% vim: tw=50 % 11/03/2023 12AM \begin{flashcard}[primary-decomposition-theorem] \begin{theorem*}[Primary decomposition theorem] \cloze{ Let $R$ be a Euclidean Domain and $M$ a finitely generated $R$-module. Then \[ M \cong R / (p_1^{n_1}) \oplus \cdots \oplus R / (p_k^{n_k}) \oplus R^m \] (as $R$-modules) where $p_1, \ldots, p_k$ are primes (not necessarily distinct) and $m \ge 0$. } \end{theorem*} \begin{proof} \cloze{ By the structure theorem \[ M \cong R / (d_1) \oplus \cdots \oplus R / (d_t) \oplus R^m \] So it suffices to consider $M \cong R / (d_i)$, $d_i = u p_1^{a_1} \cdots p_r^{a_r}$ where $u$ is a unit and $p_1, \ldots, p_r$ are distinct (non-associate) primes. Lemma 16.6 implies \[ R / (d_i) \cong R / (p_1^{a_1}) \oplus \cdots \oplus R / (p_r^{a_r}) \qedhere \] } \end{proof} \end{flashcard} \myskip Let $V$ be a vector space over a field $F$. Let $\alpha : V \to V$ be a linear map and let $V_\alpha$ denote the $F[X]$-module $V$ where $F[X] \times V \to V$ is given by $(f(X), v) \mapsto f(\alpha)(v)$. \begin{lemma} If $V$ finite dimensional, then $V_\alpha$ is a finitely generated $F[X]$-module. \end{lemma} \begin{proof} If $v_1, \ldots, v_n$ generate $V$ as an $F$-vector space, then they generate $V_\alpha$ as an $F[X]$-module since $F \le F[X]$. \end{proof} \subsubsection*{Examples} \begin{enumerate}[(i)] \item Suppose $V_\alpha \cong F[X] / (X^n)$ as $F[X]$-module. Then $1, X, X^2, \ldots, X^{n - 1}$ is a basis for $F[X] / (X^n)$ as an $F$-vector space, and with respect to this basis $\alpha$ has matrix \[ (*) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \] \item Suppose $V_\alpha \cong F[X] / (X - \lambda)^n$ as $F[X]$-modules. Then with respect to basis $1, (X - \lambda), (X - \lambda)^2, \ldots, (X - \lambda)^{n - 1}$, $\alpha - \lambda \id$ has matrix ($*$), thus $\alpha$ has matrix \[ \begin{pmatrix} \lambda & 0 & 0 & \cdots & 0 & 0 \\ 1 & \lambda & 0 & \cdots & 0 & 0 \\ 0 & 1 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & 0 & \cdots & 1 & \lambda \end{pmatrix} \] \item \begin{flashcard}[companion-matrix] Suppose $V_\alpha \cong F[X] / (f(X))$ where $f(X) = X^n + a_{n - 1} X^{n - 1} + \cdots + a_0$, then with respect to basis $1, X, X^2, \ldots, X^{n - 1}$, $\alpha$ has matrix \[ \cloze{ \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -a_{n - 2} \\ 0 & 0 & 0 & \cdots & 1 & -a_{n - 1} \end{pmatrix} } \] This is called the \cloze{\fcemph{companion matrix}} $C(f)$ of the monic polynomial $f$. \end{flashcard} \end{enumerate} \begin{flashcard}[rational-canonical-form] \begin{theorem}[Rational canonical form] \cloze{ Let $\alpha : V \to V$ be an endomorphism of a finite dimensional $F$-vector space, where $F$ is a field. Then $F[X]$-module $V_\alpha$ decomposes as \[ V_\alpha \cong F[X] / (f_1) \oplus \cdots \oplus F[X] / (f_t) \] where $f_i \in F[X]$ monic and $f_1 \mid f_2 \mid \cdots \mid f_t$. Moreover, with respect to a suitable basis for $V$ (as an $F$ vector space), $\alpha$ has matrix \[ \begin{pmatrix} C(f_1) & 0 & \cdots & 0 \\ 0 & C(f_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C(f_t) \end{pmatrix} \tag{$**$} \] } \end{theorem} \begin{proof} \cloze{ By Lemma 16.7, $V_\alpha$ is a finitely generated $F[X]$-module. Since $F[X]$ is a Euclidean Domain, structure theorem implies \[ V_\alpha \cong F[X] / (f_1) \oplus \cdots \oplus F[X] / (f_t) \oplus F[X]^m \] with $f_1 \mid f_2 \mid \cdots \mid f_t$. Since $V$ is finite dimensional as an $F$ vector space, $m = 0$. Upon multiplying $f_i$ by a unit we may assume $f_i$ is monic.} \end{proof} \end{flashcard} \begin{remark*} \begin{enumerate}[(i)] \item If $\alpha$ is represented by an $n \times n$ matrix $A$, then the theorem says that $A$ is similar to ($**$). \item The minimal polynomial of $\alpha$ is $f_t$. \item The characteristic polynomial of $\alpha$ is $\prod_{i = 1}^t f_i$. \end{enumerate} The last two properties show that the minimal polynomial divides the characteristic polynomial, which is the Cayley-Hamilton Theorem. \end{remark*} \begin{example*} If $\dim V = 2$, then $\sum \deg f_i = 2$. So \[ V_\alpha = F[X] / (X - \lambda) \oplus F[X] / (X - \lambda) \] or \[ V_\alpha \cong F[X] / (f) \] where $f$ is the characteristic polynomial of $\alpha$. \end{example*} \begin{corollary} Let $A, B \in \GL_2(F)$ non-scalar. Then \[ \text{$A$ and $B$ are similar ($=$ conjugate)} \iff \text{they have the same characteristic polynomial} \] \end{corollary} \begin{proof} \begin{enumerate} \item[$\Rightarrow$] Linear algebra. \item[$\Leftarrow$] By the last example, $A$ and $B$ are similar to $C(f)$. \end{enumerate} \end{proof} \begin{flashcard}[annihilator-module-defn] \begin{definition*} The \emph{annihilator} of an $R$ module $M$ is \[ \Ann_R(M) = \cloze{\{r \in R \mid rm = 0 \forall m \in M\} \normalsub R} \] \end{definition*} \end{flashcard} \begin{example*} \begin{enumerate}[(i)] \item $I \normalsub R$, then $\Ann_R(R / I) = I$. \item If $A$ is a finite abelian group, then $\Ann_\ZZ(A) = (e)$ where $e$ is the exponent of $A$. \item If $V_\alpha$ as above, then $\Ann_{F[X]}(V_\alpha)$ is the ideal generated by the minimal polynomial of $\alpha$. \end{enumerate} \end{example*}