% vim: tw=50 % 07/02/2023 12AM \newpage \section{Homomorphisms, Ideals and Quotients} \begin{flashcard}[ring-homomorphism] \begin{definition*} Let $R$ and $S$ be rings. A function $\phi : R \to S$ is a ring \emph{homomorphism} if \cloze{ \begin{enumerate}[(i)] \item $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$ for all $r_1, r_2 \in R$. \item $\phi(r_1 r_2) = \phi(r_1) \cdot \phi(r_2)$ for all $r_1, r_2 \in R$. \item $\phi(1_R) = 1_S$ \end{enumerate} } A ring homomorphism that is also a bijection is called an \emph{isomorphism}. \end{definition*} \end{flashcard} The kernel of $\phi$ is \[ \ker(\phi) = \{r \in R \mid \phi(r) = 0_S\} \] \begin{flashcard}[ring-homomorphism-injective-iff-ker-zero] \begin{lemma} A ring homomorphism $\phi : R \to S$ is injective if and only if \cloze{$\ker(\phi) = 0_R$.} \end{lemma} \begin{proof} \cloze{ $\phi : (R, +) \to (S, +)$ is a group homomorphism. } \end{proof} \end{flashcard} \begin{flashcard}[ideal-defn] \begin{definition*} A subset $I \in R$ is an ideal (written $I \normalsub R$) if \cloze{ \begin{enumerate}[(i)] \item $I$ is a subgroup of $(R, +)$ \item If $r \in R$ and $x \in I$, then $rx \in I$. \end{enumerate} } We say $I$ is \emph{proper} if \cloze{$I \neq R$.} \end{definition*} \end{flashcard} \begin{hiddenflashcard}[how-to-check-ideal] How to check if $I$ is an ideal of $R$? \\ \cloze{ Check: \begin{enumerate}[(i)] \item $0 \in I$ \item $I$ closed under addition \item $\forall r \in R, x \in I$, $rx \in I$ \end{enumerate} (we deduce that additive inverses exist by property (iii)) } \end{hiddenflashcard} \begin{flashcard}[ker-is-ideal] \begin{lemma} If $\phi : R \to S$ is a ring homomorphism, then $\ker(\phi)$ is \cloze{an ideal of $R$.} \end{lemma} \begin{proof} \cloze{ $\phi : (r, +) \to (S, +)$ is a group homomorphism, $\ker(\phi)$ is a subgroup of $(R, +)$. If $r \in R$ and $x \in \ker(\phi$), then \[ \phi(rx) = \phi(r)\phi(x) = \phi(r) \cdot 0_S = 0_S \] hence $rx \in \ker(\phi)$. } \end{proof} \end{flashcard} \begin{remark*} If $I$ contains a unit, then $1_R \in I$ and hence $I = R$. Thus if $I$ is a proper ideal, $1_R \not\in I$, so $I$ is not a subring. \end{remark*} \begin{hiddenflashcard}[ideal-proper-iff] $I \normalsub R$ is a proper ideal if and only if \cloze{$1_R \not\in I$.} \end{hiddenflashcard} \begin{lemma} The ideals in $\ZZ$ are \[ n\ZZ = \{\ldots, -2n, -n, 0, n, 2n, \ldots\} \] for $n = 0, 1, 2\ldots$. \end{lemma} \begin{proof} Certainly $n\ZZ \normalsub \ZZ$. Let $I \normalsub \ZZ$ be a non-zero ideal, and $n$ the smallest positive integer in $I$. Then $n\ZZ \subset I$. If $m \in I$, then write $m = qn + r$ with $q, r \in \ZZ$. Then $r = m - qn \in I$. Contradicts choice of $n$ unless $r = 0$. But then $m \in n\ZZ$, i.e. $I \subset n\ZZ$. \end{proof} \begin{flashcard}[ideal-generated-by] \begin{definition*} For $a \in R$, write $(a) = \cloze{\{ra : r \in R\} \normalsub R}$. This is \cloze{the \emph{ideal generated by $a$}}. More generally, if $a_1, a_2, \ldots, a_n \in R$, we write \[ (a_1, \ldots, a_n) = \cloze{\{r_1 a_1 + \cdots r_n a_n \mid r_i \in R\} \normalsub R} .\] \end{definition*} \end{flashcard} \begin{flashcard}[principal-ideal] \begin{definition*} Let $I \normalsub R$. We say $I$ is \emph{principal} if \cloze{$I = (a)$ for some $a \in R$.} \end{definition*} \end{flashcard} \begin{theorem} If $I \normalsub R$ then the set $R / I$ of cosets of $I$ in $(R, +)$ forms a ring (called the quotient ring) with operations \begin{align*} (r_1 + I) + (r_2 + I) &= r_1 + r_2 + I \\ (r_1 + I)(r_2 + I) &= r_1 r_2 + I \end{align*} and $0_{R / I} = 0_R + I$, $1_{R / I} = 1_R + I$. Moreover, the map $R \to R / I$, $r \mapsto r + I$ is a ring homomorphism with kernel $I$. \end{theorem} \begin{proof} Already know $(R / I, +)$ is a group. If $r_1 + I = r_1' + I$ and $r_2 + I = r_2' + I$, then \[ r_1' = r_1 + a_1, \qquad r_2' = r_2 + a_2 \] for some $a_1, a_2 \in I$. Then \begin{align*} r_1' r_2' &= (r_1 + a_1)(r_2 + a_2) \\ &= r_1 r_2 + \ub{r_1 a_2}_{\in I} + \ub{r_2 a_1}_{\in I} + a_1 a_2 \end{align*} thus $r_1' r_2' + I = r_1 r_2 + I$. Remaining properties for $R / I$ follow from those for $R$. \end{proof} \begin{example*} \begin{enumerate}[(i)] \item $n\ZZ \normalsub \ZZ$. Quotient ring $\ZZ / n\ZZ$. $\ZZ / n\ZZ$ has elements $0 + n\ZZ, 1 + n\ZZ, \ldots, (n - 1) + n\ZZ$. Addition and multiplication carried out $\mod{n}$. \item Consider $(X) \subset \CC[X]$ (polynomials with 0 constant term). If \[ f(X) = a_n X^n + r \cdots a_1 X + a_0, \qquad a_1 \in \CC \] then $f(X) + (X) = a_0 + (X)$. There is a bijection $\CC[X] / (X) \to \CC$, $f(X) + (X) \mapsto f(0)$, $a + (X) \mapsfrom a$. These maps are ring homomorphisms. Thus $\CC[X] / (X) \cong \CC$. \item Consider $(X^2 + 1) \normalsub \RR[X]$ \[ \RR[X] / (X^2 + 1) = \{f(X) + (X^2 + 1) : f(X) \in \RR[X]\} \] By proposition 7.1, $f(X) = q(X)(X^2 + 1) + r(X)$ with $\deg r < 2$, i.e. $r(X) = a + bX$, $a, b \in \RR$. Thus \[ \RR[X] / (X^2 + 1) = \{a + bX + (X^2 + 1) : a, b \in \RR\} \] If $a + bX + (X^2 + 1) = a' + b'X + (X^2 + 1)$. Then $a = a' + (b - b')X = g(X)(X^2 + 1)$ for some $g(X) \in \RR[X]$. Comparing degrees, we see $g(X) = 0$ and $a = a'$, $b = b'$. Consider the bijection \[ \RR[X] / (X^2 + 1) \to \CC, \qquad a + bX + (X^2 + 1) \mapsto a + bi \] We show $\phi$ is a ring homomorphism It preserves additions and maps $1 + (X^2 + 1)$ to $1$. Now we check that it respects multiplication: \begin{align*} &~~~~\phi((a + bX + (X^2 + 1))(c + dX + (X^2 + 1))) \\ &= \phi((a + bX)(c + dX) + (X^2 + 1)) \\ &= \phi(ac + (ad + bc)X + \cancel{bd(X^2 + 1)} - bd + (X^2 + 1)) \\ &= ac - bd + (ad + bc)i \\ &= \phi(a + bX + (X^2 + 1)) \phi(c + dX + (X^2 + 1)) \end{align*} Thus $\RR[X] / (X^2 + 1) \cong \CC$. \end{enumerate} \end{example*}