% vim: tw=50 % 21/01/2023 12PM \begin{definition*} An isomorphism of groups is a group homomorphism that is also a bijection. We say $G$ and $H$ are isomorphic (written $G \cong H$) if $\exists$ isomorphism $\phi \colon G \to H$. (Exercise: Check $\phi^{-1} \colon H \to G$ is a group homomorphism). \end{definition*} \begin{theorem*}[First Isomorphism Theorem] Let $\phi \colon G \to H$ be a group homomorphism. Then $\Ker(\phi) \normalsub G$ and $G / \Ker(\phi) \cong \Im(\phi)$. \end{theorem*} \begin{proof} Let $K = \Ker(\phi)$. Already checked $K$ is normal. Define $\Phi \colon G / K \to \Im(\phi)$, $gK \mapsto \phi(g)$. Check $\Phi$ is well-defined and injective: \begin{align*} g_1 K = g_2 K &\iff g_2^{-1} g_1 \in K \\ &\iff \phi(g_2^{-1} g_1) = 1 \\ &\iff \phi(g_2) = \phi(g_1) \end{align*} Check $\Phi$ is a group homomorphism: \begin{align*} \Phi(g_1 K g_2 K) &= \Phi(g_1 g_2 K) \\ &= \phi(g_1 g_2) \\ &= \phi(g_1) \phi(g_2) \\ &= \Phi(g_1 K) \Phi(g_2 K) \end{align*} $\Phi$ is surjective: Let $x \in \Im(\phi)$, say $\phi(g) = x$ for some $g \in G$. Then $x = \Phi(gK) \in \Im(\Phi)$. \end{proof} \begin{example*} $\phi \colon \CC \to \CC^\times = \{x \in \CC \mid x \neq 0\}$, $z \mapsto e^z$. Since $e^{z + w} = e^z e^w$, this is a group homomorphism from $(\CC, +)$ to $(\CC^\times, x)$. \[ \Ker(\phi) = \{z \in \CC \mid e^z = 1\} = 2\pi i \ZZ \] \[ \Im(\phi) = \CC^\times \qquad \text{(by existence of log)} \] therefore $\CC / 2\pi i \ZZ \cong \CC^\times$. \end{example*} \begin{flashcard}[second-iso-thm] \begin{theorem*}[Second Isomorphism Theorem] Let $H \cloze{\le} G$, and $K \cloze{\normalsub} G$. Then $\cloze{HK = \{hk \colon h \in H, k \in K\} \le G}$ and $\cloze{H \cap K \normalsub H}$. Moreover \[ \cloze{HK / K \cong H / H \cap K} \] \end{theorem*} \end{flashcard} \begin{flashcard}[second-iso-thm-proof] \prompt{Proof of second isomorphism theorem? \\} \begin{proof} \cloze{ Let $h_1 k_1, h_2 k_2 \in HK$ (so $h_1, h_2 \in H$, $k_1, k_2 \in K$). Then \[ h_1 k_1 (h_2 k_2)^{-1} = \ub{h_1 h_2^{-1}}_{\in H} \ub{h_2 k_1 k_2^{-1} h_2^{-1}}_{\in K} \in HK \] Thus $HK \le G$ (by Remark from last lecture). \myskip Let $\phi \colon H \to G / K$, $h \mapsto h \to hK$. This is the composite of $H \injto G$ and the quotient map $G \to G / K$, hence $\phi$ is a group homomorphism. \[ \Ker(\phi) = \{h \in H \mid hK = k\} = H \cap K \normalsub H \] \[ \Im(\phi) = \{hK \mid h \in H\} = HK / K \] First isomophism theorem implies $H / H \cap K \cong HK / K$. } \end{proof} \end{flashcard} \begin{remark*} Suppose $K \normalsub G$. There is a bijection \[ \{\text{subgroups of $G / K$}\} \leftrightarrow \{\text{subgroups of $G$ containing $H$}\} \] defined by $X \mapsto \{g \in G : gK \in X\}$ and $H / K \mapsfrom H$. This restricts to a bijection \[ \{\text{normal subgroups of $G / K$}\} \leftrightarrow \{\text{normal subgroups of $G$ containing $K$}\} \] \end{remark*} \begin{flashcard}[third-iso-thm] \begin{theorem}[Third Isomorphism Theorem] Let $K \normalsub H \normalsub G$ be normal subgroups of $G$. Then \[ \cloze{\frac{G / K}{H / K}} \cong \cloze{G / H} \] \end{theorem} \end{flashcard} \begin{flashcard}[third-iso-thm-proof] \prompt{Proof of third isomorphism theorem? \\} \begin{proof} \cloze{ Let $\phi : G / K \to G / H$, $gK \mapsto gH$. If $g_1 K = g_2 K$, then $g_2^{-1} g_1 \in K \le H \implies g_1H = g_2 H$. Thus $\phi$ well-defined. $\phi$ is surjective group homomorphism with kernel $H / K$. } \end{proof} \end{flashcard} \myskip If $K \normalsub G$ then studying the groups $K$ and $G / K$ gives some information about $G$. This is not always available. \begin{definition*} A group $G$ is \emph{simple} if $1$ and $G$ are its only normal subgroups, except if $G$ is the trivial group (convention). \end{definition*} \begin{lemma} Let $G$ be an abelian group. $G$ is simple if and only if $G \cong C_p$ for some prime $p$. \end{lemma} \begin{proof} \begin{enumerate} \item[$\Leftarrow$] Let $H \le C_p$. By Lagrange's Theorem, $|H| ~\big|~ |C_p| = p$. So $|H|$ is 1 or $p$, i.e. $H = \{1\}$ or $H = C_p$. Thus $C_p$ is simple. \item[$\Rightarrow$] Let $1 \neq g \in G$. $G$ contains the subgroup $\langle g \rangle = \langle \ldots, g^{-2}, g^{-1}, 1, g, g^2, \ldots \rangle$ - normal in $G$ since $G$ is abelian. Since $G$ is simple, $\langle g \rangle = G$. If $G$ is infinite, $G \cong (\ZZ, +)$ and $2\ZZ \le \ZZ$, contradiction. Otherwise $G \cong C_n$ for some $n$, so $g^n = 1$. If $m \mid n$, then $g^{n / m}$ generates a subgroup of order $m$ inside $G$. So $G$ is simple $\implies$ only factors of $n$ are 1 and $n$, so $n$ is prime. \end{enumerate} \end{proof} \begin{lemma} If $G$ is a finite group, then $G$ has a composition series \[ 1 = G_0 \normalsub G_1 \normalsub \cdots \normalsub G_{m - 1} \normalsub G_m = G \] with each quotient $G_i / G_{i - 1}$ simple. \end{lemma} \begin{warning*} $G_i$ need not be normal in $G$; we only necessarily know that $G_i$ is normal in $G_{i + 1}$. \end{warning*} \begin{proof} Induct on $|G|$. Case $|G| = 1$. If $|G| > 1$, let $G_{m - 1}$ be a normal subgroup of largest possible order $\neq |G|$. By earlier Remark, $G / G_{m - 1}$ must be simple. Apply induction to $G_{m - 1}$. \end{proof}