% vim: tw=50 % 04/02/2023 12AM \newpage \mychapter{Rings} \newpage \section{Definition and Examples} \begin{flashcard}[ring-defn] \begin{definition*}[Ring] A \emph{ring} is a triple $(R, +, \cdot)$ \cloze{consisting of a set $R$ and two binary operators $+ : R \times R \to R$ and $\cdot : R \times R \to R$ satisfying: \begin{enumerate}[(i)] \item $(R, +)$ is an abelian group, with identity $0$ (sometimes written $0_R$). \item Multiplication is associative and has an identity, i.e. \[ x \cdot (y \cdot z) = (c \cdot y) \cdot z \qquad \forall x, y, z \in R \] and there exists $1 \in R$ such that $x \cdot 1 = 1 \cdot x = x$ for all $x \in R$ (sometimes we will write $1_R$). \item Distributive laws \begin{align*} x \cdot (y + z) &= x \cdot y + x \cdot z \qquad \forall x, y, z \in R \\ (x + y) \cdot z &= x \cdot z + y \cdot z \qquad \forall x, y, z \in R \end{align*} \end{enumerate} } \end{definition*} \end{flashcard} \begin{definition*}[Commutative ring] We say $R$ is a commutative ring if $x \cdot y = y \cdot x$ for all $x, y \in R$. \end{definition*} \begin{note*} \emph{In this course} we only consider \emph{commutative rings}. \end{note*} \subsubsection*{Remarks} \begin{enumerate}[(i)] \item As in the case of groups, check closure! \item For $x \in R$, write $-x$ for the inverse of $x$ under $+$ and abbreviate $x + (-y)$ as $x - y$. \item $0 \cdot x = (0 + 0) \cdot x = 0 \cdot x + 0 \cdot x$, so $0 \cdot x = 0$ for all $x \in R$. \item $0 = 0 \cdot x = (1 - 1) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x$ hence $(-1) \cdot x = -x$ for all $x \in R$. \end{enumerate} \begin{flashcard}[subring-defn] \begin{definition*}[Subring] \cloze{ A subset $S \subset R$ is a \emph{subring} (written $S \le R$) if it is a ring under $+$ and $\cdot$ with the same identity elements $0$ and $1$. } \end{definition*} \end{flashcard} \begin{hiddenflashcard}[how-to-check-subring] How to check if $S$ is a subring of $R$? \\ \cloze{ Check that $0, 1 \in S$ and that it's closed under addition and multiplication, and \fcemph{additive inverses} exist. } \end{hiddenflashcard} \subsubsection*{Examples} \begin{enumerate}[(i)] \item $\ZZ[i] = \{a + bi : a, b \in \ZZ\} \le \CC$ (ring of Gaussian integers) \item $\QQ(\sqrt{2}) = \{a + b \sqrt{2} : a, b \in \QQ\} \le \RR$. \item $\ZZ / n\ZZ = \text{integers mod $n$}$. \item $R$, $S$ rings. The product $R \times S$ is a ring via \begin{align*} (r_1, s_1) + (r_2, s_2) &= (r_1 + r_2, s_1 + s_2) \\ (r_1, s_1) \cdot (r_2, s_2) &= (r_1 \cdot r_2, s_1 \cdot s_2) \\ 0_{R \times S} &= (0_R, 0_S) \\ 1_{R \times S} &= (1_R, 1_S) \end{align*} Note: $R \times \{0\}$ is \emph{not} a subring of $R \times S$. \item Let $R$ be a ring. A polynomial $f$ over $R$ is an expression $f = a_0 + a_1 X + \cdots + a_n X^n$, $a_i \in \RR$. (Note ``$X$'' is just a symbol, not a variable). The \emph{degree} of $f$ is the largest $n \in \NN$ such that $a_n \neq 0$. We write $R[X]$ for the set of all polynomials over $R$. If $g = b_0 + b_1 X + \cdots + b_m X^m$ is another polynomial, set \begin{align*} f + g &= \sum_i (a_i + b_i) X^i \\ f \cdot g &= \sum_i \left( \sum_{j = 0}^i a_j b_{i - j} \right) X^i \end{align*} Then $R[X]$ is a ring with identities $0$ and $1$. We identify $R$ with the subring of $R[X]$ of constant polynomials (ie $\sum_i a_i X^i$ with $a_i = 0$ for all $i \ge 1$). \end{enumerate} \begin{flashcard}[unit-defn] \begin{definition*}[Unit] \cloze{ An element $r \in R$ is a \emph{unit} if it has an inverse under multiplication, i.e. $\exists s \in R$ such that $r \cdot s = 1$. The units in a ring $R$ form a group $(R^\times, \cdot)$. } \end{definition*} \end{flashcard} For example, $\ZZ^\times = \{\pm 1\}$, $\QQ^\times = \QQ \setminus \{0\}$. \begin{flashcard}[field-defn] \begin{definition*}[Field] \cloze{ A \emph{field} is a ring with $0 \neq 1$ such that every non zero element is a unit. } \end{definition*} \end{flashcard} \begin{remark*} If $R$ is a ring with $0 = 1$, then $x = x \cdot 1 = x \cdot 0 = 0$ for all $x \in R$, so $R = \{0\}$ the trivial ring. \end{remark*} \begin{flashcard}[polynomial-division] \begin{proposition} Let $f, g \in R[X]$. \cloze{Suppose the leading coefficient of $g$ is a \fcemph{unit}. Then there exists $q, r \in R[X]$ such that} \[ f(X) = q(X) g(X) + r(X) \] \cloze{where $\deg (r) < \deg (g)$.} \end{proposition} \prompt{ \begin{proof} \cloze{ Induct on degree of $f$. } \end{proof} } \end{flashcard} \begin{proof} By induction on $n = \deg f$. Write \begin{align*} f(X) &= a_n X^n + a_{n - 1} X^{n - 1} + \cdots + a_1 X + a_0 \qquad a_n \neq 0 \\ g(X) &= b_m X^m b_{m - 1} X^{m - 1} + \cdots + b_1 X + b_0 \qquad b_m \neq 0 \end{align*} If $n < m$, then put $q = 0$, $r = f$ and done. Otherwise we have $n \ge m$ and we set \[ f_1(X) = f(X) - a_n b_m^{-1} X^{n - m} X^{n - m} g(X) \] Coefficient of $X^n$ is $a_n - a_n b_m^{-1} b_m = 0$ therefore $\deg(f_1) < n$. By the induction hypothesis, there exists $q_1, r \in R[X]$ such that \begin{align*} f_1(X) &= q_1(X) g(X) + r(X) \qquad \deg(r) < \deg(g) \\ \implies f(X) &= \ub{(g_1(X) + a_n b_m^{-1} X^{n - m})}_{= g(X)} g(X) + r(X) \end{align*} \end{proof} \begin{remark*} If $R$ is a field then we only need $g \neq 0$. \end{remark*} \subsubsection*{Further Examples} \begin{enumerate}[(i)] \item If $R$ is a ring and $S$ is a set then the set of all functions $S \to \RR$ is a ring under pointwise operations \begin{align*} (f + g)(x) &= f(x) + g(x) \\ (f \cdot g)(x) &= f(x) \cdot g(x) \end{align*} Further interesting examples appear as subrings, for example \[ \{\text{continuous functions $\RR \to \RR$}\} \] has \[ \{\text{polynomial functions $\RR \to \RR$}\} = R[X] \] as a subring. \item Power series ring $R[X] = \{a_0 + a_1 X + \cdots \mid a_i \in R\}$. \item Laurent polynomials \[ R\llbracket X, X^{-1}\rrbracket = \left\{ \sum_{i \in \ZZ} a \cdot X^i : a_i \in R, \text{only finitely many $a_i \neq 0$} \right\} \] \end{enumerate}