% vim: tw=50 % 31/01/2023 11AM \begin{enumerate}[(i)] \setcounter{enumi}{1} \item We prove a stronger result: \begin{flashcard}[sylow-ii-lemma] \begin{lemma} If $P \in \Syl_p(G)$ and $Q \le G$ is a $p$-subgroup then \cloze{$Q \le gPg^{-1}$ for some $g \in G$.} \end{lemma} \end{flashcard} \begin{flashcard}[proof-of-sylow-ii-lemma] \prompt{Proof of Sylow(ii)? \\} \begin{proof} \cloze{ Let $Q$ act on the left cosets $G / P$ by left multiplication, ie \[ q \cdot gP= qgP \] By the orbit-stabiliser theorem, each orbit has size dividing $|Q|$ so either 1 or a multiple of $p$. Since $|G / P| = m$ is coprime to $p$, there exists orbit of size 1, i.e. there exists $g \in G$ such that $qgP = gP$ for all $q \in Q$. \begin{align*} \implies g^{-1}qg &\in P \quad \forall q \in Q \\ \implies Q &\le gPg^{-1} \qedhere \end{align*} } \end{proof} \end{flashcard} \item \begin{flashcard}[proof-of-sylow-iii] \prompt{Proof of Sylow(iii)? \\} \cloze{ Let $G$ act on $\Syl_p(G)$ by conjugation. Sylow (ii) implies action is transitive. Then the orbit-stabiliser theorem implies \[ n_p = |\Syl_p(G)| ~\big|~ |G| \] Now let $P \in \Syl_p(G)$. Then $P$ acts on $\Syl_p(G)$ by conjugation. The orbits have size dividing $|P| = p^a$, so either 1 or a multiple of $p$. To show $n_p \equiv 1 \pmod{p}$ it suffices to show that $\{P\}$ is the unique orbit of size 1. \myskip If $\{Q\}$ is an orbit of size 1, then $P$ normalizes $Q$, i.e. $P \le N_G(Q)$. Now $P$ and $Q$ are Sylow $p$-subgroups of $N_G(Q)$, hence by (ii) are conjugate in $N_G(Q)$, hence equal since $Q \normalsub N_G(Q)$. Thus $\{P\}$ is the unique orbit of size 1. } \end{flashcard} \end{enumerate} \newpage \section{Matrix Groups} Let $F$ be a field (for example $\CC$ or $\ZZ / p\ZZ$). Let \begin{align*} \GL_n(F) &\defeq \text{$n \times n$ invertible matrices with entries in $F$.} \\ \SL_n(F) &\defeq \ker(\GL_n(F) \stackrel{\det}{\longrightarrow} F^\times) \normalsub \GL_n(F) \end{align*} Let $Z \normalsub \GL_n(F)$ be the subgroup of scalar matrices. \begin{definition*} \begin{align*} \PGL_n(F) &= \frac{\GL_n(F)}{Z} \\ \PSL_n(F) &= \frac{\SL_n(F)}{Z \cap \SL_n(F)} \cong \frac{Z\SL_n(F)}{Z} \le \PGL_n(F) \end{align*} \end{definition*} \begin{hiddenflashcard}[PGL-n-(F)] \begin{definition*} $\PGL_n(F) = \cloze{\frac{GL_n(F)}{Z}}$ \end{definition*} \end{hiddenflashcard} \begin{hiddenflashcard}[PSL-n-(F)] \begin{definition*} $\PSL_n(F) = \cloze{\frac{\SL_n(F)}{Z \cap \SL_n(F)}} \cong \cloze{\frac{Z \SL_n(F)}{Z}} \le \PGL_n(F)$ \end{definition*} \end{hiddenflashcard} \begin{example} $G = \GL_n(\ZZ / p\ZZ)$. A list of $n$ vectors in $(\ZZ / p\ZZ)^n$ are columns of some $A \in G$ if and only if they are linearly independent. Thus \begin{align*} |G| &= \ub{(p^n - 1)}_{\text{first column}} \cdot \ub{(p^n - p)}_{\text{second column}} \cdots (p^n - p^2) \cdots \ub{(p^n - p^{p - 1})}_{\text{last column}} \\ &= p^{1 + 2 + \cdots + (n - 1)} (p^n - 1)(p^{n - 1} - 1) \cdots (p - 1) \\ &= p^{n \choose 2} \prod_{i = 1}^n (p^i - 1) \end{align*} So Sylow $p$-subgroups have size $p^{n \choose 2}$. Let \[ U = \left\{ \begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots 1 \end{pmatrix} \right\} \le G \] set of upper triangular matrices with 1's on the diagonal. Then $U \in \Syl_p(G)$, since there are ${n \choose 2}$ entries above the diagonal to fill and each can take $p$ values. Just as $\PGL_2(\CC)$ acts on $\CC \cup \{\infty\}$ via M\"obius maps, $\PGL_2(\ZZ / p\ZZ)$ acts on $\ZZ / p\ZZ \cup \{\infty\}$. Indeed $\GL_2(\ZZ / p\ZZ$ acts as \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az + b}{cz + d} \] and since scalars act trivially, we obtain an action of $\PGL_2(\ZZ / p\ZZ)$. \end{example} \begin{hiddenflashcard}[size-of-GLn] \[ |\GL_n(\ZZ/p\ZZ) = \cloze{(p^n - 1) (p^n - p) \cdots (p^n - p^{n - 1})} \] \end{hiddenflashcard} \begin{flashcard}[PGL-permutation-representation] \begin{lemma} The permutation representation $\PGL_2(\ZZ / p\ZZ) \cloze{\to S_{p + 1}}$ \cloze{is injective (in fact an isomorphism if $p = 2$ or $p = 3$).} \end{lemma} \begin{proof} \cloze{ Suppose $\frac{az + b}{cz + d} = z$ for all $z \in \ZZ / p\ZZ \cup \{\infty\}$. Setting $z = 0$ gives $b = 0$, $z = \infty$ gives $c = 0$, $z = 1$ gives $a = d$, so \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is a scalar matrix, hence trivial in $\PGL_2(\ZZ / p\ZZ)$. } \end{proof} \end{flashcard} \begin{flashcard}[size-of-PSL-2-(ZZp)] \begin{lemma} If $p$ is an odd prime then \[ |\PSL_2(\ZZ / p\ZZ)| = \cloze{\frac{p(p - 1)(p + 1)}{2}} \] \end{lemma} \end{flashcard} \begin{proof} By Example 5.1 \[ |\GL_2(\ZZ / p\ZZ)| = p(p - 1)(p^2 - 1) \] The group homomorphism \[ \GL_2(\ZZ / p\ZZ) \stackrel{\det}{\longrightarrow} (\ZZ / p\ZZ)^\times \] is surjective: \[ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \mapsto a \] therefore $|\SL_2(\ZZ / p\ZZ) = \frac{\GL_2(\ZZ / p\ZZ)}{p - 1} = p(p - 1)(p + 1)$. If \[ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \in \SL_2(\ZZ / p\ZZ) \] then $\lambda^2 \equiv 1 \pmod{p}$ \begin{align*} \implies p &\mid (\lambda - 1)(\lambda + 1) \\ \implies \lambda &\equiv \pm 1 \pmod{p} \end{align*} Thus $Z \cap \SL_2(\ZZ / p\ZZ) = \{\pm I\}$ (distinct since $p > 2$). Thus \begin{align*} |\PSL_2(\ZZ / p\ZZ)| &= \half |\SL_2(\ZZ / p\ZZ)| \\ &= \frac{p(p - 1)(p + 1)}{2} \qedhere \end{align*} \end{proof}