% vim: tw=50 % 02/02/2023 12AM \begin{example} Let $G = \PSL_2(\ZZ / 5\ZZ)$. Then $|G| = \frac{4 \times 5 \times 6}{2} = 60 = 2^2 \times 3 \times 5$. Let $G$ act on $\ZZ / 5\ZZ \cup \{\infty\}$ via \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : 2 \mapsto \frac{az + b}{cz + d} \] By Lemma 5.2 the permutation representation \[ \phi : G \to \Sym(\{0, 1, 2, 3, 4, \infty\}) \cong S_6 \] is injective. \myskip Claim: $\Im(\phi) \le A_6$, i.e. $\psi : G \stackrel{\phi}{\longrightarrow} S_6 \stackrel{\sgn}{\longrightarrow} \{\pm 1\}$ is trivial. \\ Proof: Let $g \in G$ have order $d$. Write $d = 2^n m$ with $m$ odd. Then $h^m$ has order $2^n$. If $\psi(h^m) = 1$ then $\psi(h)^m = 1$ so $\psi(h) = 1$. So it suffices to show that $\psi(g) = 1$ for all $g \in G$ with order a power of 2. \\ Lemma 4.7 implies every such $g$ belongs to a Sylow 2-subgroup. \\ Therefore it suffices to check $\psi(H) = 1$ for $H$ a Sylow 2-subgroup. (since $\ker(\psi) \normalsub G$ and all Sylow 2-subgroups are conjugate). \myskip Take \[ H = \left\langle \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \{\pm I\}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \{\pm I\} \right\rangle \le G = \frac{\SL_2(\ZZ / 5\ZZ)}{\{\pm I\}} \] We compute \begin{align*} \phi \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} &= (1~4)(2~3) \\ \phi \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix} &= (0~\infty)(1~4) \end{align*} Both of these are even, therefore $\psi(H) = 1$. This proves the claim. \end{example} \noindent On Example Sheet 1, Question 14 we will prove that if $G \le A_6$ and $|G| = 60$ then $G \cong A_5$. \subsubsection*{Facts (not proved in this course)} $\PSL_n(\ZZ / p\ZZ)$ is a simple group $\forall n \ge 2$, $p$ prime except $(n, p) = (2, 2), (2, 3)$ (these are examples of finite groups of Lie type). The smallest non-abelian simple groups are \[ A_5 \cong \PSL_2(\ZZ / 5\ZZ) \] (order 60) and \[ \PSL_2(\ZZ / 7\ZZ) \cong \GL_3(\ZZ / 7\ZZ) \] (order 168). \newpage \section{Finite abelian groups} Later we prove (in the modules chapter) \begin{theorem} Every finite abelian group is isomorphic to a product of cyclic groups. \end{theorem} \noindent However it may be possible to write the same group as a product of cyclic groups in more than one way. \begin{lemma} If $m, n \in \ZZ_{\ge 1}$ coprime then \[ C_m \times C_n \cong C_{mn} \] \end{lemma} \begin{proof} let $g$ and $h$ be generators of $C_m$ and $C_n$. Then $(g, h) \in C_m \times C_n$ and $(g, h)^r = (g^r, h^r)$. Then \begin{align*} (g, h)^r = 1 &\iff m \mid r \text{ and } n \mid r \\ &\iff mn \mid r \end{align*} (since $m, n$ coprime). Thus $(g, h)$ has order $mn = |C_m \times C_n|$. Therefore $C_m \times C_n \cong C_{mn}$. \end{proof} \begin{corollary} Let $G$ be a finite abelian group. Then \[ G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_k} \] where each $n_i$ is a prime power. \end{corollary} \begin{proof} If $n = p_1^{a_1} \cdots p_r^{a_r}$ ($p_1, \ldots, p_r$ distinct primes), then Lemma 6.2 shows \[ C_n \cong C_{p_1^a} \times \cdots \times C_{p_r^{a_r}} \] Writing each of the cyclic groups in Theorem 6.1 in this way gives the result. \end{proof} \myskip In fact when we prove Theorem 6.1 we will prove the following refinement: \begin{flashcard}[characterization-of-finite-abelian-groups] \begin{theorem} Let $G$ be a finite abelian group. Then \[ G \cong \cloze{C_{d_1} \times C_{d_2} \times \cdots \times C_{d_t}} \] for some \cloze{$d_1 \mid D_2 \mid \cdots \mid d_t$.} \end{theorem} \end{flashcard} \begin{remark} The integers $n_1, \ldots, n_k$ in Corollary 6.3 (up to ordering) and $d_1, \ldots, d_t$ in Theorem 6.4 (assuming $d_1 > 1$) are uniquely determined by the group $G$. \end{remark} \noindent (Proof omitted -- but works by counting the number of elements of $G$ of each prime power order). \subsubsection*{Examples} \begin{enumerate}[(i)] \item The abelian groups of order 8 are \[ C_8, \quad C_2 \times C_2 \quad \text{and} \quad C_2 \times C_2 \times C_2 \] \item The abelian groups of order 12 are \[ C_2 \times C_2 \times C_3 \cong C_2 \times C_6 \] and \[ C_4 \times C_3 \cong C_{12} \] \end{enumerate} \begin{flashcard}[exponent-of-a-group-defn] \begin{definition*}[Exponent of a group] \cloze{The \emph{exponent} of a group $G$ is the least integer $n \ge 1$ such that $g^n = 1$ for all $g \in G$, i.e. the lowest common multiple of all the orders of the elements of $G$.} \end{definition*} \end{flashcard} \begin{example*} $A_4$ has exponent 6. \end{example*} \begin{corollary} Every finite abelian group contains an element whose order is the exponent of the group. \end{corollary} \begin{proof} If $G \cong C_{d_1} \times \cdots C_{d_t}$ with $d_1 \mid d_2 \mid \cdots \mid d_t$, then every $g \in G$ has order dividing $d_t$ and if $h \in C_{d_t}$ is a generator then $(1, 1, 1, \ldots, 1, h) \in G$ has order $d_t$. Thus $G$ has exponent $d_t$. \end{proof}