% vim: tw=50 % 04/03/2023 12AM \newpage \section{Direct Sums and Free Module} \begin{definition*} Let $M_1, \ldots, M_n$ be $R$-modules. The direct sum \[ M_1 \oplus M_2 \oplus \cdots \oplus M_n \] is the set $M_1 \times \cdots \times M_n$ with operations \begin{align*} (m_1, \ldots, m_n) + (m_1', \ldots, m_n') &= (m_1 + m_1', \ldots, m_n + m_n') \\ r(m_1, \ldots, m_n) &= (rm_1, \ldots, rm_n) &&(r \in R) \end{align*} \end{definition*} \begin{example*} $R^n = R \oplus \cdots \oplus R$. \end{example*} \begin{flashcard}[direct-sum-quotient-lemma] \begin{lemma} If $M = \bigoplus_{i = 1}^n M_i$ and $N_i \le M_i$ for all $i$, then setting $N = \bigoplus_{i = 1}^n N_i \le M$, we have \[ \cloze{M / N \cong \bigoplus_{i = 1}^n M_i / N_i} \] \end{lemma} \begin{proof} \cloze{ Apply first isomorphism theorem to the surjective $R$-module homomorphism \begin{align*} M &\to \bigoplus_{i = 1}^n M_i / N_i \\ (m_1, \ldots, m_n) &\mapsto (m_1 + N_1, \ldots, m_n + N_n) \end{align*} with kernel $N = \bigoplus_{i = 1}^n N_i$. } \end{proof} \end{flashcard} \begin{flashcard}[module-independent-set-defn] \begin{definition*} Let $m_1, \ldots, m_n \in M$. The set $\{m_1, \ldots, m_n\}$ is independent if \[ \cloze{\sum_{i = 1}^n r_i m_i = 0 \implies r_1 = r_2 = \cdots = r_n = 0} \] \end{definition*} \end{flashcard} \begin{flashcard}[module-freely-generated-defn] \begin{definition*} A subset $S \subset M$ generates $M$ freely if \cloze{ \begin{enumerate}[(i)] \item $S$ generates $M$, i.e. $\forall m \in M$, $m = \sum_{i = 1}^n r_i s_i$ for some $r_i \in R$, $s_i \in S$. \item Any function $\psi : S \to N$ where $N$ is an $R$-module, extends to an $R$-module homomorphism $\theta : M \to N$. (Such an extension is unique by (i)). \end{enumerate} An $R$-module which is freely generated by some subset $S \subset M$ is called \emph{free} and $S$ is called a \emph{free basis}.} \end{definition*} \end{flashcard} \begin{flashcard}[subset-freely-generating-tfae] \begin{proposition} For a subset $S = \{m_1, \ldots, m_n\} \subset M$, the following are equivalent: \begin{enumerate}[(i)] \item \cloze{$S$ generates $M$ freely.} \item \cloze{$S$ generates $M$ and $S$ is independent.} \item \cloze{Every element of $M$ can be written uniquely as \[ r_1 m_1 + \cdots r_n m_n \] for some $r_1, \ldots, r_n \in R$.} \item \cloze{The $R$-module homomorphism \begin{align*} R^n &\to M \\ (r_1, \ldots, r_n) &\mapsto \sum_{i = 1}^n r_i m_i \end{align*} is an isomorphism.} \end{enumerate} \end{proposition} \end{flashcard} \begin{proof} \begin{enumerate} \item[(i) $\implies$ (ii)] Let $S$ generate $M$ freely. If $S$ is not independent, then $\exists r_1, \ldots, r_n \in R$ with $\sum r_i m_i = 0$ and some $r_j \neq 0$. Define $\psi : S \to R$ \[ m_i \mapsto \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \] extends to $R$-module homomorphism $M \to R$. Then \begin{align*} 0 &= \theta(0) \\ &= \theta \left( \sum r_i m_i \right) \\ &= \sum r_i \theta(m_i) \\ &= r_i \end{align*} Thus $S$ is independent. The rest are exercises. \end{enumerate} \end{proof} \begin{example*} $A$ is non-trivial finite abelian group. Then $A$ is not a free $\ZZ$-module. \end{example*} \begin{example*} The set $\{2, 3\}$ generates $\ZZ$ as a $\ZZ$-module, but they are not independent since \[ (3) \cdot 2 + (-2) \cdot 3 = 0 \] Furthermore, no subset of $\{2, 3\}$ is a free basis, since $\{2\}$ and $\{3\}$ do not generate. \end{example*} \begin{flashcard}[invariance-of-dimension] \begin{proposition}[Invariance of dimension] \cloze{ Let $R$ be a non-zero ring. If $R^m \cong R^n$ as $R$-modules then $m = n$.} \end{proposition} \begin{proof} \cloze{ First, we introduce a general construction. Let $I \normalsub R$ and $M$ an $R$-module. Define \[ IM = \left\{ \sum a_i m_i : a_i \in I, m_i \in M\right\} \le M \] The quotient $M / IM$ is an $R/I$-module via \[ (r + I)(m + IM) = rm + IM \] Well-defined: if $b \in I$ then \[ b \cdot (m + IM) = bm + IM = 0 + IM \] Suppose $R^m \cong R^n$. Choose $I \normalsub R$ maximal ideal (user Zorn's Lemma and Example Sheet 2 Question 4). By the above, we get an isomorphism of $R / i$ module \[ (R / I)^m \cong R^m / IR^m \cong R^n / IR^n \cong (R / I)^n \] But $I \normalsub R$ is maximal hence $R / I$ is a field. So $m = n$ by invariance of dimension for vector spaces. } \end{proof} \end{flashcard} \newpage \section{The Structure Theorem and Applications} Until further notice: $R$ is always a Euclidean domain, $\phi : R \setminus \{0\} \to \ZZ_{\ge 0}$ Euclidean function. Let $A$ be an $m \times n$ matrix with entries in $R$. \begin{definition*} The elementary row operations are: \begin{enumerate}[(ER1)] \item Add $\lambda$ times $i$-th row to $j$-th row ($\lambda \in R$, $i \neq j$). \item Swapping $i$-th and $j$-th rows. \item Multiply $i$-th row by $u \in R^\times$. \end{enumerate} Each of these can be realised by left multiplication by an $m \times m$ invertible matrix: \begin{center} \includegraphics[width=0.6\linewidth] {images/d2ce241eba8b11ed.png} \end{center} \end{definition*} \noindent In particular, these operations are reversible. Similarly, we can define elementary column operations (EC1-3) -- realised b right multiplication by an invertible $n \times n$ matrix. \begin{flashcard}[equivalent-matrices] \begin{definition*}[Equivalent matrices] \cloze{ Two $m \times n$ matrices $A$ and $B$ are \emph{equivalent} if there exists a sequence of elementary row and column operations taking $A$ to $B$. If they are equivalent, then there exists (invertible) $P$, $Q$ such that $B = QAP$. } \end{definition*} \end{flashcard}