\frac{1}{2}$ $\frac{1}{2}(\sin^2\theta\dot{\varphi}^2+\dot{\theta}^2), L(\theta,\varphi,\dot{\theta},\dot{\varphi})$. Euler-Lagrange:

$$
\frac{\partial L}{\partial \dot{\theta}} = \dot{\theta}, \qquad \frac{\partial L}{\partial \dot{\varphi}} = \sin^2 \theta \dot{\varphi}
$$

 $\frac{\partial L}{\partial \varphi}=0.$

$$
(*)\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}(\sin^2\theta\dot{\varphi}) = 0\\ \ddot{\theta} = \sin\theta\cos\theta\dot{\varphi}^2 \end{cases}
$$

(*) gives right away that the equator $t \mapsto (t, \frac{\pi}{2})$ is a geodesic.

In fact all great circles parametrised with constant speed are geodesics. We can prove this by integrating (∗), but we can see this geometrically by notiving that such curves have $\ddot{\gamma} \perp T_{\gamma(t)} S^2$. Since geodesics solve a second order ODE (ordinary differential equation) prescribing $v \in T_p \Sigma$ determines the geodesic completely (proof next time). Thus great circles are all possible geodesics.

Note that γ between p and q as in the picture does not minimise length.

Start of [lecture 16](https://notes.ggim.me/Geom#lecturelink.16) Important example: Surface of revolution again! We take $\eta(u) = (f(u), 0, g(u))$ in the xz-plane and rotate about the z-axis. $(\eta : [a, b] \to \mathbb{R}^3$ smooth, injective, $\eta' \neq 0, f > 0$).

Take the usual σ :

$$
\sigma(u,v)=(f(u)\cos v,f(u)\sin v,g(u))
$$

 $a < u < b, v \in (0, 2\pi)$. The FFF is

$$
(f'^2 + g'^2) \mathrm{d}u^2 + f^2 \mathrm{d}v^2
$$

WLOG we assume η is parametrised by arc-length so the FFF becomes

$$
du^2 + f^2 dv^2
$$

Then Lagrangian for the geodesics is

$$
L = \frac{1}{2}(\dot{u}^2 + f^2 \dot{v}^2)
$$

(E-L) equations implies $\frac{\partial L}{\partial u} = ff' \dot{v}^2$

$$
\frac{\partial L}{\partial \dot{u}} = \dot{u} \implies \boxed{\dot{u} = ff' \dot{v}^2}
$$
\n
$$
\frac{\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i}}
$$
\n
$$
\frac{\partial L}{\partial v} = 0 \qquad \frac{\partial L}{\partial \dot{v}} = f^2 \dot{v}
$$
\n
$$
(*) \begin{cases}\n\frac{d}{dt} (f^2 \dot{v}) = 0 \\
\ddot{u} = ff' \dot{v}^2\n\end{cases}
$$

We also know that geodesics travel with constant speed:

$$
\begin{cases} \dot{u}^2 + f^2 \dot{v}^2 = \text{const} \\ f^2 \dot{v} = c \end{cases}
$$

Example ("completely integrable"). Meridians: $v = v_0$ m if $u(t) = t + u_0, t \mapsto$ $(t + u_0, v_0)$ is a geodesic with speed 1 through (u_0, v_0) (check this works).

Parallels: $u = u_0$, $\dot{v} = a \mid_{f(u_0)}$. From $(*)$ we see that we need

Let's look at the conserved quantity $f^2\dot{v}$ in more detail: .image Suppose γ makes an angle θ with a parallel of radius $\rho = f$. Write as usual $\gamma = \sigma(u(t), v(t)), \dot{\gamma} =$ $\sigma_u \dot{u} + \sigma_v \dot{v}$ and note that σ_v is tangent to the parallel since $\sigma_v = (-f \sin v, f \cos v, 0)$. Thus

$$
\cos \theta = \frac{\langle \sigma_v, \sigma_u \dot{u} + \sigma_v \dot{v} \rangle}{|\sigma_v||\dot{\gamma}|}
$$

Assume γ is parametrised by arc-length, so $|\dot{\gamma}| = 1$. Using that $F = 0$ and $G = f^2$ we get

$$
\cos \theta = \frac{f^2 \dot{v}}{f} = f \dot{v}
$$

and therefore if γ is geodesic,

$$
\rho\cos\theta=\mathrm{constant}
$$

Clairut's relation. This is just another way to write the conservation law arising from $\frac{\partial L}{\partial v} = 0$.

Recall Picard's theorem for ODEs: $I = [t_0 - a, t_0 + a] \subset \mathbb{R}$. $B = \{x : ||x - x_0|| \le b\} \subseteq$ \mathbb{R}^n . $f: I \times B \to \mathbb{R}^n$ and Lipschitz in the second variable

$$
||f(t, x_1) - f(t, x_2)|| \le K||x_1 - x_2||
$$

Then

$$
\begin{cases} \frac{dx(t)}{dt} = f(t, x(t))\\ x(t_0) = x_0 \end{cases}
$$

has a unique solution for some interval $|t - t_0| < h$.

Addendum: If f is smooth, then the solution is smooth and depends smoothly on the initial condition. In our setting we have:

$$
\frac{d}{dt}(E\dot{u} + F\dot{v}) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2)
$$
\n
$$
\frac{d}{dt}(F\dot{u} + G\dot{v}) = \frac{1}{2}(E_v\dot{u}^2 + 2F_v\dot{u}\dot{v} + G_v\dot{v}^2)\begin{pmatrix} E & F \ F & G \end{pmatrix}\begin{pmatrix} \ddot{u} \\ \ddot{v} \end{pmatrix} = \mathcal{A}(u, \sigma, \dot{u}, \dot{v})
$$

Since the matrix is invertible, we can write the geodesics equations as:

$$
\ddot{u} = A(u, v, \dot{u}, \dot{v})
$$

$$
\ddot{v} = B(u, v, \dot{u}, \dot{v})
$$

for smooth A and B. We can turn this into a first order system by the usual trick:

$$
\dot{u} = X, \dot{v} = Y
$$

Then

$$
\begin{cases} \dot{u} = X \\ \dot{v} = Y \\ \dot{X} = A(u, v, X, Y) \\ \dot{Y} = B(u, v, X, Y) \end{cases}
$$

So Picard's theorem applies, noting that since A and B are smooth, a local bound on $||DA||$ and $||DB||$ wil give the Lipschitz conditions. So we get:

Corollary 3.4. Let Σ be a smooth surface in \mathbb{R}^3 . For $p \in \Sigma$ and $v \in T_p \Sigma$, there is $\varepsilon > 0$ and a unique geodesic $\gamma : (-\varepsilon, \varepsilon) \to \Sigma$ with initial conditions $\gamma(0) = p$ and $\dot{\gamma}(0) = v$. Moreover, γ depends smoothly on (p, v) .

Start of [lecture 17](https://notes.ggim.me/Geom#lecturelink.17) The local existence of geodesics gives rise to parametrisations with very nice properties.

Fix $p \in \Sigma$. Consider a geodesic arc γ going through p and parametrised by arc-length. For t small enough, let γ_t be the unique geodesic such that

- $\gamma_t(0) = \gamma(t)$
- $\gamma'_t(0)$ is orthogonal to $\gamma'(t)$ and has unit length.

Define $\sigma(u, v) = \gamma_v(u)$ for $u \in (-\varepsilon, \varepsilon), v \in (-\varepsilon, \varepsilon)$.

Lemma 3.5. For ε and δ sufficiently small, σ defines an allowable parametrisation of an open set in Σ .

Proof. Smoothness follows from Corollary 3.4 (smoothness of geodesics with respect to initial conditions). At $(0, 0)$, σ_u and σ_v are orthogonal and have norm 1 by construction. Thus

$$
D\sigma|_0:\mathbb{R}^2\to T_p\Sigma
$$

is a linear isomorphism. Now applying the inverse function theorem as in Example Sheet 1 Question 9, we deduce that σ is a local diffeomorphism at $(0,0)$ and hence for ε , δ small enough it is an allowable parametrisation. \Box

Proposition 3.6. Any smooth surface Σ in \mathbb{R}^3 admits a local parametrisation for which the FFF is of the form

 $du^2 + G dv^2$

i.e. $E = 1, F = 0$.

Proof. Consider $\sigma(u, v) = \delta_v(u)$ as above. If we fix v_0 , the curve $u \to \gamma_{v_0}(u)$ is a geodesic parametrised by arc-length. So $E = \langle \sigma_u, \sigma_u \rangle = 1$. Also one of the geodesic equations is

$$
\frac{\mathrm{d}}{\mathrm{d}t}(F\dot{u} + G\dot{v}) = \frac{1}{2}(E_v\dot{u}^2 + 2F_v\dot{u}\dot{v} + G_v\dot{v}^2)
$$

and $v = v_0, u(t) = t$. $\frac{d}{dt}$ $\frac{d}{dt}(F) = 0$ i.e. $F_u = 0$. So F is independent of u. But when $u = 0$, then by construction of γ_v as orthogonal to γ at $\gamma(v)$, we see that $F = 0$ everywhere.

Remarks

- (1) Somtimes these coordinates are called Fermi coordinates.
- (2) Careful:

 u -fixed, v vary is typically not a geodesic.

- (3) In these coordinates we also have:
	- (a) $G(0, v) = 1$,
	- (b) $G_u(0, v) = 0$

(a) holds because σ_v has length 1 at $u = 0$. To see (b), we use that $u = 0$, $v = t$ is a geodesic and

$$
\frac{\mathrm{d}}{\mathrm{d}t}(E\dot{u} + F\dot{v}) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2)
$$

because $0 = \frac{1}{2}G_u(0, t)$.

(4) One can show that if $E = 1$ and $F = 0$, then the Gauss curvature is given by

$$
\kappa = -\frac{(\sqrt{G})_{uu}}{\sqrt{G}}\tag{†}
$$

(cf Theorem 8.1 in Wilson's book). This proves theorema egregium! The computation that proves $($ $\dagger)$ is not too hard, but beyond the scope of this course. But we'll use $(+)$ in our next discussion.

Constant Gaussian Curvature

First a general remark / Exercise: If $\Sigma \subset \mathbb{R}^3$ and $f : \mathbb{R}^3 \to \mathbb{R}^3$ is dilation by $\lambda \neq 0$:

$$
f(x, y, z) = \lambda(x, y, z)
$$

then $\kappa_{f(\Sigma)} = \frac{1}{\lambda^2} \kappa_{\Sigma}$. To check this note that the coefficients E, F, G rescale by λ^2 and L, M, N by λ .

QUestion: What do constant curvature surfaces look like? By dilations it sufficies to understand surfaces of constant curvature $1, -1, 0$.

Proposition 3.7. $\Sigma \subset \mathbb{R}^3$ smooth surface.

- (a) If $\kappa_{\Sigma} \equiv 0$, then Σ is locally isometric to $(\mathbb{R}^2, du^2 + dv^2)$.
- (b) If $\kappa_{\Sigma} \equiv 1$, then Σ is locally isometric to $(S^2, du^2 + \cos^2(u)dv^2)$.

Proof. We know that Σ admits a parametrisation with $E = 1$, $F = 0$ and $G(0, v) = 1$ and $G_u(0, v) = 0$. Also √

$$
\kappa = -\frac{(\sqrt{G})_{uu}}{\sqrt{G}}
$$

If $\kappa \equiv 0$, we get $(\sqrt{G})_{uu} = 0$, hence $\sqrt{G} = A(v)u + B(v)$. Conditions on G give $B = 1$ and $A = 0$. Then the FFF is $du^2 + dv^2$.

If $\kappa = 1$, $(\sqrt{G})_{uu}$ + √ $G=0$, so √

$$
\sqrt{G} = A(v)\sin u + B(v)\cos u
$$

conditions on G gives $A = 0$ and $B \equiv 1$, so FFF is $du^2 + \cos^2 u dv^2$. In the parametrisation

$$
\sigma(u, v) = (\cos u \cos v, \cos u \sin v, \sin u)
$$

of S^2 this is the FFF.

 $\hfill \square$
Remark. We can certainly do the same for $\kappa = -1$, and we'll get FFF du² + $\cosh^2(u)dv^2$. A surface of revolution with FFF $du^2 + \cosh^2(u)dv^2$ is given by rotating

$$
\eta(u) = \left(\cosh u, 0, \int_0^h \sqrt{1 - \sinh^2 x} \, dx\right)
$$

This has $f'^2 + g'^2 = 1$ and hence $\kappa = -f''/f$ (Question 5 on Example Sheet 2).

Or... we forget about \mathbb{R}^3 and think in more abstract terms. The change of variables $v = e^v \tanh u$, $w = e^v \sech u$ turns $du^2 + \cosh^2(u) dv^2$ into

$$
\frac{\mathrm{d} v^2 + \mathrm{d} w^2}{w^2}
$$

which is "the standard presentation" of the hyperbolic plane.

Start of [lecture 18](https://notes.ggim.me/Geom#lecturelink.18)

4 Hyperbolic Surfaces

We start by discussing *abstract Riemannian metrics*.

Definition (Riemannian metric). Let $V \subset \mathbb{R}^2$ be an open set. An abstract Riemannian metric on V is a smooth map:

 $V \to \{\text{positive definite symmetric forms}\}\subset \mathbb{R}^4$

$$
p \mapsto \begin{pmatrix} E(p) & F(g) \\ F(g) & G(p) \end{pmatrix} = g(p)
$$

 $E > 0, G > 0$ and $EG - F^2 > 0$.

If v is a vector at $p \in V$, then its norm is:

$$
||v||_g^2 = v^{\top} \begin{pmatrix} E(p) & F(p) \\ F(p) & G(p) \end{pmatrix} v
$$

and if $\gamma : [a, b] \to V$ is smooth, then its length

$$
L(\gamma) = \int_a^b ||\dot{\gamma}(t)||_g dt
$$

=
$$
\int_a^b (E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2) dt
$$

where $\gamma(t) = (u(t), v(t)).$

Definition. Given (V, g) , (\tilde{V}, \tilde{g}) , we say that they are *isometric* if there exists a diffeomorphism $f: V \to \tilde{V}$ such that

$$
||Df|_p(v)||_{\tilde{g}} = ||v||_g \qquad \forall v \in T_p V = \mathbb{R}^2, \forall p \in V
$$
 (*)

This is *equivalent* to saying that f preserves the length of curves.

Note. $Df_p: T_pV \to T_{f(p)}\tilde{V}$. Let's spell out this condition (*) using g and \tilde{g} .

$$
||Df|_p(v)||_g^2 = (Df|_pv)^\top \tilde{g}_{f(p)} Df|_pv
$$

= $v^\top (Df|_p)^\top \tilde{g}_{f(p)} Df|_pv$
= $||v||_g^2$
= $v^\top gv$

This holds for all v iff

$$
(Df|_p)^{\top} \tilde{g}_{f(p)} Df|_p = g \tag{\dagger}
$$

Recall that (†) is exactly the transformation law from Lemma 2.3 (Lecture $\#9$).

Definition (Riemannian metric on a surface). Let Σ be an abstract smooth surface, so $\Sigma = \bigcup_{i \in I} U_i$, $U_i \subset \Sigma$ open and $\varphi : U_i \to V_i \subset \mathbb{R}^2$ homeomorphism with V_i open such that

$$
\varphi_i \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)
$$

is smooth for all i, j .

A Riemannian metric on Σ usually denoted by g is a choice of Riemannian metrics g_i on each V_i which are compatible in the following sense:

For all $i, j, \varphi_i \varphi_j^{-1}$ is an isometry between $\varphi_j(U_i \cap U_j)$ and $\varphi_i(U_i \cap U_j)$, i.e. if we let $f = \varphi_i \varphi_j^{-1}$, then

$$
(Df|_p)^\top \begin{pmatrix} E_i & F_i \\ F_i & G_i \end{pmatrix}_{f(p)} Df|_p = \begin{pmatrix} E_j & F_j \\ F_j & G_j \end{pmatrix}_p \qquad \forall p \in \varphi_j(U_i \cap U_j)
$$

Examples

(1) Recall the torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$

We exhibited charts where transition functions were restriction of translations. Equip each $V_i \subset \mathbb{R}^2$ (image of such a chart) with the Euclidean metric $du^2 + dv^2$, i.e. the

 $V_i \mapsto id_{2\times 2}$. If f is a translation then $Df = id$ so $(Df)^{\top}IDf = I$ is obvious! So T^2 inherits a global Riemannian metric everywhere locally isometric to \mathbb{R}^2 (hence $flat)$. Since geodesics are well-defined for abstract Riemannian metrics (Energy only depends on g !) they are also well-defined on T^2 and they are just projections of straight lines in \mathbb{R}^2 :

Exercise: Show that there are infinitely many cloesd geodesics and also infinitely many non-closed ones (think about lines with rational / irrational slope).

Note. This flat metric on T^2 is not induced by any embedding of T^2 in \mathbb{R}^3 ! (For example because it would have to have an elliptic point).

- (2) The real projective plane admits a Riemannian metric with constant curvature $+1$. Inded, in lecture 2 we exhibited an atlas for \mathbb{RP}^2 with charts of the form (U, φ) where $U = q\hat{U}, q: S^2 \to \mathbb{RP}^2, \hat{U} \subset S^2$ open small enough so that \hat{U} subset of open hemisphere and $\varphi: U \to V \subset \mathbb{R}^2$ was $\varphi: \hat{\varphi} \circ q^{-1}|_U$, where $\hat{\varphi}: \hat{U} \to V$ chart of S^2 . Transition maps for this atlas were all the identity or induced by the antipodal map. But both are isometries of the round metric in S^2 .
- (3) Exercise: The Klein bottle has a flat Riemannian metric induced from \mathbb{R}^2 .

Proposition 4.1. Given a Riemannian metric g on a connected open set $V \subset \mathbb{R}^2$, define the length metric

$$
d_g(p,q) = \inf_{\gamma} L(\gamma)
$$

where γ varies over all piece-wise smooth paths in V from p to q and $L(\gamma)$ is computed using g. Then d_g is a metric in V (in the sence of metric spaces!)

Remarks / Examples

- (1) Given $p, q \in V$, there is always a piece-wise smooth path connecting p to q.
- (2) $d_g(p,q) \ge 0$. Also $d_g(p,q) = d_g(q,p)$ and $d_g(p,r) \le d_g(p,q) + d_g(q,r)$

The only non-trivial claim is that $d_g(p,q) = 0$ implies $p = q$ (proof next lecture).

(3) All this works on *any* abstract smooth *connected* surface (Σ, g) equipped with a Riemmanian metric g.

Start of

[lecture 19](https://notes.ggim.me/Geom#lecturelink.19) **Proposition 4.2.** d_g is a metric.

Proof. We only show that $d_g(p,q)$ for $p \neq q$ for $p \neq q$. (See remarks from last lecture). Since

$$
g = \begin{pmatrix} E(p) & F(p) \\ F(p) & G(p) \end{pmatrix}
$$

is positive definite, there is ε sufficiently small such that

$$
\begin{pmatrix} E(p) - \varepsilon^2 & F(p) \\ F(p) & G(p) - \varepsilon^2 \end{pmatrix}
$$

is also positive definite. Moreover, the matrix

$$
\begin{pmatrix} E(p') - \varepsilon^2 & F(p') \\ F(p') & G(p') - \varepsilon^2 \end{pmatrix}
$$

remains positive definite $\forall p' \in B(p,\delta) \subset V$. (Euclidean ball). Thus, for any $p' \in B(p,\delta)$ and $v = (v_1, v_2) \in \mathbb{R}^2$ we have

$$
||v||_{p'}^2 = E(p')v_1^2 + 2F(p')v_1v_2 + G(p')v_2^2
$$

\n
$$
\ge \varepsilon^2(v_1^2 + v_2^2)
$$

Hence if γ is a curve in $B(p,\delta)$ then we have

$$
L_g(\gamma) \ge \varepsilon L_{\text{Euclidean}}(\gamma)
$$

Given $p \neq q$, let $\gamma : [a, b] \to V$ be any curve connecting p to q. If γ is not contained in $B(p,\delta)$ then there exists $t_0 \in [a,b]$ such that $\gamma|_{[a,t_0]}$ is in $B(p,\delta)$, but $\gamma(t_0)$ is on the boundary of the ball.

Thus $L_g(\gamma) \geq L_g(\gamma|_{[a,t_0]}) \geq \varepsilon \delta$. If however γ is contained in $B(p,\delta)$, then

$$
L_g(\gamma) \ge \varepsilon d_{\text{Euclidean}}(p,q)
$$

Taking inf over all such γ we get

$$
d_g(p,q) \ge \varepsilon \min\{\delta, d_{\text{Euclidean}}(p,q)\} > 0 \qquad \qquad \Box
$$

Remark. d_g gives the same topology that $V \subset \mathbb{R}^2$ inherits from \mathbb{R}^2 (can check this as an exercise).

4.1 Hyperbolic Geometry

Definition. We define an abstract Riemannian metric on the disc

$$
D = B(0, 1) = \{ z \in \mathbb{C} : |z| < 1 \}
$$

by

$$
g_{\rm hyp} = \frac{4(\mathrm{d}u^2 + \mathrm{d}v^2)}{(1 - u^2 - v^2)^2} = \frac{4|\mathrm{d}z|^2}{(1 - |z|^2)^2}.
$$

In other words,

$$
E = G = \frac{4}{(1 - u^2 - v^2)^2} \qquad F = 0
$$

Recall the Möbius group

$$
\text{M\"ob} = \left\{ z \mapsto \frac{az+b}{cz+d} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}(2, \mathbb{C}) \right\}
$$

acts on $\mathbb{C} \cup \{\infty\}$.

Lemma 4.3.

$$
\text{M\"ob}(D) = \{ T \in \text{M\"ob} : T(D) = D \} = \left\{ z \mapsto e^{i\theta} \frac{z - a}{1 - \overline{a}z} : |a| < 1 \right\}
$$

Proof. First we note:

$$
\left|\frac{z-a}{1-\overline{a}z}\right| = 1 \iff (z-a)(\overline{z}-\overline{a}) = (1-\overline{a}z)(1-a\overline{z})
$$

$$
\iff z\overline{z} - g\overline{z} - \overline{a}z + a\overline{a} = 1 - g\overline{z} - \overline{a}z + a\overline{a}z\overline{z}
$$

$$
\iff |z|^2(1-|a|^2) = 1-|a|^2
$$

$$
\iff |z| = 1
$$

So $z \mapsto e^{i\theta} \frac{z-a}{1-\overline{a}z}$ preserves $|z|=1$ and maps a to 0, thus it belongs to Möb(D). To show $1-\overline{a}z$ that they are all of this form, pick $T \in M\ddot{o}b(D)$. If $a = T^{-1}(0)$ and $Q(z) = \frac{z-a}{1-\overline{a}z} \in$ Möb(D), then $TQ^{-1}(0) = 0$ and preserves $|z| = 1$ and hence (check!) it must be of the form $z \mapsto e^{i\theta}z$.

Lemma 4.4. The Riemannian metric g_{hyp} is invariant under Möb (D) , i.e. it acts by hyperbolic isometries.

Proof. Möb(D) is generated by $z \mapsto e^{i\theta}z$ and $z \mapsto \frac{z-a}{1-\overline{a}z}$, $|a| < 1$. The first (rotation) clearly preserves $g_{\text{hyp}} = \frac{4|\text{d}z|^2}{(1-|z|^2)}$ $\frac{4|az|}{(1-|z|^2)^2}$. For the second type, let

$$
w = \frac{z - a}{1 - \overline{a}z},
$$

so

$$
dw = \frac{dz}{1 - \overline{a}z} + \frac{(z - a)}{(1 - \overline{a}z)^2} \overline{a} dz
$$

=
$$
\frac{dz(1 - |a|^2)}{(1 - \overline{a}z)^2}
$$

$$
\frac{|dw|}{1 - |w|^2} = \frac{|dz|(1 - |a|^2)}{|1 - \overline{a}z|^2 \left(1 - \left|\frac{-a}{1 - \overline{a}z}\right|^2\right)}
$$

=
$$
\frac{|az|(1 - |a|^2)}{|1 - \overline{a}z|^2 - |z - a|^2}
$$
 (check)
=
$$
\frac{|dz|}{1 - |z|^2}
$$

"Another view"

$$
g_{\text{hyp}} = \lambda \text{id}
$$
\n
$$
\lambda(z) = \frac{4}{(1-|z|^2)^2}, \ f(z) = \frac{z-a}{1-\overline{a}z}, \ |a| < 1. \text{ To check isometry:}
$$
\n
$$
(Df|_z)^\top \underbrace{(g_{\text{hyp}})_{f(z)}}_{\lambda(f(z))\text{id}} Df|_z = \lambda(z)\text{id}
$$
\ni.e.

i.e.

$$
\lambda(f(z))(Df|_z)^\top Df|_z = \lambda(z)\text{id}
$$

$$
\lambda(f(z))|f'(z)|^2 = \lambda(z)
$$

and this is checked as previously!

- **Lemma 4.5.** (i) Every pair of points in (D, hyp) is joined by a unique geodesic (up to reparametrisation).
	- (ii) The geodesics are diameters of the discs and circular arcs orthogonal to ∂D .

Geodesics in the hyperbolic disc. The whole geodesics are called hyperbolic lines (defined on all \mathbb{R}).

Start of Let $\text{cl } Proo f$. Let $a \in \mathbb{R}_+ \cap D$ and τ a smooth path from 0 to a, say

 $\tau(t) = (u(t), v(t)), \quad t \in [0, 1]$

with equality if and only if $\dot{v} = 0$ and $\dot{u} \ge 0$, i.e. $v = 0$ and u monotonic. So the arc of diameter is globally length minimising and if parametrised by arc-length it becomes a geodesic with length

$$
d_{g_{\text{hyp}}}(0, a) = 2 \tanh^{-1}(a) \tag{\dagger}
$$

Now $0, a \in \mathbb{R}_+ \cap D$ are joined by a unique geodesic (any geodesic going through 0 must be a diameter). An element of Möb(D) can be used to send any $p, q \in D$ to $0, a \in \mathbb{R}_+ \cap D$ (check, but see below). Since isometries map geodesics to geodesics, every $p, q \in D$ is joined by a unique geodesic. And Möbius maps send circles to circles and preserve angles, and hence orthogonality to ∂D . This implies our description of geodesics. \Box

Corollary 4.6. If $p, q \in D$, then

$$
d_{\text{hyp}}(p,q) = 2 \tanh^{-1} \left| \frac{p-q}{1-\overline{p}q} \right|
$$

Proof. $Q(z) = \frac{z-p}{1-\overline{p}z}$ maps p to 0. Pick θ such that $e^{i\theta}Q(q) \in \mathbb{R}_+ \cap D$. For $T = e^{i\theta}Q$,

$$
d_{\text{hyp}}(p,q) = d_{\text{hyp}}(T(p), T(q))
$$

= $d_{\text{hyp}}(0, T(q))$
= $2 \tanh^{-1} \left| \frac{p-q}{1-\overline{pq}} \right|$ (using (†))

Definition. The hyperbolic upper half plane (also called Poincaré upper half-plane) $(\mathcal{H}, g_{\text{hyp}})$ is the set

$$
\mathcal{H} = \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \}
$$

with abstract Riemannian metric

$$
\frac{\mathrm{d}z^2 + \mathrm{d}y^2}{y^2}
$$

(or $\frac{|dz|^2}{(\text{Im}(z))^2}$).

Lemma 4.7. The Poincaré disc (D, g_{hyp}) and the Poincaré upper-half plane (\mathcal{H}, g_{hyp}) are isometric.

Proof. We have maps: $\mathcal{H} \to D$, $w \mapsto \frac{w-i}{w+i}$ and $D \to \mathcal{H}$, $z \mapsto i\frac{i+z}{i-z}$, which are inverse diffeomorphisms (easy to check). If $w \in \mathcal{H}$, $T(w) = \frac{w-i}{w+i} = z \in D$, then $T'(w) = \frac{2i}{(w+i)^2}$, then

$$
\frac{|\mathrm{d}z|}{1-|z|^2} = \frac{|\mathrm{d}(Tw)|}{1-|Tw|^2}
$$

$$
= \frac{|T'(w)||\mathrm{d}w|}{1-|Tw|^2}
$$

$$
= \frac{2|\mathrm{d}w|}{|w+i|^2 \left(1-\left|\frac{w-i}{w+i}\right|^2\right)}
$$

$$
= \frac{|\mathrm{d}w|}{w \operatorname{Im}(w)}
$$

 \Box

Corollary 4.8. In (\mathcal{H}, g_{hyp}) every pair of points is joined by a unique geodesic and the geodesics are vertical straight lines and semicircles centred on R.

Proof. Our isometry $\mathcal{H} \stackrel{T}{\to} D$ is a Möbius map sending $\mathbb{R} \cup \{\infty\}$ to ∂D and Möbius maps preserve circles and orthogonality. \Box

Remarks

(1) When we discussed surfaces in \mathbb{R}^3 with constant Gauss curvature, we saw that if something had $\kappa = -1$, its FFF in Fermi coordinates was

$$
du^2 + \cosh^2 u dv^2
$$

and after a change of variables we got

$$
\frac{\mathrm{d}v^2 + \mathrm{d}w^2}{w^2}
$$

[\(Lecture 17\)](#page-68-0). Thus H (and hence D) has Gauss curvature -1 .

(2) Suppose we looked for a metric $d: D \times D \to \mathbb{R}_{\geq 0}$ on D with properties:

(a) $M\ddot{\mathrm{o}}b(D)$ -invariant:

$$
d(Tx, Ty) = d(x, y) \qquad \forall x, y \in D, \forall T \in \text{M\"ob}(D)
$$

(b) $\mathbb{R}_+ \cap D$ is "length-minimising".

Möb(D)-invarianve means that d is completely determined by $d(0, a)$ for $a \in \mathbb{R}_+ \cap D$. Let us call this $p(a)$. If $\mathbb{R}_+ \cap D$ is "length-minimising", then if $0 < a < b < 1$,

$$
\underbrace{d(0,a)}_{p(a)} + \underbrace{d(a,b)}_{p\left(\frac{b-a}{1-ab}\right)} = \underbrace{d(0,b)}_{p(b)}
$$

If we furthermore suppose p is differentiable and differentiate with respect to b and set $a = b$ we get

$$
p'(a) = \frac{p'(0)}{1 - a^2}
$$

hence $p(a) = C \tanh^{-1}(a)$ for some constant C. So up to scaling, the length metric associated with g_{hyp} is the only metric with these nice properties. The scale is chosen so that $\kappa \equiv -1$.

What about the full isometry group of $D(g_{\text{hyp}})$ on $(\mathcal{H}, g_{\text{hyp}})$? The result is that we need to add "reflections" in hyperbolic lines. These are called inversions.

Definition. Let $\Gamma \subset \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be a circle or a line. We say that points $z, z' \in \hat{\mathbb{C}}$ are *inverse* for Γ if every circle through z and orthogonal to Γ also passes through z' .

Lemma 4.9. For every circle $\Gamma \subset \hat{\mathbb{C}}$ there is a unique inverse point with respect to Γ for z.

Start of

Lecture 21 Proof. Recall Möbius maps send circles (in \hat{C}) to circles and preserve cycles. So if z and z' are inverse for Γ and $T \in M$ öb, then Tz and Tz' are inverse for $T(\Gamma)$. If $\Gamma = \mathbb{R} \cup \{\infty\},$ then $J(z) = \overline{z}$ gives inverse points; this map satisfies the requirements and is unique such.

> Now if Γ is any circle, there exists $T \in M$ öb such that $T(\mathbb{R}\cup \{\infty\}) = \Gamma$. Define inversion in Γ by $J_{\Gamma} = T J T^{-1}$. This works (one should also check that this is unique, but this is left as an exercise). \Box

Definition. The map $z \to J_{\Gamma}(z)$ sending z to the unique inverse point z' for z with respect to Γ is called *inversion* in Γ . (This fixes all points in Γ and exchanges the two complementary regions).

Examples

- (1) If Γ is a straight line (circle in $\hat{\mathbb{C}}$ through $\infty \in \hat{\mathbb{C}}$), then J_{Γ} is reflection in Γ .
- (2) If $S^1 = \{z : |z| = 1\}$ then $J_{S^1}(z) = \frac{1}{\overline{z}}$ (see Example Sheet 4).

Remark. A composition of two inversions is a Möbius map. Let $C(z) = \overline{z}$ be inversion in $\mathbb{R}\cup\{\infty\}$. So if $\Gamma\subset\hat{\mathbb{C}}$, $J_{\Gamma}=TCT^{-1}$ where $T(\mathbb{R}\cup\{\infty\})=\Gamma$. Now given circles Γ_1 and Γ_2 and $T_i(\mathbb{R} \cup {\infty}) = \Gamma_i$,

$$
J_{\Gamma_1} \circ J_{\Gamma_2} = (J_{\Gamma_1} \circ C) \circ (C \circ J_{\Gamma_2})
$$

= $(C \circ J_{\Gamma_1})^{-1} \circ (C \circ J_{\Gamma_2})$

and also note

$$
C \circ J_{\Gamma} = C \circ T \circ C \circ T^{-1}
$$

We know $T^{-1} \in M$ öb so want to prove $C \circ T \circ C \in M$ öb. Let

$$
T(z) = \frac{az+b}{cz+d}
$$

Then

$$
C \circ T \circ C(z) = \frac{\overline{a}z + \overline{b}}{\overline{c}z + \overline{d}} \in \text{M\"ob}
$$

Using this, we have constructed a Möbius map $J_{\Gamma_1} \circ J_{\Gamma_2}$ which maps Γ_1 to Γ_2 .

Lemma 4.10. An orientation preserving isometry of (\mathbb{H}, g_{hyp}) is an element of Möb(\mathbb{H}), where $\mathbb{H} = D$ or \mathbb{H} . The *full* isometry group is generated by inversions in hyperbolic lines (circles perpendicular to $\partial \mathbb{H}$).

Proof. Suffices to prove this in either model. In D, inversion in $\mathbb{R} \cap D$, i.e. conjugation, preserves $g_{\text{hyp}} = \frac{4|dz|}{(1-|z|^2)}$ $\frac{4|\mathbf{d}z|}{(1-|z|^2)^2}$. Now Möb (D) acts transitively on geodesics, and it acts by isometries, so all inversions in hyperbolic lines are isometries. Have we got them all? Now suppose $\alpha \in \text{Isom}(D, g_{hyp})$. Define $a = \alpha(0) \in D$ and using $T(z) = \frac{z-a}{1-\overline{a}z}$ we see that $T \circ \alpha(0) = 0$. Now \exists a rotation $R \in M\ddot{\circ}D$ such that $R \circ T \circ \alpha$ sends $D \cap \mathbb{R}_+$ to itself (fixed set wise).

$$
D(R \circ J \circ \alpha)|_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
$$

Composing with conjugation C if necessary, there exists $A \in \text{Isom}(D, g_{hyp})$ of the required form such that $A \circ \alpha$ fixes $\mathbb{R} \cap D$ pointwise and fixes $i\mathbb{R} \cap D$ pointwise, so

$$
D(A \circ \alpha)|_0 = \mathrm{id}
$$

Now implies $A \circ \alpha = id$. Hence α has the required form. In Example Sheet 4, you'll prove that every Möbius map is a product of inversions. If α preserved orientation and fixed $\mathbb{R} \cap D$, it necessarily fixes $i\mathbb{R} \cap D$ and so in fact $\alpha = (R \circ T)^{-1} \in M$ öb. \Box

Remark. In the H model,

$$
\text{M\"ob}(\mathcal{H}) = \text{PSL}_2(\mathbb{R})
$$

$$
= \left\{ z \mapsto \frac{az+b}{cz+d} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R}) \right\}
$$

(Note R rather than C!) and $d_{\text{hyp}}(p,q) = 2 \tanh^{-1}$ p−q $\frac{p-q}{p-\overline{q}}\Big|$. **Definition.** Let $\alpha \in \text{Isom}^+(\mathbb{H}) = \text{M\"ob}(\mathbb{H})$. Suppose $\alpha \neq \text{id}$. We say that α is:

• *elliptic* if α fixes $p \in \mathbb{H}$.

If $p = 0 \in D$ this is a rotation.

• parabolic if α fixes a unique point of $\partial \mathbb{H}$

If $p = \infty \in \partial \mathcal{H}$ then $\alpha(z) = \alpha(z + t)$.

• hyperbolic if α fixes 2 points of $\partial \mathbb{H}$.

Exercise: All elements of $M\ddot{\mathrm{o}}b(\mathbb{H})$ fall into one of 3 cases.

Definition. Let l, l' be hyperbolic lines. We say that l, l' are

- parallel if they emet in ∂H but not in H.
- ultraparallel if they don't meet in $\mathbb{H} \cup \partial \mathbb{H}$.
- \bullet *intersecting* if they meet in \mathbb{H} .

The parallel postulate of Euclid fails!

Hyperbolic Triangles

Definition. A hyperbolic triangle is the region bounded by 3 hyperbolic lines, not two of which are ultraparallel. Vertices lying at infinity $(\partial \mathbb{H})$ are called *ideal* vertices.

An ideal triangle has all its vertices ideal.

Next lecture we'll study triangles in more detail and compute their area. Start of [lecture 22](https://notes.ggim.me/Geom#lecturelink.22) Note: $g_{\text{hyp}} = \frac{4(\text{d}u^2 + \text{d}v^2)}{(1 - u^2 - v^2)^2}$ $\frac{4(au^2+av^2)}{(1-u^2-v^2)^2}$, so $E=G, F=0$ so this is *conformal* to the flat metric. Angles computed with respect to ghyp agree with Euclidean angles.

Hyperbolic cosine formula

 $\cosh C = \cosh A \cosh B - \sinh A \sinh B \cos \gamma$.

Proof. To simplify, by an isometry, put vertex with angle γ at $0 \in D$ and put vertex with angle β on $\mathbb{R}_+ \cap D$.

Then

$$
A = d_{\text{hyp}}(0, a) = 2 \tanh^{-1}(a)
$$

$$
a = \tanh \frac{A}{2}
$$

and

$$
b = e^{i\gamma} \tanh(B/2)
$$

$$
\left| \frac{b - a}{1 - \overline{a}b} \right| = \tanh\left(\frac{C}{2}\right)
$$

If $t = \tanh(\lambda/2)$, "recall"

$$
\cosh(\lambda) = \frac{1+t^2}{1-t^2}
$$

$$
\sinh(\lambda) = \frac{2t}{1-t^2}
$$

so

$$
\cosh(A) = \frac{1+|a|^2}{1-|a|^2}
$$

\n
$$
\cosh(B) = \frac{1+|b|^2}{1-|b|^2}
$$

\n
$$
\cosh C = \frac{|1-\overline{a}b|^2 + |b-a|^2}{|1-\overline{a}b|^2 - |b-a|^2}
$$

\n
$$
= \frac{(1+|a|^2)(1+|b|^2) - 2(\overline{a}b + a\overline{b})}{(1-|a|^2)(1-|b|^2)}
$$

But $a \in \mathbb{R}$ and $b + \overline{b} = 2 \operatorname{Re}(b) = 2b \cos \gamma$. Using the above one can check that

 $\cosh C = \cosh A \cosh B - \sinh A \sinh B \cos \gamma$

as desired.

 \Box

Remarks

(1) If A, B and C small, then sinh $\approx A$, cosh $\approx 1 + \frac{A^2}{2}$ then the formula reduces to

$$
C^2 = A^2 + B^2 - 2AB\cos\gamma
$$

(up to higher order terms), which is just the usual Euclidean cosine formula. Recall: dilating a surface in \mathbb{R}^3 rescaled its curvature. Similarly, "zooming in" to any point on any abstract surface with a Riemannian metric, the surface looks closer and closer to being flat.

(2) cos $\gamma \geq -1$, so formula gives

$$
\cosh C \leq \cosh A \cosh B + \sinh A \sinh B = \cosh(A + B)
$$

cosh is increasing, so this implies $C \leq A + B$, which is the triangle inequality! So hyperbolic cosine formula is a refinement of the triangle inequality.

Areas of triangles

Let $T \subset \mathbb{H}$ be a hyperbolic triangle, with internal angles α, β, γ .

$$
\text{Area}_{\text{hyp}}(T) = \pi - \alpha - \beta - \gamma
$$

This is a version of the *Gauss-Bonnet* theorem. We allow T to have *ideal vertices*.

Proof. We can work in any model. We take $\mathbb{H} = \mathcal{H}$. First we compute the area of the traignel assuming $\gamma = 0$ (so one vertex is at ∞). Using an isometry we can assume that two vertices are on the unit circle as in the figure:

Then

Area(T) =
$$
\int_{\cos(\pi-\alpha)}^{\cos\beta} dx \int_{\sqrt{1-x^2}}^{\infty} \frac{dy}{y^2}
$$

$$
= \int_{\cos(\pi-\alpha)}^{\cos\beta} \frac{dx}{\sqrt{1-x^2}}
$$

$$
= \int_{\pi-\alpha}^{\beta} -d\theta
$$

$$
= \pi - \alpha - \beta
$$

For the general case, we can always arrange for one of the sides of a triangle to be a vertical line:

Then

Area(T) =
$$
\pi - \alpha - (\beta + \delta) - (\pi - \delta - \pi + \gamma)
$$

= $\pi - \alpha - \beta - \gamma$

Corollary 4.11. The area of hyperbolic n -gon (with sides being arcs of hyperbolic lines) is given by the formula

$$
(n-2)\pi - (\alpha_1 + \cdots + \alpha_n)
$$

where $\alpha_1, \ldots, \alpha_n$ are the internal angles.

Proof. Divide into n triangles

The *n* triangles have interior angles adding up to $2\pi + \sum_{i=1}^{n} \alpha_i$.

$$
\implies \text{Area}(n\text{-gon}) = n\pi - \left(2\pi + \sum_{i=1}^{n} \alpha_i\right)
$$

$$
= (n-2)\pi - \sum_{i=1}^{n} \alpha_i
$$

Lemma 4.12. If $g \geq 2$, there is a regular 4g-gon in \mathbb{H} with internal angle $\frac{\pi}{2g}$.

Proof. Take an *ideal* 4g-gon in D with all vertices at ∂D being the 4g-roots of unity

"slide" all vertices radially inwards:

Then $A(r) = (4g - 2)\pi - 4g\alpha(r)$. $A(r) \to 0$ as $r \to 0$, and $A(1) = (4g - 2)\pi$. Hence, by the intermediate value theorem there exists r_0 for which $4\pi g - 4\pi = A(r_0) = (4g 2\pi - 4g\alpha(r_0)$, which gives $\alpha(r_0) = \frac{\pi}{2g}$. \Box

We'll use this lemma to construct a Riemannian metric with $\kappa = -1$ a surface of genus ≥ 2 .

Start of

[lecture 23](https://notes.ggim.me/Geom#lecturelink.23) **Theorem 4.13.** For each $g \geq 2$, there exists an abstract Riemannian metric on the compact orientable surface of genus g with curvature $\kappa \equiv -1$ (locally isometric to \mathbb{H}).

Recall

g is the number of holes, $\chi = 2 - 2g$. $g = 0$, round sphere, $\kappa = 1$. $g = 1$, torus, $\mathbb{R}^2/\mathbb{Z}^2$ curvature $\kappa \equiv 0$.

Sketch proof. This will be an outline of the key points. Recall that:

Analogously, a 4g-gon with side labels $a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\ldots a_9b_9a_9^{-1}b_9^{-1}$ would give (after gluing) an orientable surface Σ_g of genus g.

Observation: Let's say that a flag comprises:

- (i) An oriented hyperbolic line.
- (ii) A point on that line.
- (iii) A choice of side to the line.

Given two such flags, there is a hyperbolic isometry taking one to the other: we can swap sides using inversions if needed. Now consider the regular 4g-gon from Lemma 4.11 with internal angle $\frac{\pi}{2g}$.

For each paired set of 2 edges, there is a hyperbolic isometry taking one to the other (respecting orientation) and taking "inside" of the polygon at e_1 to the "outside" of its paired edge e_2 . Now we'll give an atlas for Σ_g as follows:

If $p \in \text{Interior}(P)$, just take a small disc contained in interir of P and include it into $D \subset \mathbb{R}^2$.

• If $p \in \text{edge}(P)$ (not a vertex), say e_1 and $\hat{p} \in e_2$ and $\gamma_{\hat{p}} = p$, we know that γ exchanges sides.

 $[p] = [\hat{p}] \in \Sigma_g = \text{Polygon} / \sim$

Define $U \cup \tilde{U} \to D$ to be the inclusion in D and γ on \tilde{U} . These descend to maps on $[U] \subset \Sigma$, $[\tilde{U}] \subset \Sigma$ which agree on $[U \cap \tilde{U}]$ (projection to Σ_g).

 $\bullet~$ In our gluing pattern all $4g$ vertices are identified to one point on Σ_g and we'd like a chart there.

Condition that internal angles sum to 2π means that we have a neighbourhood of $[v] \in \Sigma_g$ that defines a chart at $[v] \in \Sigma_g$.

All chrarts are obtained either from inclusion into D or the composite of inclusion and some hyperbolic isometry (so smooth) and we got an atlas that defines a Riemannian metric on Σ_g that is locally isometric to $\mathbb{H}.$ \Box

Remark. Really what is going on is that $\Sigma_g = \mathbb{H}/\Gamma$ where $\Gamma = \langle \gamma_1, \dots, \gamma_{2g} \rangle$ Fuchsian group. $(T^2 = \mathbb{R}/\mathbb{Z}^2)$. Algebraic topology: $\mathbb{H} \to \mathbb{H}/\Gamma$.

Hyperbolic right-angled hexagons are also very useful for similar constructions.

Lemma 4.14. For each $l_{\alpha}, l_{\beta}, l_{\gamma}$ positive numbers, there exists a right-angle hexagon with side lengths l_{α} , ?, l_{β} , ?, l_{γ} , ? in cyclic order:

Proof. Take a pair of ultraparallel lines. Example sheet 4 implies there exists a unique common perpendicular geodesic

Given l_{α} and $l_{\beta} > 0$ we shoot off new geodesics σ and $\tilde{\sigma}$ orthogonal to the originals and having travelled l_{α} and l_{β} from common perpendicular. In fact given $t > 0$ there exists an original ultraparallel pair distance exactly t apart. There exists a threshold value t_0 , by continuity when the new common perpendicular has length l_{γ} .

This is our right-angled hexagon.

Gluing two identical right-angled hexagons gives rise to a pair of pants:

 $g, \kappa \equiv -1.$

Interesting things to look up: Teichmüller space, Moduli space.

Start of [lecture 24](https://notes.ggim.me/Geom#lecturelink.24)

5 Further Topics

Gauss Bonnet theorem revisited

Recall:

(i In a spherical triangle T with internal angles α, β, γ we saw in Example Sheet 2 that

$$
\text{Area}_{S^2}(T) = \alpha + \beta + \gamma - \pi
$$

while a hyperbolic triangle has area

$$
Area_{\mathbb{H}}(T) = \pi - \alpha - \beta - \gamma
$$

(ii We also saw that for compact surfaces $\Sigma \subset \mathbb{R}^3$,

$$
\int_{\Sigma} \kappa \mathrm{d}A = 2\pi \chi(\Sigma)
$$

Theorem 5.1 (Local Gauss-Bonnet). Let Σ be an abstract smooth surface with Riemannian metric g. Take a geodesic polygon R on Σ , i.e. it is homeomorphic to a disc and its boundary is decomposed into finitely many geodesic arcs. Then

$$
\int_{R} \kappa \mathrm{d}A = \sum_{i=1}^{n} \alpha_{i} - (n-2)\pi
$$

where $n = #$ of arcs, and α_i are the internal angles of the polygon.

Theorem 5.2 (Global Gauss-Bonnet). If Σ is a compact smooth surface with Riemannian metric g , then

$$
\int_{\Sigma} \kappa \mathrm{d}A = 2\pi \chi(\Sigma)
$$

Remark. (i) κ and dA can be defined just using q.

(ii) For our hyperbolic surfaces observed by identifying the edges of a regular $4g$ gon with angles $\frac{\pi}{2g}$

$$
\int_{\Sigma} 1 dA = \text{Area}(\text{Polygon})
$$

$$
= (4g - 2)\pi - \sum_{n=1}^{4g} \frac{\pi}{2g}
$$

$$
= (4g - 4)\pi
$$

$$
= 2(2g - 2)\pi
$$

and we had $\chi(\Sigma_g) = 2 - 2g$ and $\kappa \equiv -1$, so this agrees with the Global Gauss-Bonnet.

(iii) If Σ is a flat surface so $\kappa = 0$ and γ is a closed geodesic, i.e. $\gamma : \mathbb{R} \to \Sigma$ and $\exists T > 0$ such that $\gamma(t+T) = \gamma(t)$ for all $t \in \mathbb{R}$, then γ cannot bound a disc:

Indeed, if we had such a γ , then

is a geodesic polygon with internal angles π and local Gauss-Bonnet gives:

$$
0 = \int_{R} \kappa \, dA = \sum_{i=1}^{n} \alpha_i - (n-2)\pi = 2\pi
$$

(since $n = 2$), so such a polygon would violate Local Gauss-Bonnet. However, in a non-flat metric, we clearly can have such a geodesic:

Flat metrics

Question: Can we understand all flat metrics on T^2 ?

The key to get a flat metric on T^2 was an atlas where transition functions were *isometries*.

So any parallelogram $Q \subset \mathbb{R}^2$ delivers a flat metric g_Q on T^2 .

$$
(T^2, g_Q) = \mathbb{R}^2 / \mathbb{Z} v_1 \oplus \mathbb{Z} v_2
$$

Observation:

$$
\text{Area}_{g_Q}(T^2) = \text{Area}_{\text{Euclidean}}(Q)
$$

Since Q_1 and Q_2 could have different ares, the metrics g_{Q_1} and g_{Q_2} are not *isometric*.

We'll consider flat metrics up to dilations:

Under this assumption, given Q, we can put vertices at $0 \in \mathbb{R}^2$, $1 \in \mathbb{R}^2$ and $\tau \in \mathcal{H}$.

This defines a map

 $\mathcal{H} \to \{\text{flat metrics on } T^2\}/\text{Dilations}$

But *diffeomorphisms* acct on the set of *flat metrics*. Given g and $g: T^2 \to T^2$ diffeomorphism, we can "pull-back" g by f :

$$
Df|_p: T_p \Sigma \to T_{f(p)} \Sigma
$$

 f^*g is given by

$$
\langle u, w \rangle_{f^*g} = \langle Df|_p(v), Df|_p(w) \rangle_g
$$

 $v, w \in T_p \Sigma$. $(\Sigma, f^*g) \longrightarrow (\Sigma, g)$ isometry?

Now SL $(2,\mathbb{Z})$ acts on T^2 by diffeomorphisms: it acts on \mathbb{R}^2 and preserves the lattice \mathbb{Z}^2

$$
\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} : \mathbb{R}^2 \to \mathbb{R}^2
$$

 $\mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$. SL $(2,\mathbb{Z})$ also acts on H by Möbius maps (as isometries of g_{hyp} !)

Theorem 5.3. The map

 $\mathcal{H} \to \{\text{flat metrics on } T^2\}/\text{Dilations}$

descends to a map

 $\mathcal{H}/\mathrm{SL}(2,\mathbb{Z}) \to \{\text{flat metrics on }T^2\}/\text{Dilations and Diffomorphisms}^+$

which is a bijection. We say that $\mathcal{H}/\mathrm{SL}(2,\mathbb{Z})$ is the moduli space of flat metrics of T^2 .