% vim: tw=50 % 02/03/2023 12AM \begin{flashcard}[submodule-defn] \begin{definition*} $M$ an $R$-module. $N \subset M$ is an $R$-submodule (written $N \le M$) if \cloze{it is a subgroup of $(M, +)$ and $r \cdot n \in N$ for all $r \in R$, $n \in N$.} \end{definition*} \end{flashcard} \begin{hiddenflashcard}[how-to-check-submodule] How to check if $N$ is a submodule of $M$? \\ \cloze{ \begin{enumerate}[(i)] \item $0 \in N$ \item $n_1, n_2 \in N \implies n_1 + n_2 \in N$ \item $n \in N, r \in R \implies r \cdot n \in N$ \end{enumerate} } \end{hiddenflashcard} \subsubsection*{Examples} \begin{enumerate}[(i)] \item A subset of $R$ is an $R$-submodule \emph{precisely} when it is an ideal. \item When $R = F$ is a field, module $\equiv$ vector space, submodule $\equiv$ vector subspace. \end{enumerate} \begin{flashcard}[module-quotient-defn] \begin{definition*} If $N \le M$ an $R$-submodule, the quotient $M / N$ is \cloze{the quotient of groups under $+$ with \[ r \cdot (m + N) = rm + N \] This is well-defined, and makes $M / N$ an $R$-module.} \end{definition*} \end{flashcard} \begin{flashcard}[module-homomorphism-defn] \begin{definition*} Let $M, N$ be $R$-modules. A function $f : M \to N$ is \cloze{an \emph{$R$-module homomorphism}} if it is \cloze{a homomorphism of abelian groups and \[ f(r \cdot m) = r \cdot f(m) \qquad \forall r \in R, m \in M \]} \end{definition*} \end{flashcard} \begin{theorem*}[First isomorphism theorem] Let $f : M \to N$ be an $R$-module homomorphism. Then \begin{itemize} \item $\Ker(f) \defeq \{m \in M \mid f(m) = 0\} \le M$ \item $\Im(f) \defeq \{f(m) \in N \mid m \in M\} \le N$ \end{itemize} and $M / \Ker(f) \cong \Im(f)$. \end{theorem*} \begin{proof} Similar to before. \end{proof} \begin{theorem*}[Second isomorphism theorem] Let $A, B \le M$ be submodules. Then \[ A + B = \{a + b \mid a \in A, b \in B\} \le M \] \[ A \cap B \le M \] and \[ A / (A \cap B) \cong (A + B) / B \] \end{theorem*} \begin{proof} Apply first isomorphism theorem to the composite $A \injto M \injto M / B$. \end{proof} \myskip For third isomorphism theorem, note that there exists bijection \[ \{\text{submodules of $M / N$}\} \leftrightarrow \{\text{submodules of $M$ containing $N$}\} \] \begin{theorem*}[Third isomorphism theorem] If $N \le L \le M$ are $R$-submodules of $M$, then \[ \frac{M / N}{L / N} \cong M / L \] \end{theorem*} \noindent In particular, these apply to vector spaces (compare with results from Linear Algebra). \myskip Let $M$ be an $R$-module. If $m \in M$, write $R_m = \{rm \in M \mid r \in R\}$ -- submodule generated by $m$. If $A, B \le M$, write \[ A + B = \{a + b \mid a \in A, b \in B\} \le M \] \begin{definition*} \begin{itemize} \item $M$ is cyclic if there exists $m \in M$ such that $M = R_m$. \item $M$ is finitely generated if there exists $m_1, \ldots, m_n \in M$ such that \[ M= R_{m_1} + R_{m_2} + \cdots + R_{m_n} \] \end{itemize} \end{definition*} \begin{hiddenflashcard}[cyclic-module-defn] \begin{definition*}[Cyclic Module] \cloze{ $M$ is cyclic if there exists $m \in M$ such that $M = R_m$. } \end{definition*} \end{hiddenflashcard} \begin{hiddenflashcard}[finitely-generated-module-defn] \begin{definition*}[Finitely Generated Module] \cloze{ $M$ is finitely generated if there exists $m_1, \ldots, m_n \in M$ such that \[ M = R_{m_1} + R_{m_2} + \cdots + R_{m_n} \] } \end{definition*} \end{hiddenflashcard} \begin{flashcard}[cyclic-module-iff] \begin{lemma} $M$ is cyclic if and only if \cloze{$M \cong R / I$ for some $I \normalsub R$.} \end{lemma} \begin{proof} \begin{itemize} \item[$\Rightarrow$] \cloze{Suppose $M = R_m$. Then there is a surjective $R$-module homomorphism $R \to M$, $r \mapsto rm$. Its kernel is an $R$-submodule of $R$, i.e. an ideal. Then first isomorphism theorem gives $R / I \cong M$.} \item[$\Leftarrow$] \cloze{$R / I$ is generated as an $R$-module by $1_R + I$. \qedhere} \end{itemize} \end{proof} \end{flashcard} \begin{flashcard}[finitely-generated-module-iff] \begin{lemma} $M$ finitely generated if and only if \cloze{there exists a surjective $R$-module homomorphism $f : R^n \to M$ for some $n$.} \end{lemma} \begin{proof} \begin{itemize} \item[$\Rightarrow$] \cloze{If $M = R_{m_1} + R_{m_2} + \cdots + R_{m_n}$ define $f : R^n \to M$, $(r_1, \ldots, r_n) \mapsto \sum_{i = 1}^n r_i m_i$ a surjective $R$-module homomorphism.} \item[$\Leftarrow$] \cloze{Let $e_i = (0, \ldots, 1, \ldots, 0) \in R^n$. (1 is in the $i$-th place). Given $f$, let $m_i \defeq f(e_i) \in M$. Then any $m \in M$ is of the form \begin{align*} f(r_1, \ldots, r_n) &= f \left( \sum_{i = 1}^n r_i e_i \right) \\ &= \sum_{i = 1}^n r_i f(e_i) \\ &= \sum_{i = 1}^n r_i m_i \end{align*} Thus $M = Rm_1 + \cdots + R m_n$. \qedhere} \end{itemize} \end{proof} \end{flashcard} \begin{flashcard}[submodule-of-finitely-generated-is-finitely-generated] \begin{corollary} Let $N \le M$ be an $R$-submodule. If $M$ is finitely generated, then $M / N$ is finitely generated. \end{corollary} \begin{proof} \cloze{ Let $f : R^n \to M$ be a surjective $R$-module homomorphism. Then $R^n \to M \to M / N$ is a surjective $R$-module homomorphism. } \end{proof} \end{flashcard} \begin{hiddenflashcard}[submodule-of-finitely-generated-is-finitely-generated-counterexample] \begin{lemma} Let $N \le M$ be an $R$-submodule. If $M$ is finitely generated, then $N$ is finitely generated. \end{lemma} \begin{proof} \cloze{ This statement is actually \fcemph{false}. As a counter example, consider $R$ a non-Noetherian ring and $I \normalsub R$ a non-finitely generated ideal. Then $M = R$ is a finitely generated $R$-module and $N = I$ is a submodule which is not finitely generated. } \end{proof} \end{hiddenflashcard} \begin{example*}[Counter-example] A submodule of a finitely generated module need not be finitely generated. Let $R$ be a non-Noetherian ring and $I \normalsub R$ a non-finitely generated ideal. Then $R$ is a finitely generated $R$-module and $I$ is a submodule which is not finitely generated. \end{example*} \begin{remark*} A submodule of a finitely generated module over a Noetherian ring is finitely generated (Examples Sheet 4). \end{remark*} \begin{lemma} Let $R$ be an integral domain. Then \[ \text{every submodule of a cyclic $R$-submodule is cyclic} \iff \text{$R$ is a PID} \] \end{lemma} \begin{proof} \begin{itemize} \item[$\Rightarrow$] $R$ is a cyclic $R$-module. Saying its submodules are cyclic precisely means that every ideal is principal. \item[$\Leftarrow$] If $M$ is a cyclic $R$-module, then $M \cong R / I$, $I \normalsub R$ by Lemma 14.1. Any submodule of $R / I$ is of the form $J / I$ for some ideal $J \normalsub R$ and $I \le J$. $R$ a PID implies $J$ principal hence $J / I$ is cyclic. \end{itemize} \end{proof} \begin{definition*} Let $M$ be an $R$-module. \begin{enumerate}[(i)] \item \begin{flashcard}[torsion-element-defn] An element $m \in M$ is torsion if \cloze{there exists $0 \neq r \in R$ with $rm = 0$.} \end{flashcard} \item \begin{flashcard}[torsion-module-defn] $M$ is a torsion module if \cloze{every $m \in M$ is torsion.} \end{flashcard} \item \begin{flashcard}[torsion-free-module-defn] $M$ is torsion free if \cloze{every $0 \neq m \in M$ is not torsion.} \end{flashcard} \end{enumerate} \end{definition*} \begin{example*} \begin{itemize} \item The torsion elements in a $\ZZ$-module ($=$ abelian group) are the elements of finite order. \item Any $F$-module ($=$ vector space) is torsion free. \end{itemize} \end{example*}