% vim: tw=50 % 26/01/2023 11AM \begin{example*} Let $G$ act on itself by conjugation, i.e. $g * x = gxg^{-1}$. \end{example*} \begin{flashcard}[conj-class] \begin{definition*} $\orb_G(x) = \cloze{\{gxg^{-1} \mid g \in G\}} = \cloze{\ccl_G(x)}$ -- the conjugacy class of $x$ in $G$. \end{definition*} \end{flashcard} \begin{flashcard}[centraliser] \begin{definition*} $G_x = \cloze{\{g \in G \mid gx = xg\}} = \cloze{C_G(x)} \le G$ -- the centraliser of $x$ in $G$. \end{definition*} \end{flashcard} \begin{definition*} $\ker(\phi) = \{g \in G \mid gx = xg, \forall x \in G\} = Z(G)$ -- center of $G$. \end{definition*} \begin{note*} The map $\phi(g) \colon G \to G$, $h \mapsto ghg^{-1}$ satisfies \begin{align*} \phi(g)(h_1h_2) &= gh_1h_2g^{-1} \\ &= gh_1g^{-1} gh_2 g^{-1} \\ &= \phi(g)(h_1) \phi(g)(h_2) \end{align*} so $\phi(g)$ is a group homomorphism, and also a bijection, so $\phi(g)$ is an isomorphism. \end{note*} \begin{definition*} \[ \Aut(G) = \{\text{group isomorphism } f \colon G \to G\} \] \end{definition*} \noindent Then $\Aut(G) \le \Sym(X)$ and $\phi \colon G \to \Sym(X)$ has image in $\Aut(G)$. \begin{example*} Let $X$ be the set of all subgroups of $G$. Then $G$ acts on $X$ by conjugation, i.e. $g * H = gHg^{-1}$. The stabiliser of $H$ is \[ \{g \in G \mid gHg^{-1} = H\} = N_G(H) \] the \emph{normaliser} of $H$ in $G$. This is the largest subgroup of $G$ containing $H$ as a normal subgroup. \end{example*} \begin{hiddenflashcard}[normaliser] \begin{definition*}[Normaliser] The \emph{normaliser} of a subgroup $H$ of $G$ is \[ N_G(H) = \cloze{\{g \in G \mid gHg^{-1} = H\}} \] \end{definition*} \end{hiddenflashcard} \newpage \section{Alternating Groups} Part IA: elements in $S_n$ are conjugate if and only if they have the same cycle type. \begin{example*} In $S_5$, we have \begin{center} \begin{tabular}{c|c} \text{cycle type} & \text{\# elements} \\ \hline $\id$ & $1$ \\ $(*~*)$ & $10$ \\ $(*~*)(*~*)$ & $15$ \\ $(*~*~*)$ & $20$ \\ $(*~*~*)(*~*)$ & $20$ \\ $(*~*~*~*)$ & $30$ \\ $(*~*~*~*~*)$ & $24$ \\ \hline \text{total} & $120$ \end{tabular} \end{center} \end{example*} \noindent Let $g \in A_n$. Then $C_{A_n}(g) = C_{S_n}(g) \cap A_n$ if there exists odd permutation commuting with $g$. Then $|C_{A_n}(g)| = \half |C_{S_n}(g)|$ and $|\ccl_{A_n}(g)| = |\ccl_{S_n}(g)|$ otherwise $|C_{A_n}(g)| = |C_{S_n}(g)|$ and $|\ccl_{A_n}(g)| = \half |\ccl_{S_n}(g)|$. \begin{example*} Taking $n = 5$, $(1~2)(3~4)$ commutes with $(1~2)$ and $(1~2~3)$ commutes with $(4~5)$ (and $(1~2)$ and $(4~5)$ are both odd). But if $h \in C_{S_5}(g)$ where $g = (1~2~3~4~5)$, then $(1~2~3~4~5) = h(1~2~3~4~5)h^{-1} = (h(1)~h(2)~h(3)~h(4)~h(5))$. So $h \in \langle g \rangle \le A_5$. $|\ccl_{A_5}(g)| = \half |\ccl_{A_5}(g)| = 12$. Thus $A_5$ has conjugacy classes of sizes $1, 15, 20, 12, 12$. \myskip If $H \normalsub A_5$, then $H$ is a union of conjugacy classes. So $|H| = 1 + 15a + 20b + 12c$ for some integers $a, b \in \{0, 1\}$, $c \in \{0, 1, 2\}$ and by Lagrange's Theorem $|H| \big| 60$. One can check that the only way that this can happen is if $|H| = 1$ or $|H| = 60$. So $A_5$ is simple. \end{example*} \begin{flashcard}[alternating-group-generated] \begin{lemma} $A_n$ is generated by \cloze{3-cycles.} \end{lemma} \end{flashcard} \begin{proof} Each $\sigma \in A_n$ is product of an even number of transpositions. Thus suffices to write the product of any two transpositions as a product of 3-cycles. \myskip For $a, b, c, d$ distinct, the possible distinct cases are $(a~b)(a~b)$, $(a~b)(b~c)$ and $(a~b)(c~d)$. We can check these are all a product of 3-cycles: \begin{align*} (a~b)(a~b) &= \id \\ (a~b)(b~c) &= (a~b~c) \\ (a~b)(c~d) &= (a~c~b)(a~c~d) \qedhere \end{align*} \end{proof} \begin{flashcard}[alternating-conjugate-three-cycles] \begin{lemma} If \cloze{$n \ge 5$} then all 3-cycles in $A_n$ are conjugate. \end{lemma} \end{flashcard} \begin{proof} We claim that any 3-cycle is conjugate to $(1~2~3)$. Indeed if $(a~b~c)$ is a 3-cycle then $(a~b~c) = \sigma(1~2~3) \sigma^{-1}$ for some $\sigma \in S_n$. If $\sigma \not\in A_n$ then replace by $\tilde{\sigma} = \sigma (4~5)$. \end{proof} \begin{theorem} $A_n$ is simple for all $n \ge 5$. \end{theorem} \begin{proof} Let $1 \ne N \normalsub A_n$. Suffices to show that $N$ contains a 3-cycle, since by Lemma 3.1 and Lemma 3.2 we have $N = A_n$. \myskip Take $1 \neq \sigma \in N$ and write $\sigma$ as a product of disjoint cycles. \begin{itemize} \item Case 1: $\sigma$ contains a cycle of length $r \ge 4$. Without loss of generality $\sigma = (1~2\cdots r)\tau$. Let $\delta = (1~2~3)$. Then \begin{align*} \ub{\sigma^{-1}}_{\in N} \ub{\delta^{-1}\sigma\delta}_{\in N} &= (r\cdots 2~1)(1~3~2) (1~2~3\cdots r)(1~2~3) \\ &= (2~3~r) \end{align*} So $N$ contains a 3-cycle. \item Case 2: $\sigma$ contains two 3-cycles. Without loss of generality $\sigma = (1~2~3)(4~5~6) \tau$. Let $\delta = (1~2~4)$. Then \begin{align*} \ub{\sigma^{-1}}_{\in N} \ub{\delta^{-1}\sigma\delta}_{\in N} &= (1~3~2)(4~6~5)(1~4~2) (1~2~3)(4~5~6)(1~2~4) \\ &= (1~2~4~3~6) \end{align*} So now done by case 1. \item Case 3: $\sigma$ contains two 2-cycles. Without loss of generality $\sigma = (1~2)(3~4) \tau$. Let $\delta = (1~2~3)$. Then \begin{align*} \ub{\sigma^{-1}}_{\in N} \ub{\delta^{-1} \sigma\delta}_{\in N} &= (1~2)(3~4)(1~3~2)(1~2)(3~4) (1~2~3) \\ &= (1~4)(2~4) \end{align*} Let $\eps = (2~3~5)$ ($n \ge 5$). Then \begin{align*} \ub{\pi^{-1}\eps^{-1}\pi \eps}_{\in N} &= (1~4)(2~3)(2~5~3)(1~4)(2~3) (2~3~5) \\ &= (2~5~3) \end{align*} So $N$ contains a 3-cycle. \end{itemize} Conclusion of proof: Remains to consider $\sigma$ with one of these cycle types: \begin{itemize} \item Case $(*~*)$ or $(*~*)(*~*~*)$ but then $\sigma \not\in A_n$, contradiction. \item Case $(*~*~*)$ but then $\sigma$ is a 3-cycle so we're already done. \qedhere \end{itemize} \end{proof}