% vim: tw=50 % 07/03/2023 12AM \noindent Let $R$ be a Euclidean domain and $\phi : R \setminus \{0\} \to \ZZ_{\ge 0}$ a Euclidean function. \begin{flashcard}[SNF-exists] \begin{theorem}[Smith Normal-form] \cloze{ An $m \times n$ matrix $A = (a_{ij})$ over a \fcemph{Euclidean Domain} $R$ is equivalent to a diagonal matrix \[ \begin{pmatrix} d_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \\ 0 & 0 & \cdots & d_t & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \] where $d_i \neq 0$ and $d_1 \mid d_2 \mid \cdots \mid d_t$. The $d_i$ are called \emph{invariant factors}. We will show they are unique up to associates.} \end{theorem} \prompt{ \begin{proof} \cloze{ Induct on dimension, where we use an algorithm to make the top row and left column all zero except for the top left entry, and making sure that the top left entry divides all other entries in the matrix. } \end{proof} } \end{flashcard} \begin{proof} If $A = 0$ then done. Otherwise upon swapping rows and columns, may assume $a_{11} \neq 0$. We will reduce $\phi(a_{11})$ as much as possible via the following algorithm. \begin{enumerate}[(Step 1)] \item If $a_{11} \mid a_{1j}$ for some $j \ge 2$, then write $a_{ij} = qa_{11} + r$, $q_1 r \in R$, $\phi(r) < \phi(a_{11})$. Subtracting $q$ times column $1$ from $j$, and swapping these columns makes the top left entry $r$. \item If $a_{11} \nmid a_{i1}$ for some $i \ge 2$ then repeat above process with row operations. \myskip Steps 1 and 2 decrease $\phi(a_{11})$, so can repeat finitely many times until $a_{11} \mid a_{1j}$ for all $j \ge 2$ and $a_{11} \mid a_{i1}$ for all $i \ge 2$. Subtracting multiples of first row / column from others gives \[ A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & A' & \\ 0 & & & \end{pmatrix} \] where $A'$ is a $(m - 1) \times (n - 1)$ matrix. \item If $a_{11} \nmid a_{ij}$ for some $i, j \ge 2$, then add $i$-th row to first row, and perform column operations as in Step 1 to decrease $\phi(a_{11})$. Then restart algorithm. Hence after finitely many steps we get \[ A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & A' & \\ 0 & & & \end{pmatrix} \] with $a_{11} = d_1$ say such that $d_1 \mid a_{ij}$ for all $i, j$. \end{enumerate} Applying the same method to $A'$ gives the result. \end{proof} \myskip For uniqueness of invariant factors -- introduce minors of $A$. \begin{definition*} A $k \times k$ minor of $A$ is the determinant of a $k \times k$ submatrix of $A$ (i.e. a matrix formed by deleting $m - k$ rows and $n - k$ columns). \end{definition*} \begin{flashcard}[fitting-ideal] \begin{definition*} The $k$-th Fitting ideal \cloze{$\Fit_k(A) \normalsub R$ is the ideal generated by the $k \times k$ minors of $A$.} \end{definition*} \end{flashcard} \begin{lemma} If $A$ and $B$ are equivalent matrices, then $\Fit_k(A) = \Fit_k(B)$ for all $k$. \end{lemma} \begin{proof} We show that (ER1-3) don't change $\Fit_k(A)$. Same proof works for EC1-3. \begin{enumerate}[(ER1)] \item Add $\lambda$ times $j$-th row to $i$-th row, so $A$ becomes $A'$. Let $C$ be a $k \times k$ submatrix of $A$ and $C'$ the corresponding submatrix of $A'$. \begin{itemize} \item If we did not choose the $i$-th row, then $C = C'$ so $\det C = \det C'$. \item If we choose both of the rows $i$ and $j$, then $C$ and $C'$ differ by row operation, hence $\det C = \det C'$. \item If we chose the $i$-th row but not the $j$-th row, then by expanding along the $i$-th row, \[ \det(C') = \det(C) \pm \lambda \det(D) \] where $D$ is another $R \times R$ submatrix of $A$ (Choose $j$-th row instead of $i$-th row). Thus $\det(C') \in \Fit_k(A)$. \end{itemize} Hence $\Fit_k(A') \subset \Fit_k(A)$. Since (ER1) is reversible we get $\supset$ as well by same argument, hence equality. (ER2) and (ER3) are similar but easier. \end{enumerate} \end{proof} \myskip Now if $A$ has SNF $\diag(d_1, \ldots, d_t, 0, \ldots, 0)$, $d_1 \mid d_2 \mid \cdots \mid d_t$, then $\Fit_k(A) = (d_1 d_2 \cdots d_k) \normalsub R$, $k = 1, \ldots, t$. Thus the products $d_1 \cdots d_k$ (up to associate) depends only on $A$. \begin{example*} Consider the matrix \[ A = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \] over $\ZZ$. \[ \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \stackrel{c_1 \to c_1 + c_2}{\longrightarrow} \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \stackrel{c_2 \to c_1 + c_2}{\longrightarrow} \begin{pmatrix} 1 & 0 \\ 3 & 5 \end{pmatrix} \stackrel{R_2 \to R_2 - 3R_1}{\longrightarrow} \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \] But also $(d_1) = (2, -1, 1, 2) = (1)$ so $d_1 = \pm 1$, $(d_1 d_) = (\det A) = (5)$ so $d_2 = \pm 5$. \end{example*} \noindent We will use SNF to prove the structure theorem. First some preparation. \begin{flashcard}[ed-submodule-generated-by-at-most-m-elements] \begin{lemma} $R$ a \cloze{\fcemph{Euclidean Domain}}. Any submodule of $R^m$ is generated by at most $m$ elements. \end{lemma} \fcscrap{ \begin{remark*} $m = 1$ was Lemma 14.4. \end{remark*} } \begin{proof} \cloze{ Let $N \le R^m$. Consider the ideal \[ I = \{r_1 \in R \mid \exists r_2, \ldots, r_m \in R, (r_1, \ldots, r_n) \in N\} \normalsub R \] Since ED implies PID, we have $I = (a)$ for some $a \in R$. Choose some $n = (a, a_2, \ldots, a_m) \in N$. For $(r_1, \ldots, r_m) \in N$, we have $r_1 = ra$ for some $r \in R$, so \[ (r_1, r_2, \ldots, r_m) - rn = (0, r_2 - ra_2, \ldots, r_m - ra_m) \] which lies in $N' \defeq N \cap (0 \oplus R^{m - 1}) \le R^{m - 1}$, hence $N = Rn + N'$. By induction, $N'$ is generated by $n_2, \ldots, n_m$, hence $\{n, n_2, \ldots, n_m\}$ generates $N$. } \end{proof} \end{flashcard}