% vim: tw=50 % 09/03/2023 12AM \begin{lemma} $R$ an PID. Any submodule of $R^m$ is finitely generated. \end{lemma} \begin{proof} Example Sheet 4. \end{proof} \begin{flashcard}[free-basis-for-submodule-of-ed] \begin{theorem} Let $R$ be a Euclidean Domain and $N \le R^m$. There is a free basis \cloze{$x_1, \ldots, x_m$ for $R^m$ such that $N$ is generated by $d_1 x_1, \ldots, d_t x_t$ for some $t \le m$ and $d_1, \ldots, d_t \in R$ with $d_1 \mid d_2 \mid \cdots \mid d_t$.} \end{theorem} \begin{proof} \cloze{ By Lemma 16.3 we have $N = Ry_1 + \cdots + R y_n$ for some $n \le m$. Each $y_i$ belongs to $R^m$, so we can form an $m \times n$ matrix \[ A = (y_1 | y_2 | \cdots | y_n) \] By Theorem 16.1, $A$ is equivalent to \[ A' = \diag(d_1, \ldots, d_t, 0, \ldots, 0) \] $A'$ obtained from $A$ by elementary row and column operations. Each \fcemph{row operation changes our choice of free basis} for $R^m$ and each \fcemph{column operation changes our set of generators} for $N$. Thus, after changing free basis of $R^m$ to $x_1, \ldots, x_m$ (say), the submodule $N$ is generated by $d_1 x_1, d_2 x_2, \ldots, d_t x_t$ as claimed. } \end{proof} \end{flashcard} \begin{flashcard}[structure-theorem-for-ed] \begin{theorem*}[Structure Theorem] \cloze{Let $R$ be a \fcemph{Euclidean Domain} and $M$ a finitely generated $R$-module. Then \[ M \cong R / (d_1) \oplus R / (d_2) \oplus \cdots \oplus R / (d_t) \oplus \ub{R \oplus \cdots \oplus R}_{\text{$k$ copies}} \] for some $0 \neq d_1 \in R$ with $d_1 \mid d_1 \mid \cdots \mid d_t$ and $k \ge 0$. The $d_i$ are called \emph{invariant factors}.} \end{theorem*} \begin{proof} \cloze{ Since $M$ is finitely generated, there exists a surjective $R$-module homomorphism $\phi : R^m \to M$ for some $m$ (Lemma 14.1). By first isomorphism theorem, $M \cong R^m / \Ker(\phi)$. By Theorem 16.4, there exists a free basis $x_1, \ldots, x_m$ for $R^m$ such that $\Ker(\phi)$ is generated by $d_1 x_1, \ldots, d_t x_t$ with $d_1 \mid d_2 \mid \cdots \mid d_t$. Then \begin{align*} M &\cong \frac{R \oplus R \oplus \cdots \oplus R \oplus R \oplus \cdots \oplus R}{d_1 R \oplus d_2 R \oplus \cdots \oplus d_t R \oplus 0 \oplus \cdots \oplus 0} \\ &\cong R / (d_1) \oplus R / (d_2) \oplus \cdots \oplus R / (d_t) \oplus R \oplus \cdots \oplus R &&\text{(by Lemma 15.1)} \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{remark*} After deleting these $d_i$ which are units, the module $M$ uniquely determines the $d_i$ (up to associates). Proof omitted. \end{remark*} \begin{flashcard}[torsion-iff-free-module-over-ed] \begin{corollary} Let $R$ be a \cloze{\fcemph{Euclidean Domain}}. Then any finitely generated torsion-free $R$-module \cloze{is free.} \end{corollary} \begin{proof} \cloze{ \prompt{(Using structure theorem):} $M$ torsion-free $\implies$ no submodules of the form $R / (d)$ with $d \neq 0$. Thus $M \cong R^m$ for some $m$. } \end{proof} \end{flashcard} \begin{example*} $R = \ZZ$. Consider the abelian group $G$ generated by $a$ and $b$ subject to the relations $2a +b = 0$, $-a + 2b = 0$. Then $G \cong \ZZ^2 / N$, where $N$ is generated by $(2, 1)$, $(-1, 2)$. \[ A = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \qquad \text{ has SNF }\qquad \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \] Thus can change basis for $\ZZ^2$ such that $N$ is generated by $(1,0)$ and $(0,5)$. Thus \[ G \cong \ZZ^2 / N \cong \frac{\ZZ \oplus \ZZ}{\ZZ \oplus 5\ZZ} \cong \ZZ / 5\ZZ \] \end{example*} \noindent More generally: \begin{theorem*}[Structure theorem for finitely generated abelian groups] Any finitely generate abelian group $G$ is isomorphic to \[ \ZZ / d_1 \ZZ \oplus \cdots \oplus \ZZ / d_t \ZZ \oplus \ZZ \oplus \ZZ \oplus \cdots \oplus \ZZ \] where $d_1 \mid d_2 \mid \cdots \mid d_t$ and $r \ge 0$. \end{theorem*} \begin{proof} Take $R = \ZZ$ in structure theorem. \end{proof} \begin{remark*} The special case $G$ is finite (so $r = 0$) was quoted as Theorem 6.4. \end{remark*} \noindent In \hyperlink{section.6}{Section 6}, we saw that any finite abelian group can be written as a product of $C_{p^i}$'s where $p$ is prime. To generalise this we need: \begin{flashcard}[direct-sum-of-coprime-ring-quotients] \begin{lemma} Let $R$ be a \cloze{\fcemph{PID}} and $a, b \in R$ with \cloze{$\gcd(a, b) = 1$. Then} \[ R / (ab) \cong R / (a) \oplus R / (b) \] as $R$-modules.\fcscrap{ (Case $R = \ZZ$ was Lemma 6.2).} \end{lemma} \begin{proof} \cloze{ $R$ a PID $\implies (a, b) = (d)$ for some $d \in R$. But $\gcd(a, b) = 1$ hence $d$ a unit. So there exists $r, s \in R$ such that $ra + sb = 1$. Define an $R$-module homomorphism \[ \psi : R \to R / (a) \oplus R / (b) \qquad x \mapsto (x + (a), x + (b)) \] Then $\psi(sb) = (1 + (a), 0 + (b))$, $\psi(ra) = (0 + (a), 1 + (b))$. Thus \[ \psi(sbx + ray) = (x + (a), y + (b)) \] for any $x, y \in R$, so $\psi$ is surjective. Clearly $(ab) \le \Ker(\psi)$. Conversely, if $x \in \Ker(\psi)$, then $x \in (a) \cap (b)$ and \begin{align*} x &= x(ra + sb) \\ &= \ub{r(ax)}_{\in (ab)} + \ub{s(xb)}_{\in (ab)} \\ &\in (ab) \end{align*} Thus $\Ker(\psi) = (ab)$. Then by the First Isomorphism Theorem for rings, $R / (ab) \cong R / (a) \oplus R / (b)$. } \end{proof} \end{flashcard}