% vim: tw=50 % 24/01/2023 12AM \newpage \section{Group Actions} \begin{definition*} For $X$ a set, let $\Sym(X)$ be the group of all bijections $X \to X$ under composition (identity $\id = \id_X$). \end{definition*} \begin{definition*} A group $G$ is a permutation group of degree $n$ if $G \le \Sym(X)$ with $|X| = n$. \end{definition*} \begin{example*} $S_n = \Sym(\{1, 2, \ldots, n\})$ is a permutation group of degree $n$, as is $A_n \le S_n$. $D_{2n} = \{\text{symmetries of a regular $n$-gon}\}$ so is a subgroup of $S_n \cong \Sym(\{\text{vertices of $n$-gon}\})$. \end{example*} \begin{definition*} An action of a group $G$ on a set $X$ is a function $* \colon G \times X \to X$ satisfying \begin{enumerate}[(i)] \item $e * x = x$ for all $x \in X$ \item $(g_1 g_2) * x = g_1 * (g_2 * x)$ for all $g_1, g_2 \in G$ and for all $x \in X$. \end{enumerate} \end{definition*} \begin{proposition} An action of a group $G$ on a set $X$ is equivalent to specifying a group homomorphism $\phi \colon G \to \Sym(X)$. \end{proposition} \begin{proof} For each $g \in G$, let $\phi_g \colon X \to X$, $x \mapsto g * x$. We have \begin{align*} \phi_{g_1 g_2}(x) &= (g_1 g_2) * x \\ &= g_1 * (g_2 * x) \\ &= \phi_{g_1}(g_2 * x) \\ &= \phi_{g_1} \circ \phi_{g_2}(x) \end{align*} Then $\phi_{g_1 g_2} = \phi_{g_1} \circ \phi_{g_2}$ (\dag). \myskip In particular, $\phi_g \circ \phi_{g^{-1}} = \phi_{g^{-1}} \circ \phi_g = \phi_e = \id$. Thus $\phi_y \in \Sym(X)$. \myskip Define $\phi \colon G \to \Sym(X)$, $g \mapsto \phi_g$ (a group homomorphism by (\dag)). Conversely let $\phi \colon G \to \Sym(X)$ be a group homomorphism. Define $* \colon G \times X \to X$, $(g, x) \mapsto \phi(g)(x)$. Then \begin{enumerate}[(i)] \item $e * x = \phi(e)(x) = \id(x) = x$. \item \begin{align*} (g_1 g_2) * x &= \phi(g_1 g_2)(x) \\ &= \phi(g_1) \circ \phi(g_2)(x) \\ &= g_1 * (g_2 * x) \qedhere \end{align*} \end{enumerate} \end{proof} \begin{definition*} We say $\phi \colon G \to \Sym(X)$ is a permutation representation of $G$. \end{definition*} \begin{definition*} Let $G$ act on a set $X$. \begin{enumerate}[(i)] \item The orbit of $x \in X$ is \[ \orb_G(x) = \{g \in x \mid g \in G\} \subseteq X .\] \item The stabiliser $x \in X$ is \[ G_x = \{g \in G \mid g * x = x\} \le G .\] \end{enumerate} \end{definition*} \noindent Recall Groups IA: Orbit-Stabiliser theorem. There is a bijection \[ \orb_G(x) \leftrightarrow G / G_x \] (where $G / G_x$ is the set of left cosets of $G_x$ in $G$). In particular if $G$ is finite, \[ |G| = |\orb_G(x)| |G_x| \] \begin{example*} Let $G$ be the group of all symmetries of a cube. $X = \text{set of vertices}$, $x \in X$, $|\orb_G(x)| = 8$, $|G_x| = 6$. \begin{center} \includegraphics[width=0.2\linewidth] {images/434843409be311ed.png} \end{center} Hence $|G| = 48$. \end{example*} \begin{remark*} \begin{enumerate}[(i)] \item $\ker \phi = \bigcap_{x \in X} G_x$ is called the kernel of the group action. \item The orbits partition $X$. We say the action is \emph{transitive} if there is only one orbit. \item $G_{g * x} = g G_x g^{-1}$, so if $x, y \in X$ belong to the same orbit, then their stabilizers are conjugate. \end{enumerate} \end{remark*} \subsubsection*{Examples} \begin{example*} Let $G$ act on itself by left multiplication, i.e. $g * x = g \cdot x$. The kernel of this action is \[ \{g \in G \mid g \cdot x = x ~\forall x \in G\} = \{e\} \] Thus $G \injto \Sym(G)$. This proves: \begin{theorem}[Cayley's Theorem] Any finite group $G$ is isomorphic to a subgroup of $S_n$ for some $n$. (Take $n = |G|$). \end{theorem} \end{example*} \begin{example*} Let $H \le G$. $G$ acts on $G / H$ (left cosets) by left multiplication, i.e. $g * xH = gxH$. This action is transitive (since $(x_2 x_1^{-1}) x_1 H = x_2 H$) with \[ G_{xH} = \{g \in G \mid gxH = xH\} = \{g \in G \mid x^{-1} gx \in H\} = x^{-1}Hx \] Thus $\ker(\phi) = \bigcap_{x \in G} xHx^{-1}$. This is largest normal subgroup of $G$ that is contained in $H$. \end{example*} \begin{theorem} let $G$ be a non-abelian simple group, and $H \le G$ a subgroup of index $n > 1$. Then $n \ge 5$ and $G$ is isomorphic to a subgroup of $A_n$. \end{theorem} \begin{proof} Let $G$ act on $X = G / H$ by left multiplication and let $\phi \colon G \to \Sym(X) = S_n$ be the associated permutation representation. As $G$ is simple, $\ker(\phi) = 1$ or $\ker(\phi) = G$. If $\ker(\phi) = G$, then $\Im(\phi) = 1$, contradiction since $G$ acts transitively on $X$ and $|X| > 1$. Thus $\ker(\phi) = 1$ and $G \cong \Im(\phi) \le S_n$. Since $G \le S_n$ and $A_n \normalsub S_n$, second isomorphism theorem gives: \[ G \cap A_n \normalsub G \] and \[ G / G \cap A_n \cong G A_n / A_n \le S_n / A_n \cong C_2 \] $G$ simple implies that $G \cap A_n = 1$ or $G$. If it equals $1$ then $G \injto C_2$ contradicts $G$ non-abelian. If it equals $G$ then $G \le A_n$. Finally, if $n \le 4$, then $A_n$ has no non-abelian simple subgroup (just list them!). \end{proof}